

UNIVERSITY OF EAST SARAJEVO FACULTY OF MECHANICAL ENGINEERING

3rd INTERNATIONAL SCIENTIFIC CONFERENCE

"Conference on Mechanical Engineering Technologies and Applications"

PROCEEDINGS

7th-9th December East Sarajevo-Jahorina, RS, B&H

7th - 9th December 2016 Jahorina, Republic of Srpska, B&H

Faculty of Mechanical Engineering Conference on Mechanical Engineering Technologies and Applications

ZBORNIK RADOVA PROCEEDINGS

Istočno Sarajevo – Jahorina, BiH, RS 7 - 9. decembar 2016.

East Sarajevo – Jahorina, B&H, RS $7^{th} - 9^{th}$ December 2016.

ZBORNIK RADOVA SA 3. MEĐUNARODNE NAUČNE KONFERENCIJE "Primijenjene tehnologije u mašinskom inženjerstvu" COMETa2016, Istočno Sarajevo - Jahorina 2016.

PROCEEDINGS OF THE 3rd INTERNATIONAL SCIENTIFIC CONFERENCE "Conference on Mechanical Engineering Technologies and Applications" COMETa2016, East Sarajevo - Jahorina 2016.

Organizator: Organization:	Univerzitet u Istočnom Sarajevu Mašinski fakultet Istočno Sarajevo University of East Sarajevo Faculty of Mechanical Engineering East Sarajevo
Izdavač: Publisher:	Univerzitet u Istočnom Sarajevu Mašinski fakultet Istočno Sarajevo University of East Sarajevo Faculty of Mechanical Engineering East Sarajevo
Za izdavača: For publisher:	Prof. dr Ranko Antunović
Urednici: Editors:	Prof. Dr Biljana Marković, Prof. Dr Ranko Antunović,
Tehnička obrada i dizajn: Technical treatment and desing:	Ranka Gojković, senior asisstant Nikola Vučetić, senior asisstant Aleksija Đurić, senior asisstant
Izdanje: Printing:	Prvo 1 st
Register: Register:	ISBN 978-99976-623-7-8 COBISS.RS-ID 6240280

REVIEWERS

PhD Adisa Vučina, FMEC Mostar (B&H) PhD Radoslav Tomović, FME Podgorica (MNE) PhD Miloš Milovančević, FME Nis (Serbia) PhD Mirko Blagojević, FE Kragujevac (Serbia) PhD Miroslav Milutinovic, FME UES (B&H) PhD Srđan Vasković, FME UES (B&H) PhD Nikola Tanasić. FME Belgrade (Serbia) PhD Goran Orašanin, FME UES (B&H) PhD Lozica Ivanović, FE Kragujevac (Serbia) PhD Dragoljub Živković, FME Nis (Serbia) PhD Biljana Markovic, FME UES (B&H) PhD Milija Kraišnik, FME UES (B&H) PhD Ranko Antunovic, FME UES (B&H) PhD Milosav Ognjanović. FME Belgrade (Serbia) PhD Slaviša Moljević, FME UES (B&H) PhD Vlado Medaković, FME UES (B&H) PhD Aleksandar Košarac, FME UES (B&H) PhD Milan Zeljković, FTS Novi Sad (Serbia) PhD Jelena Jovanovic, FME Podgorica (MNE) PhD Snezana Nestic, FE Kragujevac (Serbia) PhD Dragan Milčić, FME Nis (Serbia) PhD Novak Nedić, FMCE Kraljevo (Serbia) PhD Slobodan Tabaković, FTS Novi Sad (Serbia) PhD Miroslav Živković, FE Kragujevac (Serbia) PhD Aleksandar Zivkovic, FTS Novi Sad (Serbia) PhD Vojislav Filipović, FMCE Kraljevo (Serbia) PhD Mladomir Milutinovic, FTS Novi Sad (Serbia)

INTERNATIONAL SCIENTIFIC COMMITTEE

PhD Biljana Marković, FME UES (B&H) – president

PhD Vojislav Novaković, NTNU Trondheim (Norway) PhD Nenad Gubeljak, TF Maribor (Slovenia) PhD Athanasios Michailidis, AUT (Greece PhD Radivoie Mitrović, FME Belgrade (Serbia) PhD.-Ing. Albert Albers, University of Karlsruhe (Gemrmany) PhD Aleksandar Veg, FME Belgrade (Serbia) PhD Ranko Antunović, FME UES (B&H) PhD.-Ing. Ljubomir Dimitrov TU Sofia (Bulgaria) PhD Milosav Ognjanović, FME Belgrade (Serbia) PhD Voiislav Miltenović, FME Niš (Serbia) PhD Imre Kiss, University Politehnica Timisoara (Romania) PhD Slavko Krajcar, FER Zagreb (Croatia) PhD Nebojša Radić, FME UES (B&H) PhD Tale Geramitčioski, UKLO Bitola (FYROM) PhD Miroslav Živković, FE Kragujevac (Serbia) PhD Slavko Arsovski, FE Kragujevac (Serbia) PhD Zoran Ljuboje, FEE UES (B&H) PhD Dušan Golubović, FME UES (B&H) PhD Zoran Markov, FME Skoplje (FYROM) PhD Adisa Vučina, FMEC Mostar (B&H)

