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This paper presents analysis of carrying capacity of the elements of cross-section (plates) with 

trapezoidal shape in carriers of box type. According to the model of linear character, some exact 

equations are formed. These equations are used for determination of moments that are transferred by 

flanges and webs of box carrier of trapezoidal cross-section. The criteria for application of the 

simplified expressions depending on the slenderness of the plate and the required accuracy of calculation 

are defined.  This identification enabled the exact definition of plane compressive forces in order to 

analyze the buckling of plate carriers. Application of the results of this paper is a contribution to the 

process of optimal design of supporting structures, especially those that are used for construction of 

transport equipment, where the effect of reducing the weight affects on the efficiency of transport in 

supply chains. 

Keywords: bending moment, plate, carrier, trapezoidal cross section  

 

0 INTRODUCTION 

Design of supporting structures is carried out 

through several phases, including a special 

procedure that is used to define the shape and 

dimensions based on the analysis of stress state, 

for whose definition it is necessary to identify the 

value of attack load. Carriers of steel structures 

are usually designed as thin-walled open profiles 

or box profiles (Fig.1,2) which are formed of 

plate elements and they are predominantly 

exposed to bending moments. In this paper, the 

analysis is limited to the linear distribution of 

normal stresses and bending moments (Fig. 3). 

The aim of this paper is primarily to correct 

expressions for the distribution of moments of 

attack (MP1, MP2, Mr) at the plate carrier of 

complex cross section (such as a trapezoidal), and 

then to point to the expediency of application of 

simplified expression, in certain cases. 
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Fig. 1.  Nosač trapeznog poprečnog preseka 

Recent studies have paid special attention to the 

importance of box girder with a trapezoidal cross-

section [1-3]. Researchers [1] have pinpointed 

that  trapezoidal cross section has much more 

favourable stress state for the same requirements 

of global capacity and slender vertical plate, in 

comparison to  the traditional rectangular shape 

(Fig. 2). Research [2] refers to the optimization of 

trapezoidal cross section in terms of global 

capacity indicating the usefulness of practical 

application. Trapezoidal shapes for carriers are 

particularly important to reduce the effect of local 

stress [1, 3]. 

 

 

Fig. 2.  Segment carrier of boom track crane 

 

1 PROBLEM ANALYSIS 

The total carrying capacity of any box beam 

corresponds to the sum capacity of its segments 
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or plates (flanges and ribs). Under the influence 

of external loads, each segment of the cross 

section is subjected to the appropriate load 

according to their rigidity and resistance to 

deformation. 

In order to make equations for attack sizes, it is 

necessary to know the following sizes: 
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Taking this into consideration: 
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Fig. 3.  Distribution of force  Nr(y) 

 

Nr(y)  - force per unit area, the function of "y" 

HC1      - Distance between the centre of  

             gravity C and the flange "1" 

HC2     - Distance between the centre of  

             gravity C and the flange "1 

q(x,y) - arbitrary continuous load 

 

2 MATHEMATICAL FORMULATIONS 

 

The mathematical model is related to the bending 

moments of linear distribution. Areas of materials 

away from the neutral axis convey intense 

moments. Maximum acceptance of moments is 

achieved through flanges, while the remaining 

difference from the total moment is taken by web 

beams. 

Moment of flange "1" (Mp1) is: 
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(7) 

where: 

B1 - flange width "1" 

1  - flange thickness "1" 

 

Moment of flange "2" (Mp2) is: 
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(8) 

where: 

B2 - flange width "2" 

2  - flange thickness "2" 

Resulting flange moment (Mp) is:  

Mp = Mp1 + Mp2  (9) 

By replacing (7) and (8) into  (9), we get: 
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Web moment above the heavy axis (Mr1) is: 
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(11) 

where: 

3 - web thickness "3" 

  - web slope angle "3" and  "4" to the vertical 

axis 

Moment of web under the heavy axis (Mr2) is: 
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(12) 

where: 

4 - web thickness "4" 

Resulting moment of web (Mr) is: 

Mr = Mr1 + Mr2  (13) 
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Distribution of Bending Moments on the Plates of Carrier  with Trapezoidal Cross Section  
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The resulting moment (Muk), which carries the 

observed carrier under the influence of the 

external moment (M) is: 

Muk = Mp + Mr  (15) 

 

Resulting internal load corresponds to the 

external load, so: 

Muk = M  (16) 

 

From the previous expression the force per unit 

area is defined (Nr) for y = HC1. 
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(17) 

The moment of upper flange (Mp1) is defined 

according to the equation: 
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The moment of upper flange (Mp2) is defined 

according to the equation: 
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Web moment (Mr) is defined according to the 

equation: 
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Distributions of moments of attack for 

monotonous load (M=1) are given on the 

following diagrams (x=1/HC1; y=2/HC2): 
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Fig.4. Diagram of flange moment distribution (Mp1) 
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Fig.5. Diagram of flange moment distribution (Mp2) 
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Fig.6. Diagram of web moment distribution (Mr) 

 

Diagrams on the fig.2, fig.3 and fig. 4 show that 

the increase of relation 1/HC1 and 2/HC2 results in 

decrease of moment that is transferred by the 

flanges, whereas the difference is taken over by 

the webs of the carrier. 

Expressions (17-20) can be simplified if the 

values x=(1/HC1) and y=(2/HC2) are small sizes 

in relation to other members in the 

abovementioned equations. Then these 

expressions get more simplified form that is 

suitable for practical application, so we have: 

Force per unit areas (Nr) for y = HC1. 
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(21) 

Moment of upper flange (Mp1) is determined 

according to the equation: 

Mr 

Mp1 

Mp2 

y 

x 

y 
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(22) 

Moment of the lover flange (Mp2) is determined 

according to the equation: 
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(23) 

Web moment (Mr) is determined according to the 

equation: 
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(24) 

In some special cases, when we have the box 

carries with rectangular cross section, we get: 
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Fig. 7. Rectangular cross section of carrier 

 

Force per unit area Nr for y=H/2 is: 
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Web moment (Mr) is: 
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(26) 

where:  

Ir  - axial moment of inertia of the web 

Ip - axial moment of flange 

I   - axial moment of inertia of the whole carrier  

I = Ir + Ip (27) 

Moment of carrying flanges: 

Mp = M – Mr  (28) 

 

3 CONCLUDING REMARKS 

 

The criterion for the application of equations    

(17-20) depends on the required accuracy of 

calculation and it is in the function of the cross 

sectional geometry, i.e. Of the sizes 1/HC1 or 

2/HC2. For the classical calculation, tolerated 

error in the moment of attack must be less than 

10%, which corresponds to the size 1/HC1 

(2/HC2) <  0,05. Analysis of the distribution of 

bending moments based on the linear distribution 

can be used for materials with approximately 

linear characteristic in the domain of elastic 

behaviour. Conducted on the basis of 

identification, we are able to carry deformational 

stress calculations, the global and local stability 

of the carrier [4], complex structures, using the 

attack load (moment) of the exact values  that 

correspond to the real ones. Analysis of an exact 

determination of moments of attack on the 

carrying elements is particularly important in 

structures subjected to high loads (bridges,  truck 

crane, etc.) with a very strong effect of 

buckling plate. A further aspect of the application 

of this analysis is reflected in the rationalization 

of weight of carrying elements of the transport 

equipment, applied especially to serve in 

distribution supply chains. Given the fact that in 

warehouse centers a working process is 

characterized with a large number of cycles, 

reduction of mass of the transport equipment 

without reduction of carrying capacity, 

significantly effect on the reduction of energy 

costs, and therefore on the total costs of the 

distribution process. 
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