
Combination of Bash and Python in Development

of Wrappers used for Automation of Finite

Element Analysis

Marko Topalović*, Snežana Vulović*, Miroslav Živković**, Milan Bojović**
* Institute of Information Technologies Kragujevac, University of Kragujevac, Kragujevac, Serbia

** Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia

topalovic@kg.ac.rs, vsneza@kg.ac.rs, milan.bojovic@uni.kg.ac.rs, zile@kg.ac.rs

Abstract—This paper presents developing wrapper scripts

for automating Finite Element Method (FEM) analysis on

GNU/Linux servers. The purpose of these scripts is to edit

data in ASCII files that are inputs for FEM solver and to

call FEM solver which performs the analysis. Input files

consist of geometry model, material parameters, loads,

constraints, time step definitions and other data. After the

long-lasting calculations, based on the stress results,

material parameters in input files are updated and the

analysis is restarted. This loop is repeated until the analysis

predicts structure failure and for each pass safety factor is

calculated. These scripts are also used to extract certain

element groups, combine file sections and adjust output file

for post-processing. Although Bash is very versatile when it

comes to text manipulation it was necessary to augment it

with Python programing language in order to achieve

required functionality, primarily for fitting material

parameters needed for next calculation. Repetitive, tedious

work that an engineer needs to perform is greatly reduced,

utilization of server time is improved, and this solution can

be used for further development, for example, an inclusion

of optimization, on which will focus in the future work.

I. INTRODUCTION

For scientific computing many researchers use some
distribution of GNU/Linux due to its free and open source
nature, low hardware requirements, robustness and
stability [1],[2]. In our laboratory Finite Element Method
(FEM) models [3] which consist of 2164759 elements and
are 698.7 MB in size are analyzed on a workstation with
Intel Xeon E5-2400 processor and 64 GB of ram, running
Ubuntu server 18.04. During the analysis, stiffness matrix
[4] and the rest of the FEM data may require up to 19 GB
of ram. The single analysis job for this model on the
workstation is completed in approximately 1 hour. This
long time, along with a need to perform a series of
analysis jobs, motivated us to develop a Bash script which
will prepare input files, and run consecutive analysis jobs.
We had to keep the algorithm for fitting material
parameters [5],[6] outside of the FEM solver code, so that
engineers can frequently edit computation of the material
parameters. Since Bash is not suited for mathematical
calculations [7], we had to insert Python code [8] into the
Bash script which will do some of the math. In the
following sections of the paper, we will discuss the key
features of Bash and Python, how to combine them, what
problems may occur, and how to solve them.

II. METHODOLOGY

A. Bash scripting fundamentals and drawbacks

Bash (Bourne Again Shell, named after Stephen
Bourne, author of the Unix shell sh) is the default shell
(Command Line Interpreter CLI) for GNU/Linux, and is
typically run within a terminal window. Bash scripts are
invoked by entering the whole path to the script in the
terminal window, or if it is opened in the current directory,
by typing ./ followed by a script name [9].

Every Bash script starts with (#!/bin/Bash), where the
combination (#!) is called shebang and it is used to define
which interpreter to run, while hash (#) alone is used to
define that the rest of the line behind (#) is a comment [7].

Bash allows using variables and arrays which do not
need to be defined by type [7]. To access value of a
variable a dollar sign ($) is used, while setting of a
variable value is done with equal (=), however, users
(engineers) must be very careful because one of the
greatest issues of Bash programming is the use of
whitespaces (spaces or tabs). In Bash every line is a
separate command, and every line is divided by spaces
into words, the first word is the name of the command,
and the rest of the words are the arguments [7]. For
example, (alfat=7) is the correct setting, while (alfat = 7)
would mean calling unknown command (alfat) with
arguments (=) and (7).

Input of values from the keyboard is done with read
command, while output is done with echo [9]. The use of
quotation marks is optional, we will talk about quotation
marks later, for now the simple example will suffice:

echo ’please input alfap variable’

read alfap

echo ”you entered $alfap”.

In Bash, every variable is considered an array [7].
Bracket notation ([]) is used to reference an index of an
array, while accessing it requires usage of braces ({}):

alfa[1]=8

echo ${alfa[1]}.

Every line in Bash is a separate command, so to write
complex commands across multiple lines, we must use a
backslash (\) which tells the interpreter to disregard the
next character (in this case newline), so several lines of
script can be considered as a single command [7].

Copyright 2020 by Information Society of Serbia - ISOS, Serbia | Creative Commons License: CC BY-NC-ND 230

These complex commands are composed using pipe (|)
operators [7], which take output form one command (on
the left) and input it to the next command (on the right).

