University of Niš Faculty of Mechanical Engineering

PROCEEDINGS

October 15 - 16, 2020, Niš, Serbia

Publisher

Faculty of Mechanical Engineering Niš Prof. Nenad T. Pavlović, Dean

Editor Prof. Dušan Stamenković Assis. Prof. Milan Banić

Technical preparation Assis. Prof. Aleksandar Miltenović

Cover design Prof. Miloš Milošević

Number of copies 120

Printing Grafika Galeb, Niš CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

629.4(082) 656.2(082) 625.1(082) 338.47(497.11)(082)

SCIENTIFIC-Expert Conference of Railways (20; 2020; Niš)

Proceedings / XIX Scientific-Expert Conference on Railways - RAILCON '20, October 15-16, 2020, Niš, Serbia ; [editor Dušan Stamenković, Milan Banić]. - Niš : Faculty of Mechanical Engineering, 2020 (Niš : Grafika Galeb). - XVIII, 193 str. : ilustr. ; 25 cm

Na vrhu nasl. str.: University of Niš. - Tekst štampan dvostubačno. - Tiraž 120. - Napomene uz tekst. -Bibliografija uz svaki rad. - Registar.

ISBN 978-86-6055-134-6

а) Железничка возила -- Зборници
б) Железнички саобраћај -- Зборници
в) Железничке пруге -- Зборници
г) Србија -- Саобраћајна политика - Зборници

COBISS.SR-ID 21916169

Ministry of Education, Science and Technological Development of the Republic of Serbia has participated in printing costs of the Proceedings of the XIX International Scientific-Expert Conference on Railways - RAILCON 2020

All the publications in these Proceedings have the authorship, whereas the authors of the papers carry entire responsibility for originality and content.

Faculty of Mechanical Engineering

Program Committee

Prof. Milan Banić, University of Niš, Faculty of Mechanical Engineering, Serbia Prof. Boban Anđelković, University of Niš, Faculty of Mechanical Engineering, Serbia Prof. Carmen Alic, Polytechnic University of Timisoara, Romania Prof. Dobrinka Atmadžova, Todor Kableshkov University of Transport, Sofia, Bulgaria Prof. Nebojša Bojović, University of Belgrade, Faculty of Traffic Engineering, Serbia Prof. Branislav Bošković, University of Belgrade, Faculty of Traffic Engineering, Serbia Prof. Dragan Đurđanović, University of Texas at Austin, Mechanical Engineering, USA Prof. Ratko Đuričić, Faculty of Traffic Engineering Doboj, R. Srpska, Bosnia and Herzegovina Doc. Juraj Grenčík, University of Žilina, Faculty of Mechanical Engineering, Slovakia Prof. Daniel Kalinčak, University of Žilina, Faculty of Mechanical Engineering, Slovakia Prof. Dragutin Kostić, University of Belgrade, Faculty of Traffic Engineering, Serbia Prof. Predrag Jovanović, University of Belgrade, Faculty of Traffic Engineering, Serbia Prof. Vojkan Lučanin, University of Belgrade, Faculty of Mechanical Engineering, Serbia Prof. Dragomir Mandić, University of Belgrade, Faculty of Traffic Engineering, Serbia Prof. Dragan Marinković, Technical University Berlin, Dep. Of Structural Analysis, Germany Dr Andrea Mazzone, Bombardier Transportation, Switzerland Prof. Dragan Milčić, University of Niš, Faculty of Mechanical Engineering, Serbia Prof. Miloš Milošević, University of Niš, Faculty of Mechanical Engineering, Serbia Dr Rešad Nuhodžić, Ministry of Sustainable Development & Tourism, Montenegro Prof. Nenad T. Pavlović, University of Niš, Faculty of Mechanical Engineering, Serbia Prof. Dragan Petrović, Uni. of Kragujevac, Faculty of Mechanical and Civil Eng., Kraljevo, Serbia Prof. Mihaela Popa, Polytechnic University of Bucharest, Romania Dr Danijela Ristić-Durrant, University of Bremen, Germany Privat doz. Andreas Schöbel, Technical University Wien, Austria Prof. Miloš Simonović, University of Niš, Faculty of Mechanical Engineering, Serbia Prof. Dušan Stamenković, University of Niš, Faculty of Mechanical Engineering, Serbia Prof. Jovan Tanasković, University of Belgrade, Faculty of Mechanical Engineering, Serbia Prof. Cristian Ulianov, Newcastle University, United Kingdom Prof. Kiril Velkov, Technical University of Sofia, Faculty of Transport, Bulgaria

Organizing Committee

Aleksandar Miltenović, PhD, President Miroslav Mijajlović, PhD Miodrag Milčić Nataša Zdravković Vukašin Pavlović Miša Tomić Srđan Mladenović Dušanka Nikolić Vesna Grozdanović, technical secretary Ministry of Education, Science and Technological Development of Republic of Serbia Serbian Chamber of Engineers

Cofinanciers

KRUCH RAILWAY INNOVATIONS MOSDORFER ALTPRO INSTITUTE "MIHAJLO PUPIN" IMW INSTITUTE KRAIBURG STRAIL SIGNALLING & CONTROL DESPOTIJA ELPA

