Some Characterizations of Rectifying Curves in the Euclidean Space E ${ }^{4}$

Kazım İlarslan, Emilija Nešović

Abstract

In this paper, we define a rectifying curve in the Euclidean 4 -space as a curve whose position vector always lies in orthogonal complement N^{\perp} of its principal normal vector field N. In particular, we study the rectifying curves in \mathbb{E}^{4} and characterize such curves in terms of their curvature functions.

Key Words: Rectifying curve, Frenet equations, curvature.

1. Introduction

In the Euclidean 3-space, rectifying curves are introduced by B. Y. Chen in [1] as space curves whose position vector always lies in its rectifying plane, spanned by the tangent and the binormal vector fields T and B of the curve. Accordingly, the position vector with respect to some chosen origin, of a rectifying curve α in \mathbb{E}^{3}, satisfies the equation

$$
\alpha(s)=\lambda(s) T(s)+\mu(s) B(s)
$$

where $\lambda(s)$ and $\mu(s)$ are arbitrary differentiable functions in arclength parameter $s \in I \subset$ \mathbb{R}.

The Euclidean rectifying curves are studied in [1, 2]. In particular, it is shown in [2] that there exist a simple relationship between the rectifying curves and the centrodes, which play some important roles in mechanics, kinematics as well as in differential

[^0]
İLARSLAN, NEŠOVIĆ

geometry in defining the curves of constant precession. The rectifying curves are also studied in [2] as the extremal curves. In the Minkowski 3-space \mathbb{E}_{1}^{3}, the rectifying curves are investigated in [4].

In this paper, in analogy with the Euclidean 3-dimensional case, we define the rectifying curve in the Euclidean space \mathbb{E}^{4} as a curve whose position vector always lies in the orthogonal complement N^{\perp} of its principal normal vector field N. Consequently, N^{\perp} is given by

$$
N^{\perp}=\left\{W \in \mathbb{E}^{4} \mid<W, N>=0\right\}
$$

where $<\cdot, \cdot>$ denotes the standard scalar product in \mathbb{E}^{4}. Hence N^{\perp} is a 3 -dimensional subspace of \mathbb{E}^{4}, spanned by the tangent, the first binormal and the second binormal vector fields T, B_{1} and B_{2} respectively. Therefore, the position vector with respect to some chosen origin, of a rectifying curve α in \mathbb{E}^{4}, satisfies the equation

$$
\begin{equation*}
\alpha(s)=\lambda(s) T(s)+\mu(s) B_{1}(s)+\nu(s) B_{2}(s), \tag{1}
\end{equation*}
$$

for some differentiable functions $\lambda(s), \mu(s)$ and $\nu(s)$ in arclength function s. Next, we characterize rectifying curves in terms of their curvature functions $k_{1}(s), k_{2}(s)$ and $k_{3}(s)$ and give the necessary and the sufficient conditions for arbitrary curve in \mathbb{E}^{4} to be a rectifying. Moreover, we obtain an explicit equation of a rectifying curve in \mathbb{E}^{4}.

2. Preliminaries

Let $\alpha: I \subset \mathbb{R} \rightarrow \mathbb{E}^{4}$ be arbitrary curve in the Euclidean space \mathbb{E}^{4}. Recall that the curve α is said to be of unit speed (or parameterized by arclength function s) if $<\alpha^{\prime}(s), \alpha^{\prime}(s)>=1$, where $<\cdot, \cdot>$ is the standard scalar product of \mathbb{E}^{4} given by

$$
<X, Y>=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}
$$

for each $X=\left(x_{1}, x_{2}, x_{3}, x_{4}\right), Y=\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \in \mathbb{E}^{4}$. In particular, the norm of a vector $X \in \mathbb{E}^{4}$ is given by $\|X\|=\sqrt{<X, X>}$.

Let $\left\{T, N, B_{1}, B_{2}\right\}$ be the moving Frenet frame along the unit speed curve α, where T, N, B_{1} and B_{2} denote respectively the tangent, the principal normal, the first binormal

İLARSLAN, NEŠOVIĆ

and the second binormal vector fields. Then the Frenet formulas are given by (see [3])

$$
\left[\begin{array}{c}
T^{\prime} \tag{2}\\
N^{\prime} \\
B_{1}^{\prime} \\
B_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 & k_{1} & 0 & 0 \\
-k_{1} & 0 & k_{2} & 0 \\
0 & -k_{2} & 0 & k_{3} \\
0 & 0 & -k_{3} & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B_{1} \\
B_{2}
\end{array}\right]
$$