To send output to the file we must redirect standard
output [7] using greater than operator (>). If the specified
file does not exist, this redirection command will create it,
if the file exists, the redirection will overwrite existing
data with the generated output [7]. To append output to
the existing data in a text file, we use (>>) operator. For
reading data from a file we can use less than operator (<),
or more powerful commands which we will discuss later.

One of the most useful features of Bash is string
manipulation [7], for example, to find and replace part of a
string slash (/) is used, and to replace all the occurrences
of a part of the string, double slash (//) is used:

matparam=”8.15e-01 1.31e-03 4.34e-03”

matparam==${matparam//e-03/e-04}.

To make the same changes in a file, sed (which stands
for stream editor) command [9] is used:

$sed 's/e-03/e-04/g' input.txt.

In the above line (s) and (g) are flags, (s) stands for
substitution and (g) stands for global [9]. Since previous
command would make changes to the whole file (maybe
even some unwanted ones), in sed command we can
specify which line of text do we want to edit, for example,
to edit only 7th line we would use:

$sed '7 s/e-03/e-04/g' input.txt.

If we want to replace the entire 7th line, we need to use
a combination of dot and asterisk metacharacters (.*)

$sed '7 s/.*/”8.15e-01 1.31e-04 4.34e-04”/' input.txt.

Although backslash (/) is the most common delimiter
for sed, other characters can be used as delimiter as well,
comma (,), colon (:), at (@), etc. Beside substitute flagged
with (s), sed can print (/p), delete (/d) insert (-i) string
patterns from a file [7]. Another sed option is (-e), which
tells interpreter that the following string is an editing
instruction. If only a single instruction is passed on to sed,
the flag (-e) is optional.

The strong, single quotes (' ') keep the literal values of
each character, while double quotes (” ”) evaluate the
expression inside [7]. Single quotes cannot be placed
within another single quotes, even if they are preceded by
an escaping backslash (\), while double quotes can (with
escaping backslash (\) of course).

We must also emphasize the use of backquotes (` `)
which are used for command substitution. The same way
$variable is replaced with variable value, `command` is
replaced by the output from enclosed command [7].
Another way to substitute command is to use parenthesis
$(command).

The next command that we will address now is cat
(short for concatenate) which is used to create, view, join
(concatenate) files [9]. To open a file, one needs to type:

$ cat full/file/path/filename,

or, if the terminal window is opened in the file directory:

$ cat filename.

To create a new file, we use greater than operator:

$ cat >newfile.

To copy the content of one file to another we use:

$ cat oldfile > newfile.

In the previous two examples of cat function, one may
notice the difference in using whitespaces [7]. To merge
files under a new name, we use cat command like this:

$ cat material.inp load.inp > analysis.inp,

and to append one file to another, we can use (>>).
When using the cat command, one can use additional
options, such as (-n) which displays line numbers when
the cat is used to print file content in a terminal window,
or (-e) which displays dollar sigh at the end of file and
paragraphs [7]. Cat command displays the entire file, to
view only a part of it, one can use cat and pipe file to head
and tail commands, which by default display first (head)
or last (tail) 10 lines of piped file [7]. To specify the exact
number of lines (–n) option is used, so to display only the
last line of the file we use:

cat input.csv | tail -n 1.

To save the entire last line of a file into a variable for
further processing, we use following combination of
previously described Bash commands:

varInline=`cat input.csv | tail -n 1`.

The next command which was crucial for our FEM
analysis is awk [10], but this is not just a simple
command, it’s a whole data-driven programming language
with syntax similar to C developed in 1977 by Aho,
Weinberger, and Kernighan, and it is used primarily for
processing text organized by rows and columns and data
extraction from it [10]. Awk has the following format:

awk options 'pattern {action}' inputfile > outputfile.

Input and output files are optional, awk command is
often used within a block of other commands, using pipes
(|) to connect with them. As for the facultative options, we
used is -F"," that tells awk that field separator (delimiter)
is the comma (,) instead of default white space and –v that
assigns a value to a variable [10]. Using field separator
awk turns the whole line into a word array, and every
word is stored as $1, $2, $3 etc. which can be later
accessed [10]. The pattern can be omitted, in which case
every line is considered, it can be a simple string between
two slashes, for example /materials/ in which case only
lines with enclosed word are considered [10]. Action part
in awk invocation most often means print, usually a
specific word from a line [10]. For example, to read
Young’s modulus E from previously read last line of input
file, we use a combination of commands:

E=`echo $varInline | awk -F"," '{print $1}'`.

