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Identification of wave phenomena at wagons impact 
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At longitudinal impacts, when the structure members are very quickly deformed, complex 

physical phenomena occur, such as: changes of rheological properties of the material, temperature and 

chemical changes, etc. During these phenomena, the behaviour of the structure can be completely 

different from its behaviour at static loading. The structure fails in getting displacements which 

correspond to fast changes of loads. Such delay can cause abrupt deformation of the structure. This 

paper presents theoretical and experimental analysis of wave phenomena at impact of railway wagons. 

Theoretical considerations have been realized on an idealized beam model, and experimental results 

refer to test of wagon type Zagkks for transport of liquid petroleum gas. 
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0 INTRODUCTION 

Theoretical and experimental analysis of 

behaviour of body at wagon impact cannot be 

precisely determined without considering wave 

processes. In railway vehicles, where the 

geometry of the carrying structure is complex, 

and speeds of impact are not so great, a model of 

elastic body neglecting some phenomena can be 

formed. In that way, local effects which refer to 

the three-axis stress state is avoided. This 

postulation defines impact by a certain speed of a 

cross-section of the member or the shell and the 

ratio between masses of the observed elements 

and load. Consideration of impact phenomena is, 

in this way, different from the case where the 

change of several physical factors is present and 

where changes of the structure of the material are 

dominant. Most real structures subjected to 

impact action can be treated in this way. In that 

case, equations of motion [1, 2] have the form: 
2

2v
x 2

ε u
( λ G) G u F ρ 0

x t

 

 
       

2
2v

y 2

v
( G ) G v F 0

y t

 
 

 
               (1)  

2
2v

z 2

w
( G ) G w F 0

z t

 
 

 
       

Where: 

, G,  – constants of material 

v  –  volume deformation 

u, v, w – displacements in x, y, z directions 

Fx, Fy, Fz – external volume forces, 

t – time, and 
2
 – Laplace operator 

 

1 BEHAVIOUR OF ELASTIC BODIES AT 

IMPULS LOADS 

Behavior of an elastic body loaded with 

forces which do not change in time belongs to the 

field of statics. These problems can include the 

case where the change of load in time is slow, i.e. 

quasi-static. If changes of load in time are faster, 

as in the case of impact loads, then the problems 

are transferred to the field of dynamics. In this 

case, action of dynamic (impact) load is not 

immediately transmitted to all points of the body. 

Waves of stresses and strains start to propagate 

from the loaded surface and they have finite 

speed of propagation.  

 

1.1 Longitudinal and transversal waves in 

isotropic elastic continuum  

If a certain point of the elastic continuum 

is incited, waves will start to propagate from that 

point to all sides. At a distance from the centre of 

incitation, all particles will move in parallel with 

the direction of propagation of waves 

(longitudinal waves) or normally to that direction 

(transversal waves) (Fig. 1). 

 

Fig. 1. Distribution of waves in elastic continum 

Under the assumption that, in the existence 

of waves, the volume deformation is equal to 

zero, i.e. that deformation consists of sliding and 

rotating only, equations (1) obtain the form 1, 2: 

9



VII Triennial International Conference HEAVY MACHINERY - HM 2011, Volume7(2011), No 1, 9-12  
 

 

Petrović D. – Bižić M. – Đelošević M. – Rakanović R. 

2 2
2

i2 2

u u
c

t x

 

 
  

2 2
2

i2 2

v v
c

t y

 

 
                      (2) 

2 2
2

i2 2

w w
c

t z

 

 
 ,               

Where  i=1, 2 

Previously obtained equations have shown 

that the waves in elastic environment can be 

distributed in two different speeds. When i=1 

these are longitudinal waves, and when i=2 these 

are transversal waves. 

If the axis x is in the direction of 

propagation of waves (Fig. 2), then v=w=0, so 

that the displacement u is a function of the 

coordinate x. Every function f(x+c1t) can be a 

solution to the previous equation. Also, every 

function f1(x-c1t) is a solution to that equation, so 

that it is possible to write the general solution in 

the form 3: 

   1 1 1u f x c t f x c t                               (3) 

x

u(x,t)

c t  

Fig. 2. Propagation of waves in the elastic 

continuum  

The general solution to the equation (3) 

can be represented by two waves moving along 

the axis x in two opposite directions at the 

constant speed c1 (Fig. 3). 

 
Fig 3. Moving of waves over the elastic body 

 

1.2 Beam at longitudinal impact 

At the beginning of impact (Fig. 4), the 

beam is compressed, so that the initial speed v1 of 

the mass m1 is momentary changed until the 

speed of displacement of the beam end which 

undergoes the impact u u/ t   . This leads to 

fast occurrence of deformations u/ x    , that 

is the stresses: 

 
x E                                                (4) 

Fig. 4. Beam at longitudinal impact 

On the basis of the expression (2), the 

differential equation of displacement of the beam 

along the axis x has the form: 
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Where the speed of propagation of waves in the 

beam is 4: 
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At the moment of reaching the maximum 

displacement in the beam umax, the mass m1 will 

be in the state of rest. If the kinetic energy before 

the impact is Ek,o and the maximum potential 

energy of the system is Ep,max, then, on the basis 

of the law of conservation of energy, it can be 

written: 
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Where   is the ratio between the mass of 

load and the mass of the beam. 

