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Abstract

In this paper, we define a rectifying curve in the Euclidean 4-space as a curve

whose position vector always lies in orthogonal complement N⊥ of its principal

normal vector field N . In particular, we study the rectifying curves in E
4 and

characterize such curves in terms of their curvature functions.
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1. Introduction

In the Euclidean 3-space, rectifying curves are introduced by B. Y. Chen in [1] as space
curves whose position vector always lies in its rectifying plane, spanned by the tangent
and the binormal vector fields T and B of the curve. Accordingly, the position vector
with respect to some chosen origin, of a rectifying curve α in E

3, satisfies the equation

α(s) = λ(s)T (s) + µ(s)B(s),

where λ(s) and µ(s) are arbitrary differentiable functions in arclength parameter s ∈ I ⊂
R.

The Euclidean rectifying curves are studied in [1, 2]. In particular, it is shown in [2]
that there exist a simple relationship between the rectifying curves and the centrodes,
which play some important roles in mechanics, kinematics as well as in differential
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geometry in defining the curves of constant precession. The rectifying curves are also
studied in [2] as the extremal curves. In the Minkowski 3-space E

3
1, the rectifying curves

are investigated in [4].

In this paper, in analogy with the Euclidean 3-dimensional case, we define the recti-
fying curve in the Euclidean space E

4 as a curve whose position vector always lies in the
orthogonal complement N⊥ of its principal normal vector field N . Consequently, N⊥ is
given by

N⊥ = {W ∈ E
4 |< W, N >= 0},

where < ·, · > denotes the standard scalar product in E
4. Hence N⊥ is a 3-dimensional

subspace of E
4, spanned by the tangent, the first binormal and the second binormal

vector fields T, B1 and B2 respectively. Therefore, the position vector with respect to
some chosen origin, of a rectifying curve α in E

4, satisfies the equation

α(s) = λ(s)T (s) + µ(s)B1(s) + ν(s)B2(s), (1)

for some differentiable functions λ(s), µ(s) and ν(s) in arclength function s. Next, we
characterize rectifying curves in terms of their curvature functions k1(s), k2(s) and k3(s)
and give the necessary and the sufficient conditions for arbitrary curve in E

4 to be a
rectifying. Moreover, we obtain an explicit equation of a rectifying curve in E

4.

2. Preliminaries

Let α : I ⊂ R → E
4 be arbitrary curve in the Euclidean space E

4. Recall that
the curve α is said to be of unit speed (or parameterized by arclength function s) if
< α′(s), α′(s) >= 1, where < ·, · > is the standard scalar product of E

4 given by

< X, Y >= x1y1 + x2y2 + x3y3 + x4y4,

for each X = (x1, x2, x3, x4), Y = (y1, y2, y3, y4) ∈ E
4. In particular, the norm of a vector

X ∈ E
4 is given by ||X|| =

√
< X, X >.

Let {T, N, B1, B2} be the moving Frenet frame along the unit speed curve α, where
T , N , B1 and B2 denote respectively the tangent, the principal normal, the first binormal
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and the second binormal vector fields. Then the Frenet formulas are given by (see [3])




T ′

N ′

B′
1

B′
2




=




0 k1 0 0
−k1 0 k2 0

0 −k2 0 k3

0 0 −k3 0







T

N

B1

B2




. (2)

The functions k1(s), k2(s) and k3(s) are called, respectively, the first, the second and
the third curvature of the curve α. If k3(s) 
= 0 for each s ∈ I ⊂ R, the curve α lies fully
in E

4. Recall that the unit sphere S
3(1) in E

4, centered at the origin, is the hypersurface
defined by

S
3(1) = {X ∈ E

4 |< X, X >= 1}.

3. Some Characterizations of Rectifying Curves in E
4

In this section, we firstly characterize the rectifying curves in E
4 in terms of their

curvatures. Let α = α(s) be a unit speed rectifying curve in E
4, with non-zero curvatures

k1(s), k2(s) and k3(s). By definition, the position vector of the curve α satisfies the
equation (1), for some differentiable functions λ(s), µ(s) and ν(s). Differentiating the
equation (1) with respect to s and using the Frenet equations (2), we obtain

T = λ′T + (λk1 − µk2)N + (µ′ − νk3)B1 + (µk3 + ν ′)B2.

