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Tank-wagons are typically designed to satisfy the static forces as well as their enlargement which is caused by the 
dynamic loads. However, sudden longitudinal impacts may cause a very rapid deformations of structural elements which 
can lead to the very complex physical phenomena. Apart from the oscillations of structural elements, changes of 
rheological properties of material, temperature changes, chemical changes, etc., may arise. During these occurrences, the 
behaviour of the structure can be completely different from the behaviour at the static load. Construction fails to obtain 
displacements that correspond to rapid changes in load, which can lead to sudden deformation of the structure. The sudden 
action of longitudinal load causes radial oscillations of reservoir. Thereby, if the load px is less than a certain value px,kr, 
these oscillations will have no increase in the amplitude of deflection around the equilibrium position. On the contrary, if 
the load px is higher than the value px,kr, amplitude of deflection increases with time and the reservoir loses stability. 
Besides, these oscillations may adversely affect the quality of running and safety of the train. Accordingly, this paper shows 
an example of tank-wagon and provides a method of determining the critical load from which an unlimited increase in the 
amplitude of deflection of the tank arises. 
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1. INTRODUCTION 

The study of behavior of elastic bodies at impact 
loads is very interesting both from the theoretical and 
practical aspects. In that case, the most expressed dynamic 
process of deformation is appeared, which may be 
characterized by a minimal number of variable parameters. 
Knowledge of the impact and values of dynamic 
parameters provides better design of the structure. In 
addition, the study of the behavior of structure at the 
dynamic load is necessary for the proper planning, 
execution and analysis of experimental research. 

The reservoir of the wagon is made in the form of a 
circular cylinder of radius R, of constant thickness h, and 
length l (Fig. 1). The reservoir is over the edges supported 
on the underframe, so the supports on one of the ends 
usually have freedom of movement in the direction of the 
longitudinal axis. In this way, it is partially protected from 
the effects of horizontal axial forces that comes from the 
buffers at the wagons impact. 

 
Figure 1: The tank-wagon 

During maneuvering and changing of the running 
regime (acceleration, braking), or impacts caused by the 
track geometry, significant loads may arise at impact of 
fluid on the bottom of the reservoir. These loads can cause 
stresses and strains which can be a threat for the structure 
of the tank-wagon (Fig. 2). 

 

 
Figure 2: The deformed tank-wagon 

2. BEHAVIOR OF ELASTIC BODIES AT IMPACT 
The behavior of an elastic body loaded by the 

forces that do not change over time belongs to the field of 
statics. Besides, this includes quasi-static cases where the 
load changes over time is slow. If the load changes over 
time are fast, as in the case of impact loads, then it belongs 
to the field of dynamics. In this case, equations of static 
equilibrium of elastic body should be replaced with the 
equations of motion. In this case, the effect of dynamic 
(impulse) load are not transferred immediately in all points 
of the body. In loaded area there are waves of stresses and 
strains that have a finite speed of propagation. As in the 
famous case of propagation of sound in the air, a certain 
point will be excited only when the wave reaches it. In 
elastic body there is not one but several types of waves 
and they have different speeds of propagation. Rapid 
changes in strains and stresses caused by the impact 
cannot be precisely determined without considering the 
wave processes. Therefore, where possible, in the 
theoretical study of behavior of the elastic body in impact 
the wave character of propagation of deformation is 
analyzed. 

However, for railway vehicles, where the complex 
geometry of the supporting structure is present and speeds 
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of impact are not so large, the model of elastic body which 
is insensitive to the speed of deformation can be formed. 
In this way, the local effects related to the triaxial stress 
state can be avoided. Thereby, the impact is defined with a 
certain speed of one of the cross-sections of the rod or 
shell and a mass ratio of the observed element and the 
load. 

Consideration of the impact phenomena in this 
manner is different from the case where the change of 
several physical factors is present and wherein the material 
structure changes are dominant. So, most of the structures 
subjected to the effects of impact can be treated in this 
way. 

3. DIFFERENTIAL EQUATIONS OF
MOTION OF RESERVOIR 

Today's constructions of railway vehicles have a 
supporting structure that is part of the polygonal shell 
which is combined with elements of beams and plate. 
Design of these structures requires a detailed study of their 
behavior. In that sense, the considerations of dynamic 
problems of railway vehicles can be found in the works of 
Timoshenko [1, 2].  

The reservoir of tank-wagon is loaded as shown in 
Fig. 3. 

Figure 3: The loads of reservoir of the tank-wagon 
The general equations of motion of the cylindrical 

shell given by the following expressions are used for 
analysis [3]: 
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where: 
h – thickness of reservoir, 
D – cylindrical rigidity of shell, 
∇4 – double Laplace operator, 
w – deflection of reservoir, 
wo – initial deflection of reservoir, 
Φ – function of stress, 
γ – specific gravity of material, 
g – gravity acceleration, 
t – time, 
q – cross load of shell, 
E – modulus of elasticity, 
R – radius of cylinder. 