PhD. - Ing. Miroslav Vereš, SUT Bratislava (Slovakia) PhD Ranko Božičković, FTE UES (B&H) PhD Dragan Milčić, FME Niš (Serbia) PhD Radoslav Tomović, FME Podgorica (MNE) PhD Ljubodrag Tanović, FME Belgrade (Serbia) PhD Siniša Kuzmanović, FTS Novi Sad (Serbia) PhD Miroslav Milutinović, FME UES (B&H) PhD Dragiša Vilotić, FTS Novi Sad (Serbia) PhD Milija Kraišnik, FME UES (B&H) PhD Milan Zeljković, FTS Novi Sad (Serbia) PhD Milenko Obad, FMEC Mostar (B&H) PhD Novak Nedić, FMCE Kraljevo (Serbia) PhD Petar Gvero, FME Banja Luka (B&H) PhD Srđan Vasković, FME UES (B&H) PhD.-Ing. Sava Ianici, University of Resita "Effimie Murgu" (Romania) PhD Fuad Hadžikadunić, FME Zenica (B&H) PhD Milomir Gašić, FMCE Kraljevo (Serbia) PhD Mirko Blagojević, FE Kragujevac (Serbia) PhD Sead Pašić, FME University "Džemal Bijedić" Mostar (B&H) PhD Mircea Viorel Dragoi, University Transilvania, Brasov (Romania) PhD Milentije Stefanović, FE Kragujevac (Serbia) PhD Stojan Simić, FME UES (B&H) PhD Ljubomir Lukić, FMCE Kraljevo (Serbia) PhD Slaviša Moljević, FME UES (B&H) PhD Zdravko Krivokapić, Podgorica (CG) PhD Bogdan Marić, FP UES (B&H) PhD Darko Knežević, FME Banja Luka (B&H) PhD Dragan Spasić, FTS Novi Sad (Serbia) PhD Livia Dana Beju, EF UNI SIBIU (Romania) PhD Nedeljko Vukojević, MFE Zenica (B&H) PhD Sreten Perić, MA Belgrade (Serbia) PhD Petar Novak, VSTS Novo Mesto (Slovenia) PhD Milovan Jotanovic, FT UES (B&H) PhD Goran Orasanin, FME UES (B&H) PhD Vlado Medaković, FME UES (B&H) PhD Anto Gajic, FME UES (B&H)

ORGANIZING COMMITTEE

PhD Ranko Antunović, FME UES - president

PhD Biljana Marković, FME UES PhD Slaviša Moljević, FME UES PhD Miroslav Milutinović, FME UES PhD Milija Kraišnik, FME UES PhD Srđan Vasković, FME UES PhD Saša Prodanović, FME UES PhD Aleksandar Košarac, FME UES MSc Aleksija Đurić, assistant, FME UES - Technical Secretary MSc Nikola Vučetić, senior assistant, FME UES - Technical Secretary MSc Ranka Gojković,senior assistant, FME UES- Technical Secretary Vera Stanišić - Secretary

GENERAL SPONSOR

Ministry of Science and Technology Republic of Srpska

SPONSORS

TERMOELEKTRO

The conference has been supported by:

International Federation for the Promotion of Mechanism and Machine Science

Association for Design, Elements and Constructions

KOLEKTOR

PREFACE

Production in developed countries is based on the modernization and optimization of the production processes with the application of new technologies that are the result of scientific research. The application of new technology enables company's efficient production and competitiveness in the world market.

Faculty of Mechanical Engineering, University of East Sarajevo, organizes the Third international conference "COMETa2016 - Conference on Mechanical Engineering Technologies and Application", which has tasks: to increase economic competitiveness in the region and to give an contribution to creation of unique European Research Area.

Globally, we are witnessing a rapid development and a host of new technological solutions, which occur primarily in the multidisciplinary development (mechatronics) but also in development of completely new technologies, such as nanotechnology, biomaterials, bioengineering, new energy sources, intelligent machines and processes, micro-technique, etc. All of this puts researchers and engineers in the new challenges and creates opportunities for products and technologies that provide a precondition for economic recovery and creation of new jobs.

COMETa2016 conference program structure is consisted of the following thematic areas: Production technologies and advanced materials, Energy and environment, Applied mechanics and mechatronics, Development of products and mechanical systems, Quality and management and Organization and maintenance.

Participation in international conference COMETa2016 was achieved by: 202 authors from 9 countries, with a total of 78 papers, including 3 plenary lectures.

Inside of conference COMETa2016 has been planned organization of one working meeting and two round table discussion based on actual topics of conference. During the conference, it will be presented some of technical solutions produced in companies from our region.

The presence of a large number of participants from Bosnia and Herzegovina and abroad as well as the problems which are processed at the conference, coincide with the themes promoted by the European Union in its development programs.

On the basis of previous exposure, a gathering of scientists and researchers at the international conference COMETa should be understood not only as an exchange of knowledge and achievements of the narrower set of scientists and researchers, but also as a constant and serious attempt to focus social consciousness and social life on activities that ensures progress and prosperity of any society, and that is productive work, creating new knowledge and economic development.

On behalf of the Organizing Committee and Scientitific Committiee of the Conference COMETa2016, we want to express our gratefullness to all authors, reviewers, as well as institutions, companies and individuals who contributed to realization of the Conference.

East Sarajevo, November 19th, 2016.