CONTENTS

Plenary session	
ADVANCEMENTS IN THE FIELD OF RAILWAY VEHICLES Simon IWNICKI	Ι
 Institute of Railway Research, University of Huddersfield, United Kingdom LIGHTWEIGHT VEHICLES – A NEW PARADIGM IN RAIL FREIGHT Cristian ULIANOV Newcastle University, United Kingdom 	III
Marius FARTAN REMARUL 16 Februarie, Cluj-Napoca, Romania Petr VOLTR Newcastle University, United Kingdom	
 OBSTACLE DETECTION FOR RAILWAYS: LESSONS LEARNED FROM PROJECT SMART Danijela RISTIĆ-DURRANT Institute of Automation, University of Bremen, Germany Muhammad Abdul HASEEB Bombardier Transportation GmbH, Mannheim, Germany Milan BANIĆ, Dušan STAMENKOVIĆ, Miloš SIMONOVIĆ, Aleksandar MILTENOVIĆ, Vlastimir NIKOLIĆ Faculty of Mechanical Engineering, Niš, Serbia Dragan NIKOLIĆ Harder Digital Sova, Niš, Serbia 	XI

Rolling stock

1.1.	SPECIAL FEM SUPERELEMENT IMPACT ON THE TOPOLOGY OPTIMIZATION TIME	1
	CONSUMPTION	
	Marcin KALINOWSKI	
	Alstom Konstal S.A. Poland	
	Miroslaw SZCZEPANIK	
	Silesian University of Technology, Poland	
1.2.	NUMERICAL RESEARCH OF IMPACT OF TUBE WALL THICKNESS AND	5
	POLYURETHANE FOAM DENSITY ON ABSORPTION CHARACTERISTICS	
	Jovan TANASKOVIĆ, Dragan MILKOVIĆ, Vojkan LUČANIN	
	Faculty of Mechanical Engineering, Belgrade, Serbia	
1.3.	ANALYSIS OF THE IMPACT OF ELECTRIC LOCOMOTIVES ON ENERGY PARAMETERS	9
	IN THE POWER SUPPLY SYSTEM	
	Dragutin KOSTIĆ, Petar MARKOVIĆ	
	Faculty of Transport and Traffic Engineering, Belgrade, Serbia	
1.4.	INFLUENCE OF HEAD WIND ON THE BRAKING DISTANCE OF SINGLE RAILWAY	13
	VEHICLE	
	Dragan MILKOVIĆ, Saša RADULOVIĆ,	
	Goran SIMIĆ, Jovan TANASKOVIĆ	
	Faculty of Mechanical Engineering, Belgrade, Serbia	
1.5.	SPECIFIC ASPECTS OF THE RAIL VEHICLE PASS-BY NOISE MEASUREMENT	17
	Goran SIMIĆ, Saša RADULOVIĆ, Vojkan LUČANIN	
	Faculty of Mechanical Engineering, Belgrade, Serbia	
1.6.	NUMERICAL ANALYSIS OF WAGON LEAF SPRINGS	21
	Milan BIŽIĆ, Dragan PETROVIĆ	
	Faculty of Mechanical and Civil Engineering in Kraljevo, Serbia	

	Traffic and transport	
	University of Transport (VTU Todor Kableshkov), Sofia, Bulgaria	
	Technical University of Sofia, Bulgaria Boris PETKOV	
	University of Transport (VTU Todor Kableshkov), Sofia, Bulgaria Rosen MILETIEV	
	Emil IONTCHEV	
	Sofia Public Electrical Transport Company JSC, Sofia, Bulgaria	
	University of Transport (VTU Todor Kableshkov), Sofia, Bulgaria	
	Emil M. MIHAYLOV	
	ELECTRICAL CURRENT COLLECTOR	
1.9.		33
1.0	University of Transport (VTU Todor Kableshkov), Sofia, Bulgaria ASSESSING THE IMPACT OF THE LATERAL SWINGING OF THE TRAM TO ITS	22
	Dobrinka ATMADZHOVA	
	THEORETICAL OR EXPERIMENTAL WAY	
	AGAINST ROLLING STOCK DERAILMENT BASED ON THE DATA OBTAINED IN A	
1.8.	A METHOD FOR DIRECT THEORETICAL DETERMINATION OF THE CRITERION	29
1.0	Faculty of Mechanical Engineering, Niš, Serbia	20
	Miloš MILOŠEVIĆ, Marko PERIĆ	
	Milan BANIĆ, Aleksandar MILTENOVIĆ, Miloš SIMONOVIĆ	
1.7.	RANDOM VIBRATION ANALYSIS OF THE DEMONSTRATOR HOUSING	25