The above commands send the whole line previously
stored in the variable $varInline using pipe (|) to awk
command, which splits the line into words separated by a
comma (,), and prints the first word. Finally, using
backquotes (` `) for command substitution, the variable E
(Young’s modulus) is set.

To find where in the input file a certain block of data is
located (which line) we could use:

awk '/Time Functions/{print NR}' analysis.inp,

where (NR) is built-in variable that stands for Number
of Records [10], but we opted instead for grep command
[7], which is one of the most used shell commands. The
simplest form of grep command is:

$ grep 'word' filename,

but what makes the grep so powerful are its options [7],
to name just a few: (-i) which makes the search case-
insensitive, (-R) recursive search of all files within the

231

current directory and its subdirectories, (-c) which counts
the lines which have a matching pattern (word), (-v)
reverse search that displays all the lines without a
matching pattern, (-w) for matching the whole word, and
(-n) that we used to find the line number of a pattern:

grep -n "Time Functions" analysis.inp

Since previous line adds the line numbers in front of a
matching line, and we only need line number, we can pipe
this result into awk, use a colon (:) as a field separator, and
take the number which is the first word:

| awk -F: '{print $1}'.

Previously we discussed input and output using read
and echo commands, but when we need a full control over
format of a variable, we must use the (printf) command
[9] which uses the same syntax as C language for format
specifications:

E=$(printf "%10s\n" "$E").

If we need to make E variable 10 spaces wide, the
above line will do the trick. We must also point out that
echo command outputs a line with trailing newline
character [9], while printf does not (which could be an
advantage or disadvantage, depending on a use case), so
we had to add (\n) at the end of the format specification.

Loops in Bash are created following pattern:

while [condition]

do

#commands

done.

In our wrapper we used loops for reading and writing
physical parameters of many materials into arrays [7].

The simplest if statement [9] has the following form:

if [condition]

then

#commands

fi.

As in the majority of programming languages, else and
else if statements are optional [7]. Note that (fi) at the end
is a reverse of (if). In order to check if the specified input
file exist option [-f file] or [-e file] is used:

if [-f input.csv]

then

#open and process input file

else

 echo input.csv doesn’t exist

fi.

Some parts of the condition semantics are somewhat
similar to the old FORTRAN and some to C [9], for
example to check if the variable holding number of
materials is equal to 2 we would use the following:

if [$matnum -eq 2].

Similar to FORTRAN, (-ne) means not equal, (-lt) is
less than, (-le) is less or equal, (-gt) is greater than, (-ge) is
greater or equal. Boolean operations are similar to C i.e.
and is denoted as (&&), while or is denoted as (||).
Operators like (-eq) perform numerical comparisons,
while (==), (!=),(<=), (>=), (<), (>) compares strings [9].

As in the most programming languages, if statements
can be nested, and evaluated condition can be comprised
of complex mathematical expression [9]. However, one

must be very careful when calculating something in Bash,
because Bash supports only integer arithmetic and not
floating point, causing the results to be rounded to integer
values [7]. This was the main motivation behind this
paper, to summarize our experience with the topic, and to
discuss the ways to avoid potential pitfalls.

The simplest way to perform arithmetic operations (if
we only need integer values) is to use double parentheses
($((expression))):

variablea=7

variableb=$(($variablea + 3)).

Another option is to use expr command, but in this
case, users must pay attention on white spaces and special
characters. For example, (expr 2 + 2) is correct, (expr 2+2)
is not, if we use quotes expression is not evaluated, but
printed as is, so (expr ”2 + 2”) is also wrong. Also, if we
want to multiply two numbers, we must escape asterisk
(*) with backslash (\) like this (expr 2 * 2) because in
Bash asterisk (*) has a special meaning [7]. Command
expr prints result in the terminal window, if we want to
assign the result to another variable we must use let
command. When it comes to white spaces, let command
behave opposite to expr command ie. (let variablea=2+2)
is correct, while (let variablea = 2 + 2) is not [7]. We can
use white spaces in the let command if we put the quotes
around (let ”variablea = 2 + 2”).

Floating point calculations can be performed in shell
using bc (Bash Calculator). This implies that the
arithmetic expression must be passed to bc [7], either by a
pipe (|) as a string array enclosed by the double quotes, or
by so called here-string (<<<), which we will be looking
back at later, when we discuss Python:

variablec=`echo "variablea/variableb" | bc–l`

variablec=$(bc -l <<< "variablea/variableb").