President of the Scientific Committee

President of the Organizing Committee

Prof. dr Biljana Marković

Marran le Infaua

Prof. dr Ranko Antunović

Am

CONTENT

APPLIED MECHANICS AND MECHATRONICS

Chairpersons: Vlatko Določek, Miroslav Živković, Novak Nedić

1.	lsak Karabegović, Vlatko Doleček	
	THE TENDENCY OF APPLICATION OF INDUSTRIAL ROBOTS IN	1
	THE AUTOMOTIVE, ELECTRICAL ENGINEERING AND METAL	1
	INDUSTRIES WORLDWIDE	
2.	Dragan Rakić, Miroslav Živković, Nikola Milivojević, Dejan Divac	
	STABILITY ANALYSIS OF A CONCRETE GRAVITY DAM USING	9
	SHEAR STRENGTH REDUCTION METHOD	
3.	Vladimir Milovanović, Miroslav Živković, Gordana Jovičić,	
	Aleksandar Dišić, Miroslav Milutinović	47
	EXPERIMENTAL AND NUMERICAL STRENGTH ANALYSIS OF	17
	WAGON FOR CONTAINERS TRANSPORTATION	
4.	Radivoje Mitrović, Ivana Atanasovska, Nataša Soldat	
	NUMERICAL ANALYSIS OF DYNAMIC BEHAVIOR OF BALL	23
	BEARING DEPENDING ON EXTERNAL RADIAL FORCE	
5.	Radoslav Tomović	29
	DYNAMIC MODEL OF RIGID ROTOR IN ROLLING BEARING	29
6.	Nebojša Radić, Dejan Jeremić	
	MECHANICAL BUCKLING OF DOUBLE-LAYERED GRAPHENE	37
	SHEETS EMBEDDED IN AN ELASTIC MEDIUM USING A	31
	NONLOCAL NEW FIRST-ORDER DEFORMATION THEORY	
7.	Aleksandar Milašinović, Zdravko Milovanović, Darko Knežević	
	LAGRANGE MULTIPLIERS OF THE CONSTRAINT FORCES OF THE	47
	SLIDER CRANK MECHANISM	
8.	Nikola Vučetić, Aleksandar Košarac, Mirko Blagojević, Ranko	
	Antunović	55
	ANALYTICAL DETERMINATION OF DRIVE SHAFT NATURAL	55
	FREQUENCIES	
9.	Nikola Vučetić	
	IMBALANCE INFLUENCE ON ROLLING BEARING OPERATING	63
	TEMPERATURE	
10.	Dragan Trifković, Branimir Krstić, Dajana Vujanović	
	CORROSION AS A CAUSE OF FAILURE OF AIRCRAFT	71
	CYLINDRICAL ELEMENTS – CASE OF STUDIES	
11.	Saša Prodanović, Novak Nedić	
	ANALYSIS OF POSSIBILITIES FOR THE STATIC DECOUPLING	81
	CONTROL APPLICATION IN TITO SYSTEMS	

12. 13.	Jovan Šulc, Vule Reljić, Brajan Bajči, Dragan Šešlija DESIGN AND DEVELOPMENT OF EXPERIMENTAL SETUP FOR ANALYSIS AND SYNTHESIS OF CONTROL LAWS IN MANIPULATOR CONTACT WITH ENVIRONMENT Zlata Jelačić	87
13.	CONTACT FORCE PROBLEM IN THE SERVICE ROBOT CONTROL DESIGN	93
	MACHINE DESIGN, SIMULATION AND MODELING	
	Chairpersons: Dragan Milčić, Mirko Blagojević, Lozica Ivanović	
1.	Nenad Marjanovic, Nenad Kostic, Nenad Petrovic, Mirko	
	Blagojevic, Milos Matejic TEACHING-LEARNING-BASED OPTIMIZATION ALGORITHM FOR SOLVING MACHINE DESIGN CONSTRAINED OPTIMIZATION	101
2.	Marko Denić, Nenad Petrović, Vesna Marjanović ANALYSIS OF WIND TURBINE LATTICE TOWER TYPE CONCEPTS	109
3.	Jovan Pavlović, Dragoslav Janošević, Vesna Jovanović GENERATING VARIANT SOLUTIONS OF DRIVE MECHANISMS OF A LOADER MANIPULATOR	115
4.	Blaža Stojanović, Sandra Veličković, Marko Ristić, Saša Jovanović, Aleksandar Skulić	100
_	INFLUENCE OF TORQUE VARIATION ON STRESS OF TIMING BELT	123
5.	Goran Pavlović, Vladimir Kvrgić, Mile Savković, Milomir Gašić, Nebojša Zdravković	
	THE INFLUENCE OF THE POSITION OF LONGITUDINAL STIFFENERS TO THE OPTIMUM DIMENSIONS OF THE BOX SECTION OF THE SINGLE-GIRDER BRIDGE CRANE	131
6.	Slavica Miladinović, Sandra Veličković OPTIMIZATION AND PREDICTION OF SAFETY COEFFICIENT FOR	139
	SURFACE DURABILITY OF PLANETARY GEAR USING TAGUCHI DESIGN AND ARTIFICIAL NEURAL NETWORK	
7.	Slobodan Garić, Lozica Ivanović, Blaža Stojanović, Slavica Miladinović, Vladimir Milovanović	4 4 7
	NUMERICAL ANALYSIS OF ALUMINUM COMPOSITE CYLINDRICAL GEARS	147
8.	Nadica Stojanović, Jasna Glišović, Nenad Marjanović, Ivan Grujić OPTIMIZATION OF VENTILATED DISC BRAKE VANES FOR HEAVY DUTY VEHICLE	155
9.	Ivan Grujic, Nadica Stojanovic, Aleksandar Davinic, Radivoje Pesic, Danijela Miloradovic	163
10.	OPTIMIZATION OF CONNECTING ROD LENGTH Đorđe Miltenović, Milan Banić, Aleksandar Miltenović, Milan Tica	
10.	POWER LOSSES AND EFFICIENCY OF WORM GEARS IN EXTREME OPERATING CONDITIONS	169
11.	Maja Čavić, Marko Penčić, Milan Rackov, Ivan Knežević, Miodrag Zlokolica	
	DYNAMIC ANALYSIS OF THE THERMOFORMING MACHINE WORKING MECHANISM	177