2.1.	RANKING OF LEVEL CROSSINGS IN THE PLANNING PROCESS TO SAFETY IMPROVEMENT USING THE VIKOR	37
	Norbert PAVLOVIĆ, Ivan BELOŠEVIĆ, Sanjin MILINKOVIĆ	
	Faculty of Transport and Traffic Engineering, Belgrade, Serbia	
2.2.	APPLICATION OF OPENTRACK AT RAILWAYS OF REPUBLIC OF SRPSKA (RAILROAD	41
	TRACKS ŠAMAC – DOBOJ)	
	Rade CVIJANOVIĆ, Jelena KUZMANOVIĆ, Nikola MALINOVIĆ	
	Željeznice Republike Srpske, Doboj, Bosnia and Herzegovina	
	Andreas SCHÖBEL	
	OpenTrack Railway Technology GmbH, Austria	
2.3.	CLASSIFYING COUNTRIES FOR RAILWAY PERFORMANCE BENCHMARKING: A	45
	HIERARCHICAL CLUSTERING APPROACH	
	Miroslav PROKIĆ, Katarina HALAJ, Mira PASKOTA	
	Faculty of Transport and Traffic Engineering, Belgrade, Serbia	
2.4.	HAZARDS AND RISKS DUE TO TANK CAR EXPLOSION	49
	Mirko ĐELOŠEVIĆ, Goran TEPIĆ	
	Faculty Technical Sciences, Novi Sad, Serbia	
2.5.	ASSESSMENT OF THE DEGREE OF SAFETY AT RAILWAY CROSSINGS IN SERBIA	53
	CONDUCTED BY DRIVERS	
	Sandra KASALICA, Goran TRIČKOVIĆ, Milan MILOSAVLJEVIĆ	
	Dušan JEREMIĆ, Dušan VUJOVIĆ	
	High railway school of vocational studies, Belgrade, Serbia	
2.6.	ENHANCING CAPACITY ON ETCS LINES	57
	Andreas SCHÖBEL, Olga PERMIAKOVA	
	OpenTrack Railway Technology GmbH, Vienna, Austria	
2.7.	TRAFFIC SAFETY AT LEVEL CROSSINGS	61
	Filip ŠĆEKIĆ, Lazar MOSUROVIĆ, Nebojša MIHAJLOVIĆ, Jovo STELJIĆ	

Directorate for Railways, Belgrade, Serbia

Infrastructure

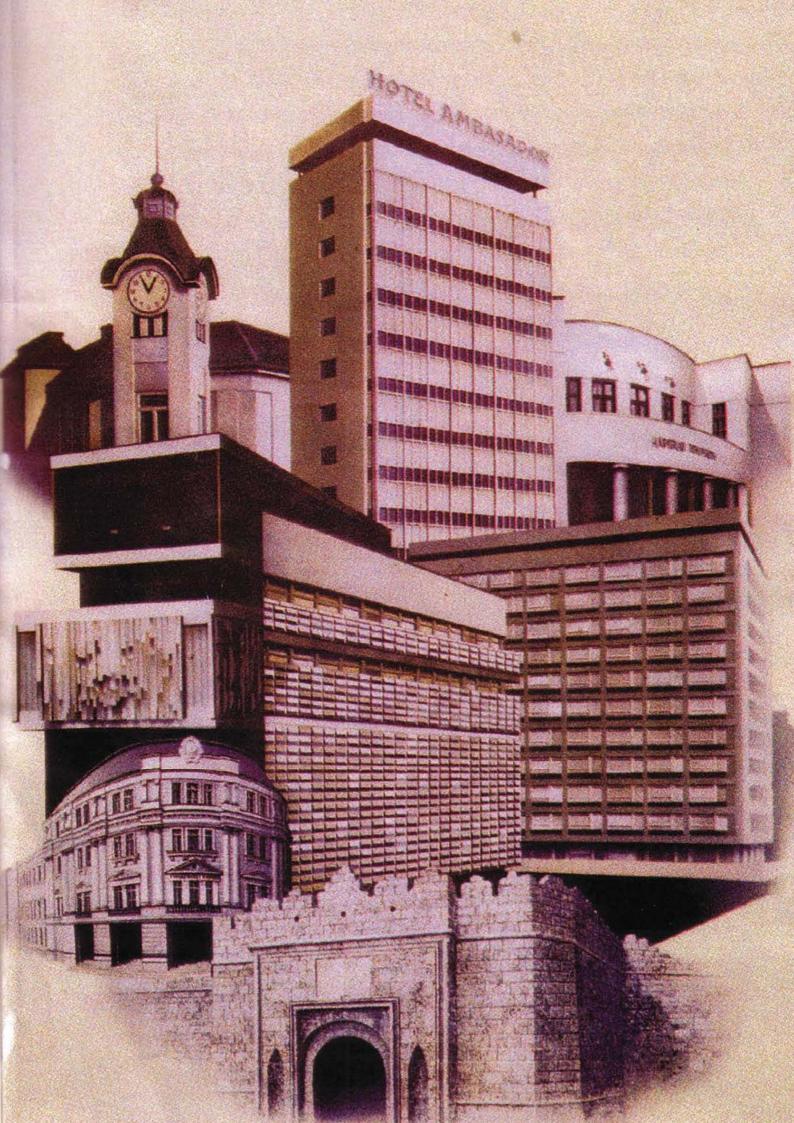
 3.1. EVALUATION OF TIMETABLE ROBUSTNESS CONSIDERING BUFFER TIMES' AMOUNT
 65 AND DISTRIBUTION Predrag JOVANOVIĆ, Norbert PAVLOVIĆ Faculty of Transport and Traffic Engineering, Belgrade, Serbia