The functions $k_{1}(s), k_{2}(s)$ and $k_{3}(s)$ are called, respectively, the first, the second and the third curvature of the curve α. If $k_{3}(s) \neq 0$ for each $s \in I \subset \mathbb{R}$, the curve α lies fully in \mathbb{E}^{4}. Recall that the unit sphere $\mathbb{S}^{3}(1)$ in \mathbb{E}^{4}, centered at the origin, is the hypersurface defined by

$$
\mathbb{S}^{3}(1)=\left\{X \in \mathbb{E}^{4} \mid<X, X>=1\right\}
$$

3. Some Characterizations of Rectifying Curves in \mathbb{E}^{4}

In this section, we firstly characterize the rectifying curves in \mathbb{E}^{4} in terms of their curvatures. Let $\alpha=\alpha(s)$ be a unit speed rectifying curve in \mathbb{E}^{4}, with non-zero curvatures $k_{1}(s), k_{2}(s)$ and $k_{3}(s)$. By definition, the position vector of the curve α satisfies the equation (1), for some differentiable functions $\lambda(s), \mu(s)$ and $\nu(s)$. Differentiating the equation (1) with respect to s and using the Frenet equations (2), we obtain

$$
T=\lambda^{\prime} T+\left(\lambda k_{1}-\mu k_{2}\right) N+\left(\mu^{\prime}-\nu k_{3}\right) B_{1}+\left(\mu k_{3}+\nu^{\prime}\right) B_{2} .
$$

It follows that

$$
\begin{array}{ll}
\lambda^{\prime} & =1, \\
\lambda k_{1}-\mu k_{2} & =0 \tag{3}\\
\mu^{\prime}-\nu k_{3} & =0, \\
\mu k_{3}+\nu^{\prime} & =0,
\end{array}
$$

and therefore

$$
\begin{align*}
\lambda(s) & =s+c \\
\mu(s) & =\frac{k_{1}(s)(s+c)}{k_{2}(s)} \tag{4}\\
\nu(s) & =\frac{k_{1}(s) k_{2}(s)+(s+c)\left(k_{1}^{\prime}(s) k_{2}(s)-k_{1}(s) k_{2}^{\prime}(s)\right)}{k_{2}^{2}(s) k_{3}(s)}
\end{align*}
$$

İLARSLAN, NEŠOVIĆ

where $c \in \mathbb{R}$. In this way the functions $\lambda(s), \mu(s)$ and $\nu(s)$ are expressed in terms of the curvature functions $k_{1}(s), k_{2}(s)$ and $k_{3}(s)$ of the curve α. Moreover, by using the last equation in (3) and relation (4), we easily find that the curvatures $k_{1}(s), k_{2}(s)$ and $k_{3}(s)$ satisfy the equation

$$
\begin{equation*}
\frac{k_{1}(s) k_{3}(s)(s+c)}{k_{2}(s)}+\left(\frac{k_{1}(s) k_{2}(s)+(s+c)\left(k_{1}^{\prime}(s) k_{2}(s)-k_{1}(s) k_{2}^{\prime}(s)\right)}{k_{2}^{2}(s) k_{3}(s)}\right)^{\prime}=0, \quad c \in \mathbb{R} . \tag{5}
\end{equation*}
$$

Conversely, assume that the curvatures $k_{1}(s), k_{2}(s)$ and $k_{3}(s)$, of an arbitrary unit speed curve α in \mathbb{E}^{4}, satisfy the equation (5). Let us consider the vector $X \in \mathbb{E}^{4}$ given by

$$
\begin{aligned}
X(s)= & \alpha(s)-(s+c) T(s)-\frac{k_{1}(s)(s+c)}{k_{2}(s)} B_{1}(s) \\
& -\frac{k_{1}(s)\left(k_{2}(s)-(s+c) k_{2}^{\prime}(s)\right)+k_{1}^{\prime}(s) k_{2}(s)(s+c)}{k_{2}^{2}(s) k_{3}(s)} B_{2}(s) .
\end{aligned}
$$

By using the relations (2) and (5), we easily find $X^{\prime}(s)=0$, which means that X is a constant vector. This implies that α is congruent to a rectifying curve. In this way, the following theorem is proved.