It follows that

λ′ = 1,

λk1 − µk2 = 0,

µ′ − νk3 = 0,

µk3 + ν ′ = 0,

(3)

and therefore

λ(s) = s + c,

µ(s) =
k1(s)(s + c)

k2(s)
,

ν(s) =
k1(s)k2(s) + (s + c)(k′

1(s)k2(s) − k1(s)k′
2(s))

k2
2(s)k3(s)

,

(4)
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where c ∈ R. In this way the functions λ(s), µ(s) and ν(s) are expressed in terms of the
curvature functions k1(s), k2(s) and k3(s) of the curve α. Moreover, by using the last
equation in (3) and relation (4), we easily find that the curvatures k1(s), k2(s) and k3(s)
satisfy the equation

k1(s)k3(s)(s + c)
k2(s)

+
(k1(s)k2(s) + (s + c)(k′

1(s)k2(s) − k1(s)k′
2(s))

k2
2(s)k3(s)

)′
= 0, c ∈ R. (5)

Conversely, assume that the curvatures k1(s), k2(s) and k3(s), of an arbitrary unit
speed curve α in E

4, satisfy the equation (5). Let us consider the vector X ∈ E
4 given by

X(s) = α(s) − (s + c)T (s) − k1(s)(s + c)
k2(s)

B1(s)

−k1(s)(k2(s) − (s + c)k′
2(s)) + k′

1(s)k2(s)(s + c)
k2
2(s)k3(s)

B2(s).

By using the relations (2) and (5), we easily find X′(s) = 0, which means that X is a
constant vector. This implies that α is congruent to a rectifying curve. In this way, the
following theorem is proved.

Theorem 3.1 Let α(s) be unit speed curve in E
4, with non-zero curvatures k1(s), k2(s)

and k3(s). Then α is congruent to a rectifying curve if and only if

k1(s)k3(s)(s + c)
k2(s)

+
(k1(s)k2(s) + (s + c)(k′

1(s)k2(s) − k1(s)k′
2(s))

k2
2(s)k3(s)

)′
= 0, c ∈ R.

In particular, assume that all the curvature functions k1(s), k2(s) and k3(s) of rectify-
ing curve α in E

4, are constant and different from zero. Then equation (5) easily implies
a contradiction. Hence we obtain the following theorem.

Theorem 3.2 There are no rectifying curves lying fully in E
4, with non-zero constant

curvatures k1(s), k2(s) and k3(s).

Moreover, if two of the curvature functions are constant, we may consider the following
cases.

Suppose that k1(s) = constant > 0, k2(s) = constant 
= 0 and k3(s) is non-constant
function. By using the equation (5), we find differential equation

k′
3(s) − k3

3(s)(s + c) = 0, c ∈ R.
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The solution of the previous differential equation is given by

k3(s) =
1√

| − s2 − 2cs − 2c1|
, c, c1 ∈ R.

Similarly, assume that k2(s) = constant
= 0, k3(s) = k3 = constant
= 0 and k1(s) is
non-constant function. Then equation (5) implies differential equation

k2
3k1(s)(s + c) + (k1(s)(s + c))′ = 0, c ∈ R, k3 ∈ R0,

whose solution has the form

k1(s) =
c1

ek2
3s(s + c)

, c1 ∈ R
+.

Finally, if k1(s) = constant> 0, k3(s) = k3 = constant
= 0 and k2(s) is non-constant
function, by using equation (5) we get differential equation

k2
3(s + c)/k2(s) + ((s + c)/k2(s))′ = 0, c ∈ R, k3 ∈ R0.

The previous differential equation has the solution

k2(s) = c1e
k2
3s(s + c), c1 ∈ R

+.

In this way, we obtain the following theorem.

Theorem 3.3 Let α = α(s) be unit speed curve in E
4, with curvatures k1(s), k2(s) and

k3(s). Then α is congruent to a rectifying curve if

(a) k1(s) = constant > 0, k2(s) = constant 
= 0 and k3(s) = 1/
√
| − s2 − 2cs − 2c1|,

c, c1 ∈ R;

(b) k2(s) = constant 
= 0, k3(s) = k3 = constant 
= 0 and k1(s) = c1/(ek2
3s(s + c)),

c ∈ R, c1 ∈ R
+;

(c) k1(s) = constant > 0, k3(s) = k3 = constant 
= 0 and k2(s) = c1e
k2
3s(s+c), c ∈ R,

c1 ∈ R
+.