	Krešimir Vučković, Ivan Čular, Stjepan Risović EFFECTS OF FINITE ELEMENT TYPE, MESH SIZE AND FRICTION ON SPUR GEAR NOMINAL TOOTH ROOT STRESS RESULTS	185
13.	Amna Bajtarević, Fuad Hadžikadunić, Nedeljko Vukojević NUMERICAL ANALYSIS OF SINGLE GIRDER SUSPENSION OVERHEAD CRANE	191
	MANUFACTURING TECHNOLOGIES AND ADVANCED MATERIALS	
	Chairpersons: Milentije Stefanović, Milan Zeljković, Ljubodrag Tanović	
1.		
2.	SIMULATION OF KINEMATIC OF VIRTUAL PROTOTYPE OF A MACHINE TOOL BASED ON HYBRID O-X MECHANISM Saša Živanović, Nikola Slavković, Branko Kokotović, Dragan	199
Z .	Milutinović	
	MACHINE SIMULATION OF VIRTUAL RECONFIGURABLE 5 AXIS MACHINE TOOL WHEN MACHINE WORKING ACCORDING TO THE RUNNING PROGRAM	207
3.	Aleksandar Živković, Milan Zeljković, Miloš Knežev THERMAL MODEL OF HIGH SPEED MAIN SPINDLE	215
4.		
	INFLUENCE OF TOOL WEAR ON THE CHIPS SEGMENTATION AND VIBRATIONS SIGNAL IN TURNING PROCESS	221
5.		
	EXPERIMENTAL IDENTIFICATION OF THE INFLUENCE OF TOOL	229
	GEOMETRY ON THE LATERAL AND RADIAL CRACK GROWTH DURING MICRO CUTTING OF MARBLE	
6.	Djordje Cica, Branislav Sredanovic, Davorin Kramar	
	A PREDICTIVE MODEL OF CUTTING FORCES IN MQL TURNING USING GENETIC ALGORITHM	237
7.	Adrian But, Rad Canarache	0.40
	SOLUTION TO INCREASE THE PRODUCTIVITY ON CNC MACHINING	243
8.	Milentije Stefanović, Dragan Adamović, Andreja Stefanović, Milija	
	Kraišnik ENVIRONMENTAL AND ENERGY ASPECTS IN THE	249
	DEVELOPMENT OF TECHNOLOGY OF METAL FORMING	
9.	Dragoslav Dobraš, Milisav Marković	
	STANDARDS THAT DEFINE QUALITY OF WELDING PHOTOSENSITIVE VISOR	255
10.	Nenad Bukejlovic, Dario Božičkovi, Zdravko Božičković	000
	WELDING BUCKET – WHEEL EXCAVATOR KRUPP C700	263
11.	Miroslav Radovanovic RESEARCH OF CUT QUALITY WHEN CUTTING CARBON STEEL	271
	WITH ABRASIVE WATER JET	211
12.	Elvis Hozdić, Emine Hozdić	077
	AGENT STRUCTURES FOR SOCIO-CYBER-PHYSICAL WORK SYSTEMS IMPLEMENTATION	277
13.	Milija Kraišnik, Milan Šljivić, Jelica Anić, Jovica Ilić	
	COMPRESSIVE PROPERTIES OF COMMONLY USED POLYMERS IN ADDITIVE MANUFACTURING PROCESSES	285
	IN ADDITIVE MANUFACTURING PROCESSES	

PRODUCT DEVELOPMENT AND MECHANICAL SYSTEMS

Chairpersons: Radivoje Mitrović, Adisa Vučina, Siniša Kuzmanović

1.	Radivoje Mitrović, Žarko Mišković INVESTIGATION ON INFLUENCE OF 3D PRINTING DIRECTION ON MECHANICAL PROPERTIES OF ABS PLASTIC PROTOTYPES	293
2.	Milan Rackov, Ivan Knežević, Siniša Kuzmanović, Maja Čavić, Marko Penčić, Sava Ianici PROPOSAL OF ASSESSMENT METHOD OF DIFFERENT QUALITY SOLUTIONS OF UNIVERSAL GEAR REDUCERS	301
3.	Emine Hozdić, Elvis Hozdić APPLICATIONS OF ADDITIVE TECHNOLOGIES IN RECONSTRUCTIVE MEDICINE	309
4.	Nebojša Rašović, Adisa Vučina, Milenko Obad EXPERT SYSTEM SUPPORT IN PRODUCT DESIGN FOR ADDITIVE TECHNOLOGY AND REVERSE ENGINEERING	317
5.	Biljana Markovic, Miodrag Divcic CALCULATION OF THE BEARING MODIFIED RATING LIFE DURING NEW BEARING DESIGN	325
6.	Miodrag Milcic, Tomaz Vuherer, Janez Kramberger, Dragan Milcic,	
		333
	IMPACT FRACTURE BEHAVIOUR OF 2024–T351 ALUMINIUM ALLOY SHEETS JOINED BY FRICTION STIR WELDING	
7.	Daniel Miler, Dragan Žeželj, Igor Lončarek	
••	CASE STUDY ON CAE TOOLS: OPTIMIZATION OF A 6-AXIS	341
	ROBOTIC ARM FOR MAG WELDING	
8.	Milan Blagojevic, Svetozar Rajnhofer	439
-	INSTALLATION OF RAILWAYS FOR WELDING PORTAL GUIDANCE	400
9	Milos Matejic, Lozica Ivanovic, Nenad Kostić PARAMETRIC MODELING OF GEROTOR PUMP	353
10.	Nevena Stevanović, Zorica Djordjević, Saša Jovanović, Olivera	
	Gavrilovic	
	THE ANALYSIS OF STRESS-STRAIN STATE OF GEARS MADE FROM COMPOSITE MATERIALS	361
11.	Đurić Aleksija, Biljana Marković QUASI-DYNAMIC TESTING OF A BUTT-WELDED JOINT MADE OF	367
	ALUMINIUM ALLOY 6060 (AIMgSi0,5)	307
	RENEWABLE ENERGY AND ENVIRONMENTAL	
	Chairpersons: Slavko Krajcar, Petar Gvero, Stojan Simić	
1.	Marko Mančić, Dragoljub Živković, Milan Djordjević, Milena Rajić, Milena Jovanović OPTIMISATION OF A POLYGENERATION SYSTEM FOR THE ENERGY DEMANDS OF AN INDOOR SWIMMING POOL	375