	Vehicle and infrastructure maintenance	
	National railway infrastructure company, Sofia, Bulgaria	
	Vladimir ZHEKOV	
	University of Architecture, Civil Engineering and Geodesy, Sofia, Bulgaria	
	Milcho LEPOEV, Lazar GEORGIEV	
	BULGARIAN NETWORK AND GAUGE GC, BG AND GA	51
3.5.	ANALYSIS OF THE INTERFACE BETWEEN NATIONAL APPLICABLE GAUGE IN THE	81
	Directorate for Railways, Belgrade, Serbia	
э.т.	Jovo STELJIĆ, Nataša CEROVIĆ, Filip ŠĆEKIĆ	//
3.4.	CABLEWAYS AND RAILWAYS – ECOLOGICAL ASPECTS	77
	Faculty of Electrical Engineering, Belgrade, Serbia	
	Serbian Railway Infrastructure, Belgrade, Serbia Milesa SREĆKOVIĆ	
	Dragan JEVTIĆ Sarbian Bailway Infrastructura, Balarada, Sarbia	
	High Railway School of Vocational Studies, Belgrade, Serbia	
	Sanja JEVTIĆ, Marko BURSAĆ	
	PLANNING TOOL	
3.3.	ESTIMATION OF RAILWAY BELGRADE RING OPTIC NETWORK USING NETWORK	73
	Signalling & Control, Belgrade, Serbia	
	Dejan LUTOVAC	
3.2.	ELECTRONIC AXLE COUNTER	69

4.1.	ANALYSIS OF THE FAILURES OF BOGIES TYPE T73-AD AND Y32 FROM OF	85
	BULGARIAN STATE RAILWAYS	
	Dobrinka ATMADZHOVA, Vanio RALEV	
	University of Transport (VTU Todor Kableshkov), Sofia, Bulgaria	
4.2.	MODELLING AND NON-DESTRUCTIVE TESTING OF HEAD CHECK DAMAGE OF	89
	RAILWAYS	
	Csaba TAKACS, Reka ERDEI	
	Mechanical Testing Laboratory, Miskolc, Hungary	
4.3.	DEVELOPING ADVANCED SUBSYSTEM FOR SECURING STEEL COIL CARGO ON	93
	SHIMMNS WAGON CRADLES	
	Vladimir MILOVANOVIĆ, Milan BOJOVIĆ, Miroslav ŽIVKOVIĆ	
	Faculty of Engineering, Kragujevac, Serbia	
	Marko TOPALOVIĆ, Snežana VULOVIĆ	
	Institute for Information Technologies, University of Kragujevac, Serbia	
4.4.	RELIABILITY AND SAFETY OF AXLE-WHEEL ASSEMBLY	97
	Mladen TODIĆ, Valentina GOLUBOVIĆ-BUGARSKI, Tihomir LATINOVIĆ	
	Faculty of Mechanical Engineering, Banja Luka, Bosnia and Hercegovina	
4.5.	APPLICATION OF REVERSING OUTPUT DUAL BRAKE PLANETARY TRANSMISSIONS	101
	Jelena STEFANOVIĆ-MARINOVIĆ	
	University of Niš, Faculty of Mechanical Engineering, Niš, Serbia	
	Željko VRCAN, Sanjin TROHA	
	Faculty of Engineering, Rijeka, Croatia	
4.6.	THE MARKET CONCEPT OF RAILWAY VEHICLES MAINTENANCE ON THE RAILWAYS	105
	OF REPUBLIC OF SRPSKA	
	Vladimir MALČIĆ, Ratko ĐURIČIĆ,	
	Faculty of Transport and Traffic Engineering Doboj, Bosnia and Hercegovina	
	Rade CVIJANOVIĆ	
	Railways of Republic of Srpska, Doboj, Bosnia and Hercegovina	
4.7.	OPTIMIZATION OF THE SADDLE SUPPORT STRUCTURE OF THE FREIGHT WAGON	109
	TYPE SHIMMNS	
	Vladimir MILOVANOVIĆ, Nikola JOVANOVIĆ, Miroslav ŽIVKOVIĆ	
	Faculty of Engineering, Kragujevac, Serbia	
	Aleksandar DIŠIĆ, Marko TOPALOVIĆ	
	Institute for Information Technologies, University of Kragujevac, Serbia	

 4.8. RELIABILITY COMPARISON OF CLASSICAL BRAKE FOR FREIGHT WAGONS AND THE 113 INTEGRATED BOGIE BRAKE TYPE IBB 10 Erdinč RAKIPOVSKI, Dragan MILČIČ Faculty of Mechanical Engineering, Niš, Serbia Tasko SMILESKI Faculty of Mechanical Engineering, Skopje, North Macedonia