In the case of propagation of waves in the 

beam whose end x   is stationary, the solution 

must satisfy the following boundary conditions: 
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The local speed of the beam particles u  

and deformations  is determined by appropriate 

derivations: 
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Let us consider the initial period of 

deformations 0 t /c  . If f=0 and x=0, the 

equation for determination of displacement of the 

loaded end is obtained: 
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Where t*=ct 

By using the limiting conditions, the 

following expressions for the speed of 

displacement of the movable end of the beam and 

for the corresponding deformation are obtained: 
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Hence, it follows that at the moment of 

impact the members of the beginning of the 

beam, which are subjected to impact, obtain the 

deformation equal to the ratio of the local speed 

of the initial point of the beam and the speed of 

sound in the beam. The displacement of the end 

point of the beam is determined by the 

expression: 
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If the mass of the body which performs 

impact is considerably greater than the mass of 

the beam, it can be considered that   , and 

at the speed v1=const. from the equation (12), it 

follows 1u(0,t) v t . 

For the analysis of the time period 

ct 2  , it is necessary to determine the 

function f and limiting conditions at the stationary 

end. In that way, direct integration of the equation 

(5) results in functions whose form is changed 

upon running out of the period which is equal to 

the period of passing of the elastic wave along the 

beam. In the time period t 2 / c , the pressure 

wave returns to the beam beginning, which is in 

contact with the body. The speed of the body 

cannot be abruptly changed, so that the wave will 

reflect as if from the fixed end, and thus be 

doubled.  

The characteristic curve of the beam 

deformation at longitudinal impact has the 

exponential form which decreases in time and 

after the period 2 / c  has a rise. The value of 

the exponent is determined by the ratio between 

the masses of the body and the beam  . The 

length of duration of the contact depends on the 

speed of members at impact v1 and the ratio of 

masses  . The contact stops at the moment when 

deformation of the beam beginning is equal to 

zero, which corresponds to passing through the 

equilibrium state. 

 

2 SPEEDS OF WAGONS AT IMPACT 

The impact of two wagons can be 

observed as the impact of two beams (Fig. 5) 

moving at the speeds v1 and v2 (v1> v2).  

llll  

Fig. 5. Impact of two beams 

At the moment of impact, two identical 

pressure waves start moving along both beams. In 

order to obtain equal absolute speeds of particles 

of both beams over the continuous surface, the 

values of those speeds must be equal to (v1- v2)/2. 

After the time interval / c , pressure waves 

reach free ends of the beams. At this moment, 

both beams are in the state of uniform pressure 

and the absolute speeds of all particles of the 

beams are: 
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Pressure waves will then reflect from the 

free end, and at the moment 2 / c , when these 

waves reach the contiguous surface of both 

beams, their speeds become: 
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The previously exposed theory of impact 

is based on several assumptions, such as, it is the 

impact of two homogeneous beams, the contact 

occurs over the whole surface of the beam, at the 

same moment, etc. In practice, such a case is rare 

and that is why the results of theoretical and 

experimental research do not agree. However, the 
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knowledge of principles of occurrence and 

propagation of waves can help us in the analysis 

of experimentally obtained results of tests of real 

structures. 

3 EXPERIMENTAL RESULTS                        

OF IMPACT  OF WAGONS 

Experimentally obtained results (Fig. 6.) 

show effects of wavy motion, i.e. the time 

necessary for the wave to pass from the buffer to 

the end of the wagon and back. The 

experimentally determined time for this is 

between 21 and 24 ms and it is somewhat longer 

than in the case when two homogeneous members 

of the same length would be at impact. The cause 

of this “delay” of wave is explained by the non-

homogeneous structure which is interweaved with 

elements of different characteristics, then by the 

shape of the contiguous surfaces participating in 

the impact, etc. It can be indirectly concluded that 

the transducers, which record the impact force, 

have a satisfactory dynamic characteristic 

because they are able to record a phenomena 

which lasts more than ten times less than the time 

of impact duration. In the transducers which do 

not have a satisfactory dynamic characteristic, the 

curve would have a continual increase (without 

rises), and in that case there would appear an 

error in recording the maximum impact force.  

 

 

Fig. 6. Change of force on the buffers at impact of 

wagons 

4 CONCLUSION 

The aim of this paper is to draw attention 

to the phenomena that occur in impulse loading. 

This is particularly important for experimental 

investigation of wagons impact when it is 

necessary to determine the data acquisition 

frequency. As shown in Fig. 7, if the speed of 

acquisition is insufficient it is possible that the 

measurement does not register the maximum 

value of force at a collision. 

 
Fig. 7. Measurement of force in a collision with 

insufficient a frequency of acquisition 

For this reason it is necessary to carry 

out the more theoretical study of impulse 

phenomena, and based on that performing the 

preparation for experimental investigation. 
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