2. Sulejman Muhamedagić, Mirsada Oruč, Halim Prcanović, Jusuf Borić THE AIR QUALITY IN CITY OF ZENICA IN 2015

385

3.	Merima Maslo, Seadin Hadžiomerović	
•••	ANALYSIS OF THE PROCESS OF AIR PREPARATION FOR THE	393
	PURPOSES OF AIR CONDITIONING USING REGENERATIVE SYSTEM FOR HEAT RECOVERY	000
4.	Maja Mrkić Bosančić, Srđan Vasković, Petar Gvero, Velid	
	Halilović, Daliborka Petrović	200
	COMPARISON OF CO2 EMISSIONS FOR SUPPLY CHAINS OF	399
	FUELS FROM BIOMASS AND COAL	
5.	Srđan Vasković, Petar Gvero, Vlado Medaković, Azrudin Husika,	
	Dragana Kalabić	
	DETERMINATION VALUES OF SUBSIDIES IN ACCORDANCE WITH	407
	THE EXERGY QUALITY OF FUELS AND HEAT PRODUCED FROM	
~	BIOMASS Staion Similá Coron Oražanin Dužan Calubaulá Davar Millá	
6.	Stojan Simić, Goran Orašanin, Dušan Golubović, Davor Milić ENERGY AND ENVIRONMENTAL ASPECTS OF ENERGY	417
	PRODUCTION FROM ANIMAL MANURE BIOGAS	417
7	Ernad Šabanović, Marko Ikić, Slobodan Lubura, Milomir Šoja	
	POTENTIAL AND WAY TO UTILIZE PV SYSTEMS IN PUBLIC	421
	BUILDINGS	
8.	Ernad Šabanović, Marko Ikić, Slobodan Lubura, Milomir Šoja	
	CONNECTING PV SYSTEMS ON THE GRID. SELECTION OF	429
	CONNECTION TOPOLOGY	
9.	Goran Orašanin, Stojan Simić,Dušan Golubović, Jovana Pajkić,	
	Davor Milić	437
	CONTROL OF WATER SUPPLY PUMPING SYSTEMS	
10.	Veselin Blagojević, Dušan Gordić, Ranko Božičković, Vojislav	
	Novaković	445
	ENERGY-SMART BUILDINGS THROUGH APPLICATION OF THE	
	INTERNET OF THINGS (IOT)	

MAINTENANCE, QUALITY AND ORGANIZATION

Chairpersons: Mitar Jocanović, Ranko Božičković, Snežana Nestić

1.	Mitar Jocanović, Velibor Karanović, Marko Orošnjak, Nebojša Nikolić, Darko Knežević	454
	LUBRICATING OILS FOR MODERN AUTOMATIC TRANSMISSIONS	451
~	OF MOTOR VEHICLES	
Ζ.	Marko Orošnjak, Mitar Jocanović, Velibor Karanović	
	SIMULATING THE EFFECTS THAT CONTAMINATION HAS ON A	457
	HYDRAULIC SYSTEM PERFORMANCE USING MATLAB/SIMULINK	
3.	Vujadin Šarenac, Ranko Antunović, Mićo Plećić	465
	DIJAGNOSTIC MONITORING OF HYDRO UNITS IN HPP VIŠEGRAD	400
4.	Anto Gajić, Siniša Gajić, Ljilja Rudić-Mikić, Jagoda Krsmanović	
	DESCALING THE INNER SURFACE WATER STEAM PIPE STEAM	475
	BOILER TRACT "P 64", BY THERMALLY-OXYGEN TREATMENT	475
	(TKT) THE TPP UGLJEVIK	
5.	Veselin Blagojević, Milan Despotović, Ranko Božičković, Siniša	
-	Božičković	485
	ENERGY ANALYSIS OF DOBOJ MUNICIPALITY	.00