Theorem 3.1 Let $\alpha(s)$ be unit speed curve in \mathbb{E}^{4}, with non-zero curvatures $k_{1}(s)$, $k_{2}(s)$ and $k_{3}(s)$. Then α is congruent to a rectifying curve if and only if

$$
\frac{k_{1}(s) k_{3}(s)(s+c)}{k_{2}(s)}+\left(\frac{k_{1}(s) k_{2}(s)+(s+c)\left(k_{1}^{\prime}(s) k_{2}(s)-k_{1}(s) k_{2}^{\prime}(s)\right)}{k_{2}^{2}(s) k_{3}(s)}\right)^{\prime}=0, \quad c \in \mathbb{R}
$$

In particular, assume that all the curvature functions $k_{1}(s), k_{2}(s)$ and $k_{3}(s)$ of rectifying curve α in \mathbb{E}^{4}, are constant and different from zero. Then equation (5) easily implies a contradiction. Hence we obtain the following theorem.

Theorem 3.2 There are no rectifying curves lying fully in \mathbb{E}^{4}, with non-zero constant curvatures $k_{1}(s), k_{2}(s)$ and $k_{3}(s)$.

Moreover, if two of the curvature functions are constant, we may consider the following cases.

Suppose that $k_{1}(s)=$ constant $>0, k_{2}(s)=$ constant $\neq 0$ and $k_{3}(s)$ is non-constant function. By using the equation (5), we find differential equation

$$
k_{3}^{\prime}(s)-k_{3}^{3}(s)(s+c)=0, \quad c \in \mathbb{R}
$$

İLARSLAN, NEŠOVIĆ

The solution of the previous differential equation is given by

$$
k_{3}(s)=\frac{1}{\sqrt{\left|-s^{2}-2 c s-2 c_{1}\right|}}, \quad c, c_{1} \in \mathbb{R} .
$$

Similarly, assume that $k_{2}(s)=$ constant $\neq 0, k_{3}(s)=k_{3}=$ constant $\neq 0$ and $k_{1}(s)$ is non-constant function. Then equation (5) implies differential equation

$$
k_{3}^{2} k_{1}(s)(s+c)+\left(k_{1}(s)(s+c)\right)^{\prime}=0, \quad c \in \mathbb{R}, \quad k_{3} \in \mathbb{R}_{0}
$$

whose solution has the form

$$
k_{1}(s)=\frac{c_{1}}{e^{k_{3}^{2} s}(s+c)}, \quad c_{1} \in \mathbb{R}^{+}
$$

Finally, if $k_{1}(s)=$ constant $>0, k_{3}(s)=k_{3}=$ constant $\neq 0$ and $k_{2}(s)$ is non-constant function, by using equation (5) we get differential equation

$$
k_{3}^{2}(s+c) / k_{2}(s)+\left((s+c) / k_{2}(s)\right)^{\prime}=0, \quad c \in \mathbb{R}, \quad k_{3} \in \mathbb{R}_{0} .
$$

The previous differential equation has the solution

$$
k_{2}(s)=c_{1} e^{k_{3}^{2} s}(s+c), \quad c_{1} \in \mathbb{R}^{+}
$$

In this way, we obtain the following theorem.
Theorem 3.3 Let $\alpha=\alpha(s)$ be unit speed curve in \mathbb{E}^{4}, with curvatures $k_{1}(s)$, $k_{2}(s)$ and $k_{3}(s)$. Then α is congruent to a rectifying curve if
(a) $k_{1}(s)=$ constant $>0, k_{2}(s)=$ constant $\neq 0$ and $k_{3}(s)=1 / \sqrt{\left|-s^{2}-2 c s-2 c_{1}\right|}$, $c, c_{1} \in \mathbb{R}$;
(b) $k_{2}(s)=$ constant $\neq 0, k_{3}(s)=k_{3}=$ constant $\neq 0$ and $k_{1}(s)=c_{1} /\left(e^{k_{3}^{2} s}(s+c)\right)$, $c \in \mathbb{R}, c_{1} \in \mathbb{R}^{+}$;
(c) $k_{1}(s)=$ constant $>0, k_{3}(s)=k_{3}=$ constant $\neq 0$ and $k_{2}(s)=c_{1} e^{k_{3}^{2} s}(s+c), c \in \mathbb{R}$, $c_{1} \in \mathbb{R}^{+}$.

In the next theorem, we give the necessary and the sufficient conditions for the curve α in \mathbb{E}^{4} to be a rectifying curve.