By its structure the previously given system of 
equations describing the propagation of waves of tension-
compression and bending-slipping. Given that the exact 
method of integrating of given equations have not yet been 
developed, their approximate solutions are found in the 

form of order. So, the solution of defelction of reservoir 
can be asumed as the folowing order: 

mπx nyw f(t) sin sin
l R

 = ⋅ ⋅ 
 

(3) 

where: 
f(t) – amplitude of deflection, 
l – lenght of cylinder, 
R – radius of cylinder, 
m – number of half-waves per length of cylinder, 
n – number of waves per radius. 

Experimental tests have shown that deflections of 
reservoir towards the center of curvature and from the 
center of curvature are not the same. Deflections directed 
towards the center of curvature are greater than the 
deflections directed from the center of curvature. 
Therefore, for assumed displacements w, equation (3) is 
amended with member which takes into account the 
asymmetry of amplitude of deflection: 

2mπx ny mπxw f(t) sin sin ψ sin
l R l

 = ⋅ ⋅ + ⋅ 
 

(4)

where: 
ψ – time function of correction of amplitude. 

Additionally it is assumed that the reservoir has an 
initial deflections w0, amplitudes of deflection f0(t), or the 
irregularities of the same character as well as the total 
deflection w: 

2
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Assumption that α mπ / l=  and β n / R=  leads 
to the following assumed total and initial deflections: 
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Depending on the oscillation form of the reservoir, 
the parameters m and n are changing (Fig. 4). These two 
parameters can be influenced by structural modifications 
or installation of rings on the reservoir (Fig. 5). 

From the previous considerations, it can be 
concluded that in the case of plates and shells there is 

x

y z

P

x

y

P

E.18



Proceedings of IX International Conference “Heavy Machinery-HM 2017”, Zlatibor, June 28th - July 1st 2017 

Oscillation of Reservoir of Tank-wagon in Dynamic Longitudinal Load 

mixed stress state or there are stresses from bending and 
forces (Figs. 6 and 7). Thereby, two extreme cases can be 
distinguished: 
- no-moment stress state, when the bending stresses are 
negligible in comparison to the stresses induced by the 
forces (Fig. 6), 
- pure moment condition, when the stresses induced by the 
forces are negligible in comparison to the bending stresses 
(Fig. 7).         

 
Figure 4: The different forms of oscillations of reservoir 

 
Figure 5: The rings on reservoir of tank-wagon 
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Figure 6: The normal forces N, lateral forces Q and 
tangential forces T on the element of shell 

If the radii of curvature along the x and y directions 
are denoted with ρx and ρy, the curvature of the 
corresponding surfaces will be kx=1/ρx and ky=1/ρy. 

Given in mind that their thickness is smaller in 
comparison to the other two dimensions, plates and shells 
are sensitive to the bending where there are large stresses 
and deflections. Such condition is very dangerous in 
practice, so it is natural that it should be avoided. The no-

moment condition is much more convenient, where plates 
and shells are uniformly loaded over the entire thickness 
while the external load is the most rationally transferred on 
the supports. 
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Figure 7: The bending moments Mx and My, and torque 
moment H on the element of shell   

In cases where no-moment condition cannot be 
realized it is possible to find alternative solutions. The 
stress state of a mixed type is localized at the ends of 
plates and shells (eg. on the bottom of the reservoir), while 
elsewhere there is no-moment stress state which 
significantly simplifies the mathematical operations. 

This is in connection with the term "edge effect" in 
which at moving away from the edge of shell or plate the 
stress state of mixed type significantly decreases. It is 
important to note that the source of "edge effect" can be 
not only the edge of plate and shell but also any line of 
middle surface with radical change of curve or thickness 
of plate and shell. 

4. STRESS FUNCTION 
The shell of constant thickness h with a coordinate 

system in the central plane of the shell is considered in this 
chapter (Figs. 6, 7 and 8). In order to transformation of 
three-dimensional into two-dimensional problem, the 
hypothesis of undeformed normals (Kirchhoff–Love 
hypothesis) is applied [3]. 
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 Figure 8: The deformation of shell element according to 
the Kirchhoff–Love hypothesis 

The basis of this hypothesis is assumption that each 
fiber which is perpendicular to the middle plane after 
deforming remains right and normal to the median plane, 
which causing that the length of the fiber along the length 
of the shell remains unchanged. Therefore, the normal 
stresses in direction of normal on the median plane can be 
neglected in comparison with the basic stresses. In the 
theory of the shell, the basic stresses are related to the 
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normal and tangential stresses in the central plane and in 
layers which are parallel to the central plane. This 
hypothesis is considered as the model of the first 
approximation. It is very suitable for solving of many 
static and dynamic problems while the obtained results are 
suitable for the practical use. 

In order to simplification of writing and solving the 
equations of motion of shell (1) and (2), the stress function 
Φ is introduced in the central plane of the shell. It is 
assumed that the stresses acting on the unit length of the 
shell. The relations of normal stresses (σx, σy), tangential 
stresses (τ), normal forces (Nx, Ny), tangential forces (T) 
and thickness of the shell h, with stress function Φ are 
given with the following expresions [3]: 
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5. STABILITY OF RESERVOIR OF TANK-WAGON   
IN DYNAMIC LONGITUDINAL LOAD 

The theoretical considerations from the previous 
chapters are applied on concrete example of the tank-
wagon (Fig. 1) with the following characteristics: 
E=21·1010 N/m2 – elastic modulus of material of reservoir, 
ν =0,3 – Poisson's ratio, 
h= 6 mm – thickness of reservoir, 
R=1450 mm – radius of cylinder, 
l=14200 mm – length of reservoir. 