6.	Nikola Komatina, Slavko Arsovski, Danijela Tadić, Aleksandar Aleksić DEFINING THE INPUT VALUES IN FIRST HOUSE OF	493
_	QUALITY OF QFD METHOD USING FUZZY AHP METHOD	
7.	Hrvoje Puškarić, Aleksandar Đorđević, Snežana Nestić,	
	Aleksandar Aleskić, Gligorije Mirkov, Miladin Stefanović QUALITY-RELATED INDICATORS, PERFORMANCES AND	501
	RANKING IN HIGHER EDUCATION	
8.		
0.	IMPLEMENTATION OF ENERGY MANAGEMENT SYSTEMS ISO	509
	50001:2011 IN B&H	000
9.		
	CLUSTER AS A MODEL ORGANIZATION FOR SMALL AND	517
	MEDIUM-SIZED ENTERPRISES	
10.	Predrag Petrović, Milan Plavšić	
	RECONSTRUCTION OF THE TANK WAGON VALVE SYSTEM IN	523
	ORDER TO CONFORM WITH INTERNATIONAL STANDARDS	
	STUDENT SESSION	
	Chairpersons: Saša Prodanović, Aleksandar Košarac, Srđan Vasković	
	Andreis Milevenević Milen Planciavia, Alekaander Miliković	
1.	Andreja Milovanović, Milan Blagojevic, Aleksandar Miljković APPLICATION OF REVERSE ENGINEERING IN FORMULA	531
	STUDENT CAR DEVELOPMENT	551
2.	Marijana Krajišnik	
	ANALYSIS OF STATIC BEHAVIOR OF SET OF THE MAIN SPINDLE	539
	UNTIL QUILL BY USING ANSYS SOFTWARE	
3.	Aleksandar Tomović, Marko Mumović, Vasilije Samardžić, Vuk	
	Vujošević, Marko Rašović	547
	DEVELOPMENT OF CONSTRUCTION OF AN AUTONOMOUS LINE	547
_	FOLLOWER ROBOT	
4.		553
~	WALKING ROBOT BASED ON JANSEN MECHANISM	
5.	Miladin Janjić, Nemanja Grahovac POSSIBILITY OF EFFICIENT HEATING AND SUPPLYING	
	DOMESTIC HOT WATER RESIDENTIAL BUILDING WITH A	561
	COMBINATION OF TWO RENEWABLE ENERGY SOURCES	
6.	Mirjana Jokanović, Jovana Pajkić	
0.	THE WASTEWATER PURIFICATION PROCESS	567
7.	Kristo Batinić	
	ELECTRICITY POWER GENERATION IN WATER SUPPLY	575
	SYSTEMS	
8.	· · · · · · · · · · · · · · · · · · ·	
	POSSIBILITY OF REPLACING COAL IN THE HEATING PLANT	583
	WHICH IS RUNNING ON SOLID FUEL WITH WASTE WOOD	000
	BIOMASS	
	INDEX OF AUTORS	589

PRESENTATIONS OF PARTICIPANTS

СІР - Каталогизација у публикацији Народна и универзитетска библиотека Републике Српске, Бања Лука

621.03(082)(0.034.4)

МЕЂУНАРОДНА научна конференција "Примијењене технологије у машинском инжењерству" COMET a (3 ; 2016 ; Источно Capajebo) Zbornik radova [Elektronski izvor] = Proceedings / 3. Međunarodna naučna konferencija "Primijenjene tehnologije u mašinskom inženjerstvu" COMETa 2016, Istočno Sarajevo - Jahorina 2016 =3rd International Scientific Conference "Conference on Mechanical Engineering Technologies and Applications" COMETa 2016, East Sarajevo -Jahorina 2016. ; [urednici, editors Biljana Marković, Ranko Antunović]. - 1 izd. - Istočno Sarajevo : Mašinski fakultet, 2016. -1 optički disk (CD-ROM) : tekst ; 12 cm

Sistemski zahtevi nisu navedeni. - Radovi na srp. i engl. jeziku. -Napomene i bibliografske reference uz tekst. - Bibliografija uz svaki rad. - Rezimei na engl. i srp. jeziku.

ISBN 978-99976-623-7-8

COBISS.RS-ID 6240280

ISBN 978-99976-623-7-8

7th - 9th December 2016 Jahorina, Republic of Srpska, B&H

Srpska, B&H University of East Sarajevo Faculty of Mechanical Engineering

Conference on Mechanical Engineering Technologies and Applications

EXPERIMENTAL AND NUMERICAL STRENGTH ANALYSIS OF WAGON FOR CONTAINERS TRANSPORTATION

Vladimir Milovanović¹, Miroslav Živković², Gordana Jovičić³, Aleksandar Dišić⁴, Miroslav Milutinović⁵

Abstract: This paper presents comparative experimental and numerical strength analysis of wagon for containers transportation according to the TSI standard and norm EN 12663-2:2010. The aim of this analysis is to show that results of stresses obtained by measuring with strain gauges and stresses obtained by FEM calculation gives good agreement. Based on the results and their good match, it can be concluded that the numerical FEM analysis can be reliably used for structural analysis. According to this fact, FEM analysis can reduce number of the testing new products. This leads to great savings in the design of new prototypes, in order to immediately start the process of mass production. This would lead to significantly less cost of products.

Key words: FEM, Wagon analysis, Fatigue strength analysis

1 INTRODUCTION

Numerical simulations are widely used for solving various problems in industry because they reduce time and cost in developing new products. Simulation results provide very useful information about the product and can indicate the potential problems that can be eliminated in design phase.

The next step in projecting phase is making a prototype, based on the results obtained using FEM. When the prototype testing is finished, it is very important to make a comparative analysis of the results obtained by FEM calculation and by measurements on a prototype. Measurement results and results obtained by FEM calculation must meet all requirements for static and fatigue strength according to standards.

According to TSI standard [1] and norm BS EN 12663-2:2010 [2], static and

¹ PhD, Vladimir Milovanović, Faculty of Engineering University of Kragujevac, Kragujevac, Serbia, vladicka@kg.ac.rs (CA)

² PhD, Miroslav Živković, Faculty of Engineering University of Kragujevac, Kragujevac, Serbia, miroslav.zivkovic@kg.ac.rs

³ PhD, Gordana Jovičić, Faculty of Engineering University of Kragujevac, Kragujevac, Serbia, gjovicic.kg.ac.rs@gmail.com

⁴ PhD student, Aleksandar Dišić, Faculty of Engineering University of Kragujevac, Kragujevac, Serbia, aleksandardisic@gmail.com

⁵ PhD, Miroslav Milutinović, Faculty of Mechanical Engineering University of East Sarajevo, East Sarajevo, B&H, m.milutinovic82@gmail.com

fatigue strength analysis of wagon for for containers transportation are done. Measurement of stresses with strain gauges was done on a prototype, and those results were compared with stresses obtained by FEM calculation.