Note that in the first line we used back quotes (` `) for
command substitution, and in the second we used
parenthesis $(command) which are interchangeable and a
matter of personal preferences. But more importantly, in
both cases we used flag (–l) which stands for mathlib, and
tells bc to use predefined math routines [7]. This flag
makes bc use the maximum number of digits in floating
point calculation, or one can set this value using (scale)
variable, but we strongly recommend using (-l) instead.

We used bc whenever we could, but unfortunately, bc
does not support scientific (exponential or e) notation. The
solution for this problem was to use Python [8], which
recognizes scientific notation for calculations, i.e. to insert
Python code snippets into our wrappers, which we will
discuss in the next section.

B. Python fundamentals, advantages and drawbacks

Python [11] is high-level, object-oriented interpreted
programming language, created by Guido van Rossum in
1991.

The fact that Python is the interpreted programming
language means that the program code is translated into a
machine code on every run-time, which leads to slower
execution in comparison to the compiled programming
languages, but on the other hand, interpreted nature of the
Python means its code can be accessed by anyone, in our
case, engineers who develop FEM models [6], and who
can also change the equations for calculating material
parameters directly in our wrapper script.

232

In order to embed Python code into a Bash script we
used so called Here document [11] which are similar to
here-strings that we previously used to pass on a simple
math formula to Bash Calculator. Here strings are
preceded with (<<<) and contain one word (we already
explained that in Bash every line is divided by spaces into
words, so "variablea/variableb" is one word). Here
documents are marked with (<<) followed by a delimiting
identifier, which can be any word, typically its (END).
After the initial delimiting identifier, beginning from the
next line, we can write a series of commands, in several
lines, and when we are done, in the last line, we finish
Here document with a closing delimiting identifier (END).
The content of the Here document is passed on as standard
input to the previous command, in our case Python, which
is used to invoke the appropriate interpreter [11].

To reduce material parameter (Gc) by some reduction
factor (SRF) we use the following Python code snippet:

Gcr=`python <<END

result=$Gc/$SRF

print '%10.2E' % result

END`.

In the above snippet we see command substitution
using back quotes (` `), and accessing value of a variable
with a dollar sign ($), because the math expression is
nested within a Bash script. Unlike Bash, Python does not
use ($) for accessing variables [11]. We can also see that
the final, floating point result is printed in the scientific
(exponential or e) notation, just the way we wanted it, but
could not accomplish neither in Bash nor using Bash
Calculator (bc). Alternative invoking Python from Bash
which does not involve Here documents is done using:

Gcr=$(python –c “

import sys

Gc_py=float(sys.argv[1])

SRF_py=float(sys.argv[2])

result_py= Gc_py / SRF_py

print '%10.2E' % result_py

“ $Gc $SRF).

This invoking leaves the standard input free for other
uses within the Bash script, but it can cause problems due
to the fact that the single quotes cannot be nested within
another single quotes [7], and double quotes perform
expression evaluation. Another advantage of the Here
document approach is access to the variable with the
dollar sign ($Gc), while in the alternative Python
invocation with (-c command) we had to pass variables
($Gc) ($SRF) as command line parameters, which are
accessed in Python via its sys module [11], using (import
sys) command. Since Python treats all arguments of the
(sys.argv) as strings, we also need to cast them into floats.
Arrays in Python are called lists [11] and their indexes
start with 0, so (sys.argv[0]) correspond to the flag (-c)
which tells interpreter that the next word (text enclosed by
quotations) is the command, while (sys.argv[1]) takes
variable ($Gc), and (sys.argv[2]) takes ($SRF).

Now that we showed the means to embed Python code
into a Bash script, we will discuss its basic features [11].

Contrary to the most popular programing languages
(like C++, C#, Java) which use curly bracers ({}) to group
command into blocks, Python [12] uses white spaces i.e.
spaces (), while tabs () are getting defunct [12].

Conditionals [11] in Python (if, else and elif) can check
the conditions expressed similarly to C++ (==, !=, <, >,
>=, <=), and can be extended [11] using logical operators
(and, or, not). Colon (:) sign is used to mark the end of the
conditional expression [11]. For example:

if variablea > variableb :

 variablec = variableb

else :

 variablec = variablea

variabled = variablec.

Since code block in Python is delimited by the white
spaces [11], in the previous example the last command
(variabled = variablec) is not part of the (else) block, and
it is executed in any case. Another example of Python
difference from mainstream programming languages (like
C++) are loops [11], for example:

for i in range(5):

 print(i).

The loop above would print number 0,1,2,3,4 but not 5,
so the implicit condition [11] is less than (<).

In the next section we will show how developed
wrapper was used to run a FEM solver used to analyze
Djerdap 1 and Grancarevo dams.