Theorem 3.4 Let $\alpha(s)$ be unit speed rectifying curve in \mathbb{E}^{4}, with non-zero curvatures $k_{1}(s), k_{2}(s)$ and $k_{3}(s)$. Then the following statements hold:

İLARSLAN, NEŠOVIĆ

(i) The distance function $\rho(s)=\|\alpha(s)\|$ satisfies $\rho^{2}(s)=s^{2}+c_{1} s+c_{2}, c_{1} \in \mathbb{R}, c_{2} \in \mathbb{R}_{0}$.
(ii) The tangential component of the position vector of the curve is given by $<$ $\alpha(s), T(s)>=s+c, c \in \mathbb{R}$.
(iii) The normal componet $\alpha^{N}(s)$ of the position vector of the curve has constant length and the distance function $\rho(s)$ is non-constant.
(iv) The first binormal component and the second binormal component of the position vector of the curve are respectively given by

$$
\begin{align*}
& <\alpha(s), B_{1}(s)>=\frac{k_{1}(s)(s+c)}{k_{2}(s)} \\
& <\alpha(s), B_{2}(s)>=\frac{k_{1}(s) k_{2}(s)+(s+c)\left(k_{1}^{\prime}(s) k_{2}(s)-k_{1}(s) k_{2}^{\prime}(s)\right.}{k_{2}^{2}(s) k_{3}(s)}, \quad c \in \mathbb{R} \tag{6}
\end{align*}
$$

Conversely, if $\alpha(s)$ is a unit speed curve in \mathbb{E}^{4} with non-zero curvatures $k_{1}(s), k_{2}(s)$, $k_{3}(s)$ and one of the statements (i), (ii), (iii) or (iv) holds, then α is a rectifying curve.

Proof. Let us first suppose that $\alpha(s)$ is a unit speed rectifying curve in \mathbb{E}^{4} with nonzero curvatures $k_{1}(s), k_{2}(s)$ and $k_{3}(s)$. The position vector of the curve α satisfies the equation (1), where the functions $\lambda(s), \mu(s)$ and $\nu(s)$ satisfy relation (3). Multiplying the third equation in (3) with $-\nu^{\prime}(s)$ and the last equation in (3) with $\mu^{\prime}(s)$ and adding, we get $k_{3}(s)\left(\mu(s) \mu^{\prime}(s)+\nu(s) \nu^{\prime}(s)\right)=0$. It follows that $\mu(s) \mu^{\prime}(s)+\nu(s) \nu^{\prime}(s)=0$ and consequently

$$
\begin{equation*}
\mu^{2}(s)+\nu^{2}(s)=a^{2} \tag{7}
\end{equation*}
$$

for some constant $a \in \mathbb{R}_{0}^{+}$. From relation (1) we have $<\alpha(s), \alpha(s)>=\lambda^{2}(s)+\mu^{2}(s)+$ $\nu^{2}(s)$, which together with (4) and (7) gives $<\alpha(s), \alpha(s)>=(s+c)^{2}+a^{2}$. Therefore, $\rho^{2}(s)=s^{2}+c_{1} s+c_{2}, c_{1} \in \mathbb{R}, c_{2} \in \mathbb{R}_{0}$, which proves statement (i).

But using the relations (1) and (4) we easily get $\langle\alpha(s), T(s)\rangle=s+c, c \in \mathbb{R}$, so the statement (ii) is proved.

Note that the position vector of an arbitrary curve α in \mathbb{E}^{4} can be decomposed as $\alpha(s)=m(s) T(s)+\alpha^{N}(s)$, where $m(s)$ is arbitrary differentiable function and $\alpha^{N}(s)$ is the normal component of the position vector. If α is a rectifying curve, relation (1) implies $\alpha^{N}(s)=\mu(s) B_{1}(s)+\nu(s) B_{2}(s)$ and therefore $<\alpha^{N}(s), \alpha^{N}(s)>=\mu^{2}(s)+\nu^{2}(s)$. Moreover, by using (7), we find $\left\|\alpha^{N}(s)\right\|=a, a \in \mathbb{R}_{0}^{+}$. By statement (i), $\rho(s)$ is nonconstant function, which proves statement (iii).

Finally, using (1) and (4) we easily obtain (6), which proves statement (iv).

İLARSLAN, NEŠOVIĆ

Conversely, assume that statement (i) holds. Then $\left\langle\alpha(s), \alpha(s)>=s^{2}+c_{1} s+c_{2}\right.$, $c_{1} \in \mathbb{R}, c_{2} \in \mathbb{R}_{0}$. Differentiating the previous equation two times with respect to s and using (2), we obtain $<\alpha(s), N(s)>=0$, which implies that α is a rectifying curve.