2 FEM MODEL

The Sgmns wagon is designed for the transportation of containers and swap bodies (SBs), within block trains. According to detailed analysis [3] it was concluded that strength of the bottom part of underframe does not satisfy requirements according to the standards and the cause of cracking nearby welded joint on the bottom part of underframe at wagon Sgmns type was determined. The new construction solution for the bottom part of underframe is proposed and new analysis of strengthened wagon was done.

FEM model is created using the FEMAP software [4]. According to the construction type, rectangular and triangular (four and three nodes respectively) shell elements of the appropriate thickness and 3D eight node elements (for modeling of support plate, compensating ring, traction stop) are used for creating the finite element mesh. The structure is modeled in details with 59583 elements and 61200 nodes. The element length is approximately 40 mm.

3 SAFETY FACTOR, PERMISSIBLE STRESS, LOAD CASES AND REQUIREMENTS

According to BS EN 12663-2:2010 [2], Clause 6.2.2.1, Table 18 and Table 19, and to dependence on mechanical characteristics of material (structural steels S235JRG2 and S355J2+N), permissible stresses in parent material and in parent material in the immediate vicinity of welds can be calculated under the static load cases as defined in BS EN 12663-2:2010. The ratio of yield stress ($R=R_e$) to calculated stress (σ_c) must be greater than or equal to S₁, Table 1.

Material	Safety factor S1	σ _{cmax} [MPa]
S235JRG2	1.0	235
S355J2+N	1.0	355
Parent material in the immediate vicinity of welds S235JRG2	1.1	214
Parent material in the immediate vicinity of welds S355J2+N	1.1	323

Table 1. Safety factor and permissible stress for static loads – parent material and welded joints

Based on that fatigue load is used in the range of \pm 30% of vertical static load we can calculate the value of the maximum stress at the fatigue load based on static analysis, [3]:

$$\sigma_{\max} = 2.1667 \Delta \sigma_c \tag{1}$$

Table 2 shows limit values for static test to verify fatigue strength which are determined for minimum number of 2 million constant amplitude cycles in accordance with Eurocode 3, Part 1.9 [5], using Figure 7.1 and Table 3.1.

		Limit stress for	safe life [MPa]
Direct stress range	Permissible maximum fatigue	Low	High
$\Delta \sigma_c$ [MPa]	stress $\sigma_{ m maxlim}$ [MPa]	consequence	consequence
		$(\gamma_{Mf} = 1.15)$	$(\gamma_{Mf} = 1.35)$
160 ¹	347	301	257
112 ²	243	211	180
100	217	188	160
90	195	170	144
80	173	151	128
71	154	134	114
63	136	119	101
56	121	106	90
50	108	94	80

Table 2. Limit stress values for static test to verify fatigue strength

According to TSI [1] and BS EN 12663-2:2010 [2], it is necessary to calculate the wagon structure in a relation to the different types of loads. Exceptional load cases are specified in TSI [1], Clause 4.2.2.3.2 and BS EN 12663-2:2010 [2], Clauses 5.2.2-5.2.3. For all exceptional load cases maximum value of calculated stress must be lower than the permissible stress shown in the Table 2.3.1. Service (fatigue) loads are specified in TSI [1], Clause 4.2.2.3.3 and BS EN 12663-2:2010 [2], Clause 5.2.5. For service (fatigue) loads maximum value of calculated stress in welded joints must be lower than the limit stress for the safe life in the Table 2.

4 MEASURING AND POSITION OF STRAIN GAUGES

According to the results obtained by FEM calculations for all of the load cases defined in accordance with TSI standard and with British Standard EN 12663-2:2010, strain gauges were set up on prototype of the wagon and measurements were carried out. Strain gauges showed the results of stresses at those locations.

Position of strain gauges is selected so that it covers all the places on the wagon where the numerical calculations showed the stress concentration. For the comparative analysis the most favorable case of vertical load was used. Photos and position of strain gauges is shown in Figure 1.

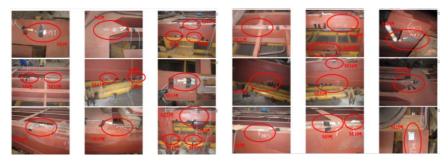


Figure 1. Position of strain gauges

¹ Limit stress for the safe life in parent material in steel S355J2+N

² Limit stress for the safe life in parent material in steel S235JRG2

5 COMPARATIVE RESULTS OF STRESSES

For all load cases linear static analysis was performed. Structural steels S235JRG2 (with 235 MPa and 360 MPa as yield limit and failure limit) and S355J2+N (with 355 MPa and 470 MPa as yield limit and failure limit) are used for all structural elements. Both types of steel have same material characteristics (2.1 10⁵ MPa, 7.85 10⁻⁶ kg/mm3 and 0.3 as Young Modulus, density and Poisson ratio).

The values of stresses at the locations of strain gauges were obtained for all cases of static loads and static test for verification of fatigue strength. The measured values of stresses at the locations of strain gauges and the values of stresses obtained from the FEM calculations, using software PAK [6], were compared.

The aim of the analysis was to show that the results obtained by measurement and calculations based on FEM gave similar values of stress, bellow the values of permissible stress defined according to TSI and BS EN 12663-2:2010.