Strategy and policy			
5.1.	DETERMINING THE RISK ACCEPTANCE CRITERIA FOR OPERATIONAL CHANGES IN THE RAILWAY SYSTEM USING THE "SAFETY II" PRINCIPLE	117	
	Slobodan ROSIĆ		
	Serbian Railways Infrastructure, Belgrade, Serbia		
	Melanija MITROVIĆ, Dušan STAMENKOVIĆ		
	Faculty of Mechanical Engineering, Niš, Serbia		
5.2.	MULTICRITERIA APPROACH FOR PSO SERVICES SELECTION IN RAIL SECTOR	121	
	Dragana MACURA, Predrag JOVANOVIĆ		
~ ~	Faculty of Transport and Traffic Engineering, Belgrade, Serbia		
5.3.	USING MULTIPLE CRITERIA DECISION-MAKING TECHNIQUE TO EVALUATE	125	
	SERBIAN RAILWAY SYSTEM OPERATION PERFORMANCE		
	Nikola PETROVIĆ, Vesna JOVANOVIĆ, Jovan PAVLOVIĆ Faculty of Mechanical Engineering, Niš, Serbia		
	Tanja ŽIVOJINOVIĆ		
	Faculty of Transport and Traffic Engineering, Belgrade, Serbia		
5.4.	EUROPEAN RAILWAYS THROUGH TIME AND "STORMS"	129	
5.11	Branka NEDELJKOVIĆ, Ksenija DUNJIĆ PAVLOVIĆ, Nina IVKOVIĆ	12/	
	Directorate for Railways, Belgrade, Serbia		
5.5.	FOURTH RAILWAY PACKAGE – NEW CONCEPTS IN THE FIELD OF SAFETY AND	133	
	INTEROPERABILITY AND THEIR TRANSPOSITION INTO THE LEGAL FRAMEWORK OF		
	THE REPUBLIC OF SERBIA		
	Milan POPOVIĆ, Nataša CEROVIĆ, Olivera ZDRAVKOVIĆ		
	Directorate for Railways, Belgrade, Serbia		
5.6.	THE ROLE OF TREATY ESTABLISHING TRANSPORT COMMUNITY IN DEVELOPMENT	137	
	OF RAIL TRANSPORT MARKET IN SERBIA		
	Lazar MOSUROVIĆ, Branka NEDELJKOVIĆ, Zorica RADOVIĆ		
5.7.	Directorate for Railways of the Republic of Serbia, Belgrade, Serbia WESTERN BALKAN RAILWAY MARKET THROUGH THE SCOPE OF THE REGULATORY	141	
5.7.	BODY – BENCHMARK WITH EUROPE	141	
	Jakša POPOVIĆ		
	Directorate for Railways of Republic of Serbia, Belgrade, Serbia		
	Mirjana BUGARINOVIĆ		
	Faculty of Transport and Traffic Engineering, Belgrade, Serbia		
	Other Railway aspects		


6.1. NUMERICAL SIMULATION OF THE WELDING PROCESS, THE INFLUENCE OF 145 CONSTRAINT POINTS LOCATIONS ON THERMAL DEFORMATIONS Tomasz ZADOROŻNY Alstom Konstal S.A. Poland Miroslaw SZCZEPANIK Silesian University of Technology, Poland
6.2. APPLICATION OF 3D PRINTING IN RAILWAY INDUSTRY 149 Marko PERIĆ, Aleksandar MILTENOVIĆ, Dušan STAMENKOVIĆ, Jovan ARANĐELOVIĆ Faculty of Mechanical Engineering, Niš, Serbia

6.3.	APPLICATION OF METALLOGRAPHIC TECHNIQUES IN ORDER TO IDENTIFY DEFECTS IN THE MICROSTRUCTURE OF WELDED JOINTS OF AL ALLOYS Marko SAVIĆ, Andreja RADOVANOVIĆ, Nikola MARINKOVIĆ Ivan VUČKOVIĆ, Branka JORDOVIĆ	153
6.4.	IMW Institute, Lužnice, Serbia ANALYSIS OF LOGISTICS CHAINS, SERVICED BY RAILWAY TRANSPORT AND APPROACHES FOR TECHNOLOGICAL DESIGN OF PROCESSES Andrey BORISOV, Violina VELYOVA	157
6.5.	University of Transport (VTU Todor Kableshkov), Sofia, Bulgaria THE REVIEW OF HARMONIZED STANDARDS OF PERSONAL PROTECTIVE EQUIPMENT FOR SAFE WORK ON RAILWAY Vesna PAVELKIĆ High railway school of vocational studies, Belgrade, Serbia Dragan MAJKIĆ	161
	Serbian Railways Infrastructure, Belgrade, Serbia Marija ILIĆ Faculty of Mining and Geology, Belgrade, Serbia Aleksandar BLAGOJEVIĆ High railway school of vocational studies, Belgrade, Serbia	
6.6.	NOVEL RECOMMENDATIONS OF UIC FOR CALCULATION OF CARBON CONTENT IN RAILWAY INFRASTRUCTURE Vesna PAVELKIĆ, Sandra KASALICA, Aleksandar BLAGOJEVIĆ High railway school of vocational studies, Belgrade, Serbia Marija ILIĆ Faculty of Mining and Geology, Belgrade, Serbia	165
6.7.	CHARACTERIZATION OF BUTT WELD JOINT BY MIG WELDING PROCESS ON THE EXAMPLE OF ALUMINIUM ALLOY EN AW 6082 Nikola MARINKOVIĆ, Andreja RADOVANOVIĆ, Ivan VUČKOVIĆ, Marko SAVIĆ, Branka JORDOVIĆ IMW Institute, Lužnice, Serbia	169
6.8.	HOT FORMING PROCESS OF UPPER PIVOT OF FREIGHT CARS Saša RANĐELOVIĆ, Vladislav BLAGOJEVIĆ, Srđan MLADENOVIĆ Faculty of Mechanical Engineering, Niš, Serbia Mladomir MILUTINOVIĆ	173
6.9.	Faculty of Technical Science, Novi Sad, Serbia APPLICATION OF LASER TECHNOLOGY IN PRODUCTION AND MAINTENANCE OF RAILWAY VEHICLES Marija VUKŠIĆ POPOVIĆ, Sanja JEVTIĆ	177
6.10.	High railway school of vocational studies, Belgrade, Serbia USAGE OF ÖBB ELECTRIC LOCOMOTIVES ON THE CROATIAN RAILWAY NETWORK Milan BRKIĆ, Dragan MILJANOVIĆ Rail Cargo Carrier-Croatia, Zagreb, Croatia	181
	The Graduates and the Future of Railway	
7.1.	MAAS IN EU RESEARCH PROJECTS FOR A BETTER POSITION OF RAILWAYS IN PROVIDING TRANSPORT SERVICES Student: Teodora MILENKOVIĆ Mentor: Branislav BOŠKOVIĆ	185