For solution of equations (1) and (2), the method of 
Bubnov–Galerkin is applied [4]. In general case, the loads 
of the reservoir along the directions x, y and z are as 
follows: 
q – lateral load which is normal to the medium surface, 
px – pressure or tension load which is acting along the x 
direction, 
py – pressure or tension load which is acting along the y 
direction. 

External loads for the reservoir of tank-wagon 
along the directions x and y are as follows: 

x x

y y

p p R / 2h
p p R / h

= ⋅

= ⋅
                                                             (11) 

Solving the equations (1) and (2) is performed by 
applying the Bubnov–Galerkin method [4], wherein X is 
the following function: 
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Function X must be equal to zero for all points of 
the reservoir and must satisfy the following equations: 
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By using the boundary and initial conditions, the 
equation (12) is solved, wherein is obtained the following 
square of frequency of natural oscillations of the reservoir: 
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The speed of propagation of elastic waves is: 

E Egc
ρ γ

= =                                                             (16) 

As is known, the reservoir has an infinite number of 
degrees of freedom. This means that the number of natural 
frequencies is infinitely large, while each frequency has its 
own form of oscillation. 

Solution of the equation (15) will be periodic if 
2
oω <0, or periodic if 2

oω >0, wherein the amplitudes of the 
deflection will increasing with time, which leads to the 
losing of stability of the reservoir. 

The diagrams of changes of the natural oscillations 
oω [Hz] of the reservoir of tank-wagon in dependence of 

change of number of waves per radius n and in 
dependence of number of half-waves per length of 
cylinder m, as well as the diagram of change of oω  in 
function of change of parameters m and n are shown in 
Fig. 9. 

Considering that yp =0, from the condition 
2

2
o krpαω

ρ
− =0, the critical load is determined as: 
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In order of analytical determining of the minimum 
of function krp , the first derivative of the function should 
be equated with zero: 

( )
min

kr
2

h 1p E
R 3 1 ν

=
−

                                               (18) 

For the observed reservoir of the tank-wagon is 
krp min=5,259 108 N/m2, wherein minimal value of stress in 

the direction x caused by the external load is determined 
from the expression (11), as follows: 

min min 5
x,kr kr 2

2h Np p 43,52 10
R m

= ⋅ = ⋅                       (19) 

The diagram of change of the critical load in 
function of change of parameters m and n is shown in Fig. 
10, where the minimum of function krp  is marked with 
dart. 
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             a) 

                 b) 

c) 
Figure 9: The change of frequency of natural oscillations 

of reservoir of tank-wagon in function of change of 
parameter n (a), parameter m (b) and                          

parameters m and n (c) 

In the case of a longitudinal impact load px(t) 
reservoir will lose stability when active load reaches a 
value px,kr=px,kr

min. Thereby, from a set of possible types of 
losses of stability, reservoir will be distorted with forming 
of m and n half-waves, which are given in the above 
diagram. If any external cause excites the distortion in 
some another form, the critical value of load px,kr will be 

greater from the minimal critical load px,kr
min along the 

direction x. 

 
Figure 10: The change of critical load krp  in function     

of parameters m and n 
At impact dynamic loading, the analysis of 

influences of shapes of oscillation on the occurrence of 
lost of stability has also been made, and the results are 
shown in Fig. 11. From the diagram it can be concluded 
that at dynamic action of load that arises at the impact of 
wagons at the speed of 19.5 m/s, critical load obtains at the 
number of semi-waves m=1 and n=4. In addition to that, 
the value of minimum critical load which the tank can 
stand is for higher at dynamic load in relation to static 
load. 

 
Figure 11: Influence of shapes of oscillation on amplitude 

of deflection of the tank for m=1 

6. CONCLUSION 
The aim of the research presented in this paper is 

related to the stability of the reservoir of tank-wagon at 
action of impulse loads. In forming the mathematical 
model, the theoretical assumptions of the nonlinear 
dynamics of plates and shells are used. Established 
mathematical model is described via the coupled partial 
differential equations which are solved by using the 
Runge-Kutta method of fourth order. The convergence of 
the obtained solutions is checked and realistic picture of 
the physical phenomena is obtained. The minimal critical 
load at which amplitude of deflection suddenly increase or 
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when the reservoir losing stability at the dynamic 
longitudinal load, is defined. 

In forming the mathematical model, the influence 
of initial deflection and oscillation forms on the stability of 
the reservoir is taken into account. If there is a possibility 
of adjusting the number of half-waves m and n, then it is 
possible to enlarge the dynamic load that can withstand a 
reservoir, without loss of the stability. 

The developed model of oscillation of the reservoir 
of tank-wagon with appropriate initial and boundary 
conditions can be applied to all types of reservoirs exposed 
to the dynamic loads. 
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