In the Table 3 are shown comparative results obtained by strain gauges and appropriate normal stresses obtained by FEM analysis.

Table 3. Comparative results obtained by strain gauges and FEM analysis for the most favorable case of vertical load

Stresses [MPa]				
Strain gauge number	Measured value	FEA	Permissible stress	
1	49	47.9	239	
4	52	56.3	309	
5	-44.2	-46.8	239	
7	114.1	116.8	309	
8	87.3	91.6	309	
9	-56.3	57.7	239	
10	-61.6	-63.0	239	
11	114.8	137.3	309	
13	-52	-88.6	209	
16	95.1	97.1	239	
18	203.8	206.0	309	
19	185.5	191.2	309	
21	-46.6	-70.1	209	
22	-74.6	-76.8	239	
25	-46.7	-73.2	239	
27	179.9	191.7	309	
30	126.3	139.6	309	
31	120.6	138.8	309	

The aim of this comparative analysis was to compare the values of stresses obtained experimentally by strain gauges and stresses obtained by FEM calculation. By comparing the numerical results with measurement results it was confirmed good agreement of results. The difference between the results obtained by strain gauges, and the results obtained by FEM analysis is less than 5%.

6 FATIGUE LOADS - CALCULATION RESULTS

For the most conventional wagon designs, the loading defined in Table 14 of EN12663 is considered as sufficient to represent the full effective combination of fatigue load cycles. Source of fatigue loading is determined according to TSI, Annex CC. Based on the results obtained by analyzing the static strength of the wagon and considering the

good match of results obtained by experiment and by FEM analysis, it can be concluded that the fatigue strength of the wagon can be checked using the results of the static test, Table 2.

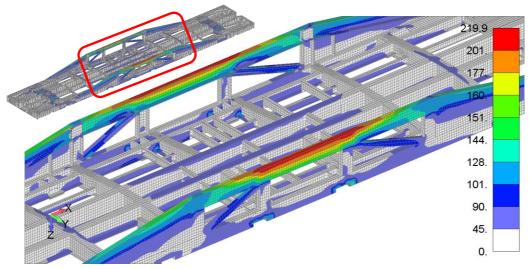


Figure 2. Von Mises equivalent stress field - underframe

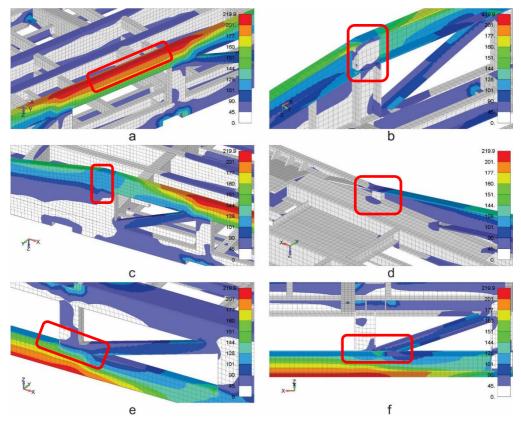


Figure 3. Von Mises equivalent stress field - underframe; significant loaded zones

Figure 2 show field of von Mises equivalent stress in underframe for the most unfavorable case of vertical load. Figure 3 shows significant loaded zones in underframe. Stress levels used in the legend in Figures 2 and 3 are defined according to Table 2. Table 3 shows the maximum values of stress in welded joints.

Figure	Detail	Table and detail,	Max. calculated	Limit stress for
No	category	Eurocode 3, Part 1.9	stress [MPa]	safe life [MPa]
4a	160	Parent material	219.9	257
4b	100	Table 8.2 – d6	149.0	160
4c	90	Table 8.3 – d6	128.6	144
4d	71	Table 8.3 – d13	95.6	114
4e	100	Table 8.2 – d6	148.3	160
4f	100	Table 8.2 – d6	132.9	160

Table 4. The maximum value of stresses in welded joints

Based on calculated stresses (Table 3) and limit stresses given in Table 2, it can be concluded that all calculated stresses in the parent material and welded joints are below limit stress for safe life for appropriate weld type.

7 CONCLUSIONS

The aim of this paper was to compare results of stresses obtained by measuring with strain gauges and stresses obtained by FEM calculation. This analysis demonstrates applying of the most common European standards for calculating static and fatigue strength of wagon. Comparing the numerical results with the results of measuring, it is verified that software gives good agreement with the experimental results. Difference between results obtained by strain gauges and FEM analysis is lower than 10%. According to presented results it can be concluded that FEM analysis can reduce number of the testing new products. This would lead to big savings and significantly less cost of products.

ACKNOWLEDGMENT

The part of this research is supported by Ministry of Education, Science and Technological Development, Republic of Serbia, Grant TR32036.

REFERENCES

- [1] TSI Standard Freight wagons of the trans-European conventional rail system
- [2] EN 12663:2000 Railway applications Structural requirements of railway vehicle bodies, European Standard
- [3] FEMAP Version 10, User Guide, Siemens Product Lifecycle Management Software Inc, Munich – Germany, 2009
- [4] Milovanović, V., Dunić, V., Rakić, D., Živković, M.(2013): Identification causes of cracking on the underframe of wagon for containers transportation - Fatigue strength assessment of wagon welded joints, Engineering Failure Analysis, Vol.31, pp. 118-131, ISSN 1350-6307
- [5] Eurocode 3: Design of steel structures Part 1.9: Fatigue
- [6] Živković, M., Kojić, M., Slavković, R., Grujović, N.(2003) PAK-S Program for FE structural analysis, Faculty of Mechanical Engineering, University of Kragujevac, Serbia