In the next theorem, we give the necessary and the sufficient conditions for the curve
α in E

4 to be a rectifying curve.

Theorem 3.4 Let α(s) be unit speed rectifying curve in E
4, with non-zero curvatures

k1(s), k2(s) and k3(s). Then the following statements hold:
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(i) The distance function ρ(s) = ‖α(s)‖ satisfies ρ2(s) = s2+c1s+c2, c1 ∈ R, c2 ∈ R0.

(ii) The tangential component of the position vector of the curve is given by <

α(s), T (s) >= s + c, c ∈ R.

(iii) The normal componet αN(s) of the position vector of the curve has constant
length and the distance function ρ(s) is non-constant.

(iv) The first binormal component and the second binormal component of the position
vector of the curve are respectively given by

< α(s), B1(s) >=
k1(s)(s + c)

k2(s)
,

< α(s), B2(s) >=
k1(s)k2(s) + (s + c)(k′

1(s)k2(s) − k1(s)k′
2(s)

k2
2(s)k3(s)

, c ∈ R.
(6)

Conversely, if α(s) is a unit speed curve in E
4 with non-zero curvatures k1(s), k2(s),

k3(s) and one of the statements (i), (ii), (iii) or (iv) holds, then α is a rectifying curve.

Proof. Let us first suppose that α(s) is a unit speed rectifying curve in E
4 with non-

zero curvatures k1(s), k2(s) and k3(s). The position vector of the curve α satisfies the
equation (1), where the functions λ(s), µ(s) and ν(s) satisfy relation (3). Multiplying
the third equation in (3) with −ν ′(s) and the last equation in (3) with µ′(s) and adding,
we get k3(s)(µ(s)µ′(s) + ν(s)ν ′(s)) = 0. It follows that µ(s)µ′(s) + ν(s)ν ′(s) = 0 and
consequently

µ2(s) + ν2(s) = a2, (7)

for some constant a ∈ R
+
0 . From relation (1) we have < α(s), α(s) >= λ2(s) + µ2(s) +

ν2(s), which together with (4) and (7) gives < α(s), α(s) >= (s + c)2 + a2. Therefore,
ρ2(s) = s2 + c1s + c2, c1 ∈ R, c2 ∈ R0, which proves statement (i).

But using the relations (1) and (4) we easily get < α(s), T (s) >= s + c, c ∈ R, so the
statement (ii) is proved.

Note that the position vector of an arbitrary curve α in E
4 can be decomposed as

α(s) = m(s)T (s) + αN(s), where m(s) is arbitrary differentiable function and αN(s)
is the normal component of the position vector. If α is a rectifying curve, relation (1)
implies αN (s) = µ(s)B1(s) + ν(s)B2(s) and therefore < αN(s), αN(s) >= µ2(s) + ν2(s).
Moreover, by using (7), we find ||αN(s)|| = a, a ∈ R

+
0 . By statement (i), ρ(s) is non-

constant function, which proves statement (iii).
Finally, using (1) and (4) we easily obtain (6), which proves statement (iv).
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Conversely, assume that statement (i) holds. Then < α(s), α(s) >= s2 + c1s + c2,
c1 ∈ R, c2 ∈ R0. Differentiating the previous equation two times with respect to s and
using (2), we obtain < α(s), N(s) >= 0, which implies that α is a rectifying curve.

If statement (ii) holds, in a similar way it follows that α is a rectifying curve.
If statement (iii) holds, let us put α(s) = m(s)T (s) + αN(s), where m(s) is arbitrary

differentiable function. Then

< αN(s), αN (s) >=< α(s), α(s) > −2 < α(s), T (s) > m(s) + m2(s).

Since < α(s), T (s) >= m(s), it follows that

< αN(s), αN (s) >=< α(s), α(s) > − < α(s), T (s) >2,

where < α(s), α(s) >= ρ2(s) 
= constant. Differentiating the previous equation with
respect to s and using (2), we find

k1(s) < α(s), T (s) >< α(s), N(s) >= 0.