Faculty of Transport and Traffic Engineering, Belgrade, Serbia
7.2. PERFORMANCES AND INDICATORS OF THE RAILWAY SISTEM OF THE SERBIA IN 187 THE TRANSPORT OF GOODS Student: Marija SELAKOVIĆ Mentor: Branislav BOŠKOVIĆ Faculty of Transport and Traffic Engineering, Belgrade, Serbia

7.3.	DETERMINATION OF BOTTLE-NECKS FOR THE BEOGRAD CENTAR-NOVI SAD-	189
	SUBOTICA RAILWAY THAT LED TO MODERNIZATION DEMAND	
	Student: Milan JOVETIĆ	
	Mentor: Predrag JOVANOVIĆ	
	Faculty of Transport and Traffic Engineering, Belgrade, Serbia	
7.4.	RISK RATING IN THE TRANSPORT OF DANGEROUS GOODS	191
	Student: Stefan SREDOJEVIĆ	
	Mentor: Branislav BOŠKOVIĆ	
	Faculty of Transport and Traffic Engineering, Belgrade, Serbia	
7.5.	TECHNOLOGY AND PERFORMANCE INDICATORS OF NATIONAL AGENCIES AT	193
	BORDER CROSSINGS	
	Student: Dalibor PETKOVSKI	
	Mentor: Branislav BOŠKOVIĆ	
	Faculty of Transport and Traffic Engineering, Belgrade, Serbia	

Index of authors

DEVELOPING ADVANCED SUBSYSTEM FOR SECURING STEEL COIL CARGO ON SHIMMNS WAGON CRADLES

Vladimir MILOVANOVIĆ¹ Milan BOJOVIĆ² Marko TOPALOVIĆ³ Miroslav ŽIVKOVIĆ⁴ Snežana VULOVIĆ⁵

Abstract – In this paper design improvement on assembly used for securing steel coils on Shimmns wagon is presented. The main disadvantage of current solution is that it is very slow for securing coils with smaller width, since safety mechanism is positioned manually for each coil. We needed to solve this issue without compromising function and reliability of the current locking mechanism. In the current design spindle rotation causes coupled movements of securing arms which constrain lateral movement of coils by applying significant force, but if the coil is not adequately centered, the arms on one side will not come in the contact with the coil, as arms on both sides are coupled on the same spindle and are moving symmetrically. The Finite Element Method is used to analyze the new solution and verify that it meets all the safety requirements prescribed in the standards. The improvement of existing solution is done with the half-nut mechanism which enables arbitrary, decoupled initial positioning of arms and clamping with threaded spindle when the arms are brought in contact with the coil. The new solution is implemented, and has proven to be practical and reliable in the exploitation.

Keywords – Shimmns wagon, Steel coils, Securing mechanism, FEM analysis

1. INTRODUCTION

The Shimmns freight wagons are used for transportation of steel coils which can vary in diameter, width and weight. These coils are placed into five cradles, and each coil is fixed using four securing arm subsystems. Proper positioning and secure fastening of these coils are essential for safety during the exploitation. During their lifetime, Shimmns wagons are subjected to different forces and strains, and must be able to withstand a wide range of load cases defined in the standards. Particular standards used are TSI [1] and BS EN 12663-2 [2]. Currently, each coil is secured manually, which is a slow process performed on many wagons, so the efficiency of this securing subsystem needed to be increased.

3D CAD model of the securing mechanism is created using provided technical documentation, and the numerical analysis of the worst case scenario, according to standards [1] and [2] was performed using the Finite Element Method (FEM) [3]. FEMAP software [4] is used as pre and post-processor for the FEM mesh generation and display of the results. FEM analysis was performed using NX Nastran solver, which is built in FEMAP. The results show that the maximum calculated stress is below permissible stress, and based on these conclusions, modifications to existing wagons were performed. The upgraded wagons perform well in the exploitation, and the new securing mechanism behaves like predicted.

In the next section, we will describe the loading of analyzed Shimmns wagon, and show the required service (fatigue) load case that wagon securing arms need to withstand. After that, we will describe in detail FEM model of this assembly, and will present analysis results. Based on these results, we will draw a conclusion that the proposed new design is safe for the exploitation, which is proven on the real wagons.