If statement (ii) holds, in a similar way it follows that α is a rectifying curve.
If statement (iii) holds, let us put $\alpha(s)=m(s) T(s)+\alpha^{N}(s)$, where $m(s)$ is arbitrary differentiable function. Then

$$
<\alpha^{N}(s), \alpha^{N}(s)>=<\alpha(s), \alpha(s)>-2<\alpha(s), T(s)>m(s)+m^{2}(s)
$$

Since $<\alpha(s), T(s)>=m(s)$, it follows that

$$
<\alpha^{N}(s), \alpha^{N}(s)>=<\alpha(s), \alpha(s)>-<\alpha(s), T(s)>^{2}
$$

where $<\alpha(s), \alpha(s)>=\rho^{2}(s) \neq$ constant. Differentiating the previous equation with respect to s and using (2), we find

$$
k_{1}(s)<\alpha(s), T(s)><\alpha(s), N(s)>=0
$$

It follows that $<\alpha(s), N(s)>=0$ and hence the curve α is a rectifying.
If statement (iv) holds, by taking the derivative of the equation

$$
<\alpha(s), B_{1}(s)>=\frac{k_{1}(s)(s+c)}{k_{2}(s)}
$$

with respect to s and using (2), we obtain

$$
-k_{2}(s)<\alpha(s), N(s)>+k_{3}(s)<\alpha(s), B_{2}(s)>=\left(\frac{k_{1}(s)(s+c)}{k_{2}(s)}\right)^{\prime} .
$$

By using (6), the last equation becomes $<\alpha(s), N(s)>=0$, which means that α is a rectifying curve. This proves the theorem.

In the next theorem, we find the parametric equation of a rectifying curve.
Theorem 3.5 Let $\alpha: I \subset \mathbb{R} \rightarrow \mathbb{E}^{4}$ be a curve in \mathbb{E}^{4} given by $\alpha(t)=\rho(t) y(t)$, where $\rho(t)$ is arbitrary positive function and $y(t)$ is a unit speed curve in the unit sphere $\mathbb{S}^{3}(1)$. Then α is a rectifying curve if and only if

$$
\begin{equation*}
\rho(t)=\frac{a}{\cos \left(t+t_{0}\right)}, \quad a \in \mathbb{R}_{0}, \quad t_{0} \in \mathbb{R} \tag{8}
\end{equation*}
$$

İLARSLAN, NEŠOVIĆ

Proof. Let α be a curve in \mathbb{E}^{4} given by

$$
\alpha(t)=\rho(t) y(t),
$$

where $\rho(t)$ is arbitrary positive function and $y(t)$ is a unit speed curve in $\mathbb{S}^{3}(1)$. By taking the derivative of the previous equation with respect to t, we get

$$
\alpha^{\prime}(t)=\rho^{\prime}(t) y(t)+\rho(t) y^{\prime}(t)
$$

Hence the unit tangent vector of α is given by

$$
\begin{equation*}
T(t)=\frac{\rho^{\prime}(t)}{v(t)} y(t)+\frac{\rho(t)}{v(t)} y^{\prime}(t) \tag{9}
\end{equation*}
$$

where $v(t)=\left\|\alpha^{\prime}(t)\right\|$ is the speed of α. Differentiating the equation (9) with respect to t, we find

$$
\begin{equation*}
T^{\prime}=\left(\frac{\rho^{\prime}}{v}\right)^{\prime} y+\left(\frac{2 \rho^{\prime}}{v}-\frac{\rho \rho^{\prime}\left(\rho+\rho^{\prime \prime}\right)}{v^{3}}\right) y^{\prime}+\left(\frac{\rho}{v}\right) y^{\prime \prime} \tag{10}
\end{equation*}
$$

Let Y be the unit vector field in \mathbb{E}^{4} satisfying the equations $<Y, y>=<Y, y^{\prime}>=<$ $Y, y \times y^{\prime}>=0$. Then $\left\{y, y^{\prime}, y \times y^{\prime}, Y\right\}$ is the orthonormal frame of \mathbb{E}^{4}. Therefore, decomposition of $y^{\prime \prime}$ with respect to the frame $\left\{y, y^{\prime}, y \times y^{\prime}, Y\right\}$ reads

$$
\begin{equation*}
y^{\prime \prime}=<y^{\prime \prime}, y>y+<y^{\prime \prime}, y^{\prime}>y^{\prime}+<y^{\prime \prime}, y \times y^{\prime}>y \times y^{\prime}+<y^{\prime \prime}, Y>Y \tag{11}
\end{equation*}
$$