It follows that < α(s), N(s) >= 0 and hence the curve α is a rectifying.
If statement (iv) holds, by taking the derivative of the equation

< α(s), B1(s) >=
k1(s)(s + c)

k2(s)

with respect to s and using (2), we obtain

−k2(s) < α(s), N(s) > +k3(s) < α(s), B2(s) >=
(k1(s)(s + c)

k2(s)

)′
.

By using (6), the last equation becomes < α(s), N(s) >= 0, which means that α is a
rectifying curve. This proves the theorem. ✷

In the next theorem, we find the parametric equation of a rectifying curve.

Theorem 3.5 Let α : I ⊂ R → E
4 be a curve in E

4 given by α(t) = ρ(t)y(t), where ρ(t)
is arbitrary positive function and y(t) is a unit speed curve in the unit sphere S

3(1). Then
α is a rectifying curve if and only if

ρ(t) =
a

cos(t + t0)
, a ∈ R0, t0 ∈ R. (8)
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Proof. Let α be a curve in E
4 given by

α(t) = ρ(t)y(t),

where ρ(t) is arbitrary positive function and y(t) is a unit speed curve in S
3(1). By taking

the derivative of the previous equation with respect to t, we get

α′(t) = ρ′(t)y(t) + ρ(t)y′(t).

Hence the unit tangent vector of α is given by

T (t) =
ρ′(t)
v(t)

y(t) +
ρ(t)
v(t)

y′(t), (9)

where v(t) = ||α′(t)|| is the speed of α. Differentiating the equation (9) with respect to
t, we find

T ′ =
(ρ′

v

)′
y +

(2ρ′

v
− ρρ′(ρ + ρ′′)

v3

)
y′ +

(ρ

v

)
y′′. (10)

Let Y be the unit vector field in E
4 satisfying the equations < Y, y >=< Y, y′ >=<

Y, y × y′ >= 0. Then {y, y′, y × y′, Y } is the orthonormal frame of E
4. Therefore,

decomposition of y′′ with respect to the frame {y, y′, y × y′, Y } reads

y′′ =< y′′, y > y+ < y′′, y′ > y′+ < y′′, y × y′ > y × y′+ < y′′, Y > Y. (11)

Since < y, y >=< y′, y′ >= 1, it follows that < y′′, y >= −1 and < y′′, y′ >= 0, so the
equation (11) becomes

y′′ = −y+ < y′′, y × y′ > y × y′+ < y′′, Y > Y. (12)

Substituting (12) into (10) and applying Frenet formulas for arbitrary speed curves in
E

4, we find

κ1vN =
((ρ′

v

)′
− ρ

v

)
y +

(2ρ′

v
− ρρ′(ρ + ρ′′)

v3

)
y′ +

< y′′, y × y′ >

v
α × y′

+
(ρ

v

)
< y′′, Y > Y .

(13)

Since < y, y >= 1, we have < y, y′ >= 0 and thus < α, y′ >= 0. We also have
< α, Y >= 0. By definition, α is a rectifying curve in E

4 if and only if < α, N >= 0.
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Therefore, after taking the scalar product of (13) with α, we have < α, N >= 0 if and
only if

(ρ′

v

)′
− ρ

v
= 0.

The previous differential equation is equivalent to the equation

ρρ′′ − 2ρ
′2 − ρ2 = 0. (14)

whose nontrivial solutions are given by (8). This proves the theorem. ✷

Example: Let us consider the curve α(s) = (a/(
√

2 cos(s+s0)))(sin(s), cos(s), sin(s), cos(s)),
a ∈ R0, s0 ∈ R in E

4. This curve has a form α(s) = ρ(s)y(s), where ρ(s) = a/ cos(s + s0)
and y(s) = (1/

√
2)(sin(s), cos(s), sin(s), cos(s)). Since ‖ y(s) ‖= 1 and ‖ y′(s) ‖= 1, y(s)

is a unit speed curve in the unit sphere S
3(1). According to the theorem 3.5, α(s) is a

rectifying curve lying fully in E
4.
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