¹ University of Kragujevac, Faculty of Engineering, Sestre Janjić 6, Serbia, vladicka@kg.ac.rs

³ University of Kragujevac, Institute for Information Technologies, Jovana Cvijića bb, Serbia, topalovic@kg.ac.rs

² University of Kragujevac, Faculty of Engineering, Sestre Janjić 6, Serbia, milan.bojovic@uni.kg.ac.rs

⁴ University of Kragujevac, Faculty of Engineering, Sestre Janjić 6, Serbia, zile@kg.ac.rs

⁵ University of Kragujevac, Institute for Information Technologies, Jovana Cvijića bb, Serbia, vsneza@kg.ac.rs

2. THE SHIMMNS WAGON LOADING

A technical description of four-axle bogie wagon type Shimmns is given in [5]. The wagon is designed for transportation of sheets coils that are loaded in the horizontal position onto five cradles. The maximum total weight of all steel coils combined is 68 tons. This weight can be achieved using different combinations of coil width and diameter, but for the purpose of analysis of the assembly for coil securing, we must consider the worst case scenario [6], which is shown on Fig. 1.

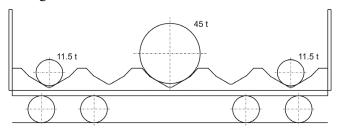


Fig.1. Big coil in the middle, smaller on front and back cradle

In this load case, a coil weighing 45 tons, which is the maximum coil weight, is placed in the middle crate, so redesigned securing mechanism must hold this big coil firmly secured to the wagon structure. Service (fatigue) loads of securing pin assembly in lateral direction are specified by TSI [1] and BS EN 12663-2:2010 [2], Clause 5.2.5.1, Tab. 13. Loading scheme of securing pin assembly is shown in Fig. 2.

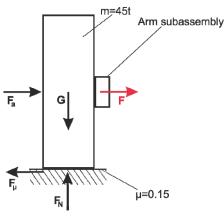


Fig.2. Scheme of model loading

According to loads shown in the previous figure and friction coefficient (steel-steel, lubricated and greasy) according to [7], forces acting on the coil are given in the next table.

Tab. 1. Forces acting on the largest coil (45 t)

G=mg=450 kN	F _a =0.2 m g=90 kN
$F_N=G=450$ kN	$F_{\mu}=\mu F_{N}=67.5 \text{ kN}$
$F=F_{a}-F_{\mu}=22.5 \text{ kN}$	F ₁ =F ₂ =F/2=11.25 kN

Force in the lateral direction is divided in two equal parts F_1 and F_2 acting on two arm mechanisms.

3. FEM MODEL OF SECURING ARM SUBSYSTEM

The securing arm mechanism of the Shimmns wagon is shown in Fig. 3.

Fig.3. Securing arm on Shimmns wagon

This assembly is modeled in 3D and analyzed using FEM [4], in order to test the proposed modifications. The new design enables fast decoupled movement of securing arms, and when the arms are in contact with the coil, the mechanism can be used to lock the half-nut with the housing firmly gripping the spindle. Now operators can manually rotate the spindle to tighten the clamp of securing arms on the coils. The FEM model of the whole securing arm assembly is shown in Fig. 4. viewed from the upside down for the best details.

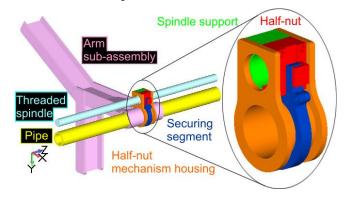


Fig.4. Securing arm assembly

The assembly consists of arm subassembly, pipe, threaded spindle, securing segment, half-nut housing and half-nut, which are shown in Fig. 4.

The arm subassembly, pipe, securing pin and segment, as well as half-nut mechanism housing, are all made of steel S355J2+N (same as the most of the Shimmns wagon). Threaded spindle is made of steel C45E. The Half-nut is made of steel 42CrMo4. The physical properties of steel are given in Tab. 2.

Tab. 2. Physical properties of steel

E [N/mm ²]	ρ [kg/mm ³]	ν
$2.10 \cdot 10^5$	7.85·10 ⁻⁶	0.3

The values in Tab. 2. are the same for all 3 steels, however, their mechanical properties are significantly different, which can be seen in Tab. 3.

Nominal thickness, or diameter t [mm], d [mm]	Minimum yield strength, R _{eH} [MPa]	Tensile ultimate strength, R _m [MPa]	
S355J2+N			
t≤16	355	470-630	
C4	5E (+QT)		
t≤8, d≤16	490	700-850	
42CrMo4 (+QT)			
t≤8, d≤16	900	1100-1300	

Tab. 3. Mechanical properties of used materials

According to the construction type, 3D elements (tetrahedral elements with midside nodes and linear hexahedral) were used for creating the FEM mesh, Fig. 5. to Fig. 9. The assembly is modelled in details with 397374 nodes and 286981 elements in total. Tab. 4. shows number of nodes and elements per part.

Tab. 4. Number of elements and nodes foe each part

Subassembly name	Number of elements	Number of nodes
Arm subassembly	99492	139992
Pipe	22080	33264
Segment	4898	6801
Threaded spindle	103765	135067
Half-nut housing	30520	38611
Half-nut	26221	42635

Designing the new securing mechanism required special attention to be paid to contacts. The contact between arm sub-assembly and pipe occurs in two places (highlighted blue), Fig. 5.