Since $<y, y>=<y^{\prime}, y^{\prime}>=1$, it follows that $\left\langle y^{\prime \prime}, y>=-1\right.$ and $\left.<y^{\prime \prime}, y^{\prime}\right\rangle=0$, so the equation (11) becomes

$$
\begin{equation*}
y^{\prime \prime}=-y+<y^{\prime \prime}, y \times y^{\prime}>y \times y^{\prime}+<y^{\prime \prime}, Y>Y \tag{12}
\end{equation*}
$$

Substituting (12) into (10) and applying Frenet formulas for arbitrary speed curves in \mathbb{E}^{4}, we find

$$
\begin{align*}
\kappa_{1} v N= & \left(\left(\frac{\rho^{\prime}}{v}\right)^{\prime}-\frac{\rho}{v}\right) y+\left(\frac{2 \rho^{\prime}}{v}-\frac{\rho \rho^{\prime}\left(\rho+\rho^{\prime \prime}\right)}{v^{3}}\right) y^{\prime}+\frac{<y^{\prime \prime}, y \times y^{\prime}>}{v} \alpha \times y^{\prime} \tag{13}\\
& +\left(\frac{\rho}{v}\right)<y^{\prime \prime}, Y>Y .
\end{align*}
$$

Since $<y, y>=1$, we have $<y, y^{\prime}>=0$ and thus $<\alpha, y^{\prime}>=0$. We also have $\langle\alpha, Y\rangle=0$. By definition, α is a rectifying curve in \mathbb{E}^{4} if and only if $\langle\alpha, N\rangle=0$.

İLARSLAN, NEŠOVIĆ

Therefore, after taking the scalar product of (13) with α, we have $\langle\alpha, N\rangle=0$ if and only if

$$
\left(\frac{\rho^{\prime}}{v}\right)^{\prime}-\frac{\rho}{v}=0
$$

The previous differential equation is equivalent to the equation

$$
\begin{equation*}
\rho \rho^{\prime \prime}-2 \rho^{\prime 2}-\rho^{2}=0 \tag{14}
\end{equation*}
$$

whose nontrivial solutions are given by (8). This proves the theorem.

Example: Let us consider the curve $\alpha(s)=\left(a /\left(\sqrt{2} \cos \left(s+s_{0}\right)\right)\right)(\sin (s), \cos (s), \sin (s), \cos (s))$, $a \in \mathbb{R}_{0}, s_{0} \in \mathbb{R}$ in \mathbb{E}^{4}. This curve has a form $\alpha(s)=\rho(s) y(s)$, where $\rho(s)=a / \cos \left(s+s_{0}\right)$ and $y(s)=(1 / \sqrt{2})(\sin (s), \cos (s), \sin (s), \cos (s))$. Since $\|y(s)\|=1$ and $\left\|y^{\prime}(s)\right\|=1, y(s)$ is a unit speed curve in the unit sphere $\mathbb{S}^{3}(1)$. According to the theorem $3.5, \alpha(s)$ is a rectifying curve lying fully in \mathbb{E}^{4}.

Acknowledgement

The authors are very grateful to the refere for his/her useful comments and suggestions which improved the first version of the paper.

References

[1] Chen, B. Y.: When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly 110, 147-152 (2003).
[2] Chen, B. Y., Dillen, F.: Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Academia Sinica 33, No. 2, 77-90 (2005).
[3] Gluck, H.: Higher curvatures of curves in Euclidean space, Amer. Math. Monthly 73, 699704, (1966).
[4] İlarslan, K., Nešović, E., Petrović-Torgašev, M.: Some characterizations of rectifying curves in the Minkowski 3-space, Novi Sad J. Math. Vol. 33, No. 2, 23-32, (2003).
[5] Millman, R. S., Parker, G. D.: Elements of differential geometry, Prentice-Hall, New Jersey, 1977.

İLARSLAN, NEŠOVIĆ

[6] Struik, D. J.: Differential geometry, second ed., Addison-Wesley, Reading, Massachusetts, 1961.

Kazım İLARSLAN
Received 21.09.2006
Kırıkkale University
Faculty of Sciences and Arts
Department of Mathematics
Kırıkkale-TURKEY
e-mail: kilarslan@yahoo.com
Emilija NEŠOVIĆ
Faculty of Science
Department of mathematics and informatics
Radoja Domanovića 12
34000 Kragujevac SERBIA
e-mail: emines@ptt.yu

[^0]: 1991 AMS Mathematics Subject Classification: 53C50, 53C40.