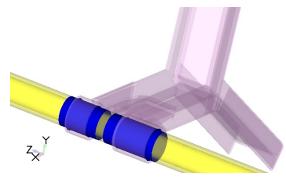


Fig.5. Pipe-arm sub-assembly contact

Since these are just two parts, we could define just one contact pair, however the contact surface would be much greater and calculation time slower, so we defined two contact pairs for pipe arm sub-assembly contact. The entire FEM model contains 25 contact pairs, which is the result of our attention to detailed modelling, focused on both the accuracy, and the analysis time. Fig. 6. shows one of the most crucial contact pairs between threaded spindle, and half-nut.

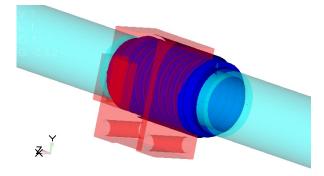


Fig.6. Contact between spindle and half-nut

Two contacts between the half-nut and the spindle support are shown in Fig. 7.

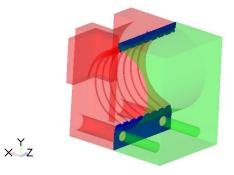
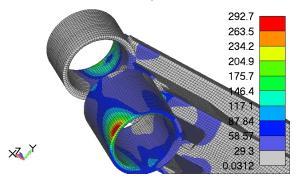



Fig.7. Half-nut spindle support contact

4. FEM ANALYSIS RESULTS

Within the calculation there is a system of two million and four hundred thousand equations being solved. Results show that for every part calculated stress is under permissible stress give in Tab. 3.

For arm subassembly maximum Von Mises stress of 292.9 MPa is shown in Fig. 8.

Fig.8. Significant loading zone of arm sub-assembly Fig. 9. shows Von Mises stress for half-nut housing.

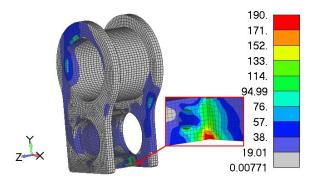
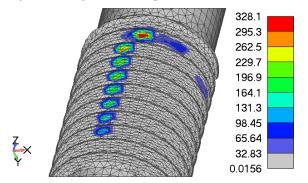



Fig.9. Von Mises stress field – half-nut housing

In case of spindle, the maximum Von Mises stress is 328.1 MPa as seen in Fig. 10., which justifies the usage of stronger, more expensive material C45E.

Fig.10. Von Mises stress field – spindle

The most loaded part is the half-nut, which is made of 42CrMo4 so it can withstand maximum calculated stress, shown in Fig. 11.

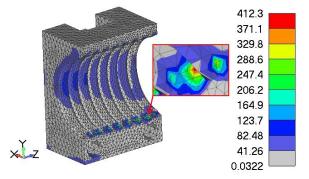


Fig.11. Maximum Von Mises stress half-nut

Half-nut mechanism displacement in the x direction is shown in Fig. 12.

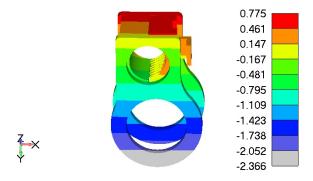


Fig.12. Half-nut mechanism displacement

Fig. 13. shows in more detail the transversal displacement between the half-nut and the spindle support. This displacement is small enough not to cause the mechanism malfunction or failure.

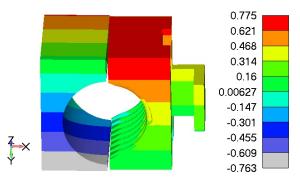


Fig.13. Half-nut and support x displacement

5. CONCLUSION

Based on the results of the FEM analysis described in the previous section, the securing mechanism for Shimmns wagon needed to be made out of 3 different steels in order to withstand service (fatigue) load defined in [1] and [2]. Calculated displacements do not affect functionality of analyzed mechanism.

This solution is already implemented on existing wagons in service, thus improving their functionality and ergonomic quality.

ACKNOWLEDGEMENT

This research is supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, Grants TR32036 and 451-03-68/2020-14/200378.

REFERENCES

- TSI Standard Commission Regulation (EU) No 321/2013 of 13 March 2013 concerning the technical specification for interoperability relating to the subsystem 'rolling stock — freight wagons' of the rail system in the European Union and repealing Decision 2006/861/EC.
- [2] BS EN 12663-2:2010 Railway applications Structural requirements of railway vehicle bodies, Part 2: Freight wagons, European Standard.
- [3] Kojić, M., Slavković, R., Živković, M., Grujović, N., Finite Element Method I - Linear Analysis (in Serbian), Faculty of Mechanical Engineering, University of Kragujevac, Serbia, 1998.
- [4] Femap with NX Nastran user manual.
- [5] Technical description of the Shimmns wagon.pdf
- [6] Static and fatigue strength analysis of four axle bogie wagon type Shimmns – Report, Faculty of Engineering University of Kragujevac, 2017
- [7] <u>http://www.engineeringtoolbox.com/friction-</u> coefficients-d_778.html