III. RESULTS AND DISCUSSION

In this section we will demonstrate how bits and pieces
of Bash and Python code that we previously explained are
put together in a functional wrapper script.

Our input file has 12 material models for concrete, rock,
soil, so we must use Bash while loop:

varInline=`cat DamInput.csv | tail -n 1`

count=1

numOfMat=12

countVar=0

while [$count -le $ numOfMat]

do

let countVar =$countVar +1

E[$count]=$(printf "%10s\n" `echo $varInline | awk\
 -v var="$ countVar " -F"," '{print $(var)}'`)

let countVar =$ countVar +1

nu[$count]=$(printf "%10s\n" `echo $varInline | awk\
-v var="$countVar " -F"," '{print $(var)}'`).

let count=count+1

done.

In the example above, (count) variable is the index of
the material used for parameter array, and (countVar) is
the index of the parameter within the material string. In
the awk command [10], we had to cast (countVar) into
variable (var) using (-v) option, otherwise it would not
work. In order to put the whole line i.e. command into
double column paper template, we used backslash (\).

After material parameters are read from DamInput.csv
file, some remain unmodified, while others are updated
[6] or used for calculation of another material parameter:

GamR=`python <<END

result=((1-$AALFFr)*$fcPrimr-$Nred)/$ftPrim

print '%10.2E' % result;

END`.

233

Now that we have all material parameters, we can write
them into the FEM solver input file. using the while loop:

let firstLine[1]=$firstMatLine

let secLine[1]=$firstMatLine+2

let thirdLine[1]=$firstMatLine+4

count=1

while [$count -le $numOfMat]

do

echo "${firstLine[$count]}""s/.*/""${E[$count]}"\

"${nu[$count]}""${D_c[$count]}"\

"${a_t[$count]}""${D_t[$count]}""/" >> script.sed

echo"${secLine[$count]}""s/.*/""${indtem[$count]}"\

"${temp0[$count]}""${s0[$count]}""/" >> script.sed

echo "${thirdLine[$count]}""s/.*/"\

"${ALF_P[$count]}""${GamR[$count"/" >> script.sed

let count=count+1

let firstLine[$count]=${firstLine[$count-1]}+10

let secLine[$count]=${secLine[$count-1]}+10

let thirdLine[$count]=${thirdLine[$count-1]}+10

done

sed -f script.sed $templateDat > $pakDat.

Each block for the material parameters in solver input
file is defined in 10 lines, therefore, at the end of the loop,
line numbers are increased by 10. Within a material block,
there are 4 lines of description, followed by lines that
contain names of the variables, and under them lines that
contain variable values (firstLine, secLine, thirdLine).

The most important thing that we need to point out, is
the fact that we could not put sed commands [7] with
index substitution in while loop, so we had to create a
separate script file named (script.sed) which is invoked in
sed command using (-f) flag [7], and contains all lines that
need to be replaced and their appropriate content (material
parameters). To create this script file, we used append
(>>), while to copy modified template file into solver
input file we used simple redirection (>).

Wrapper algorithm is based on the bisection method
[5], but, instead of a function, we have the entire FEM
analysis [6], which can be completed successfully, or it
can fail, but we cannot evaluate the value of the FEM
analysis. Material parameters are scaled or calculated
using SRF. The goal is to find the maximum value of SRF
for which analysis does not fail. Initial interval is between
Xa=1 and Xb=10, i.e. safety factor is between these two
values. This procedure is shown in the next figure.

Figure 1. Bisection with FEM analysis

Wrapper can determine if the analysis was successful
based on the existence of (control.sre) file using (-e)
option in Bash if statement [7]. The next figure contains
the entire wrapper algorithm.

Figure 2. Wrapper algorithm

234

The main loop, in which material parameters (variables)
are updated and FEM analysis performed, runs until the
difference between Xb and Xa is less than defined
tolerance and thus the safety factor SRF is determined.
Another way for the loop to exit is in the case of flawed
dam design, i.e. initial material parameters cause analysis
failure (safety factor < 1) or over-dimensioned dam
(safety factor > 10).

In the dam FEM analysis PAK Multiphysics solver was
used [3]-[6], but presented wrapper could run, with
modifications, with other FEM solvers as well. Every
FEM solver has a specific ASCII input file, with a specific
format for definition of nodes, elements, material
parameters, etc. Therefore, lines for input of material
parameters and update of the input file would need to
change, while calculation logic would remain the same.
Also, instead of (control.sre) file used by PAK, wrapper
would need to look for another file depending on a solver.

This wrapper could be the base for developing simple
parametric optimization solution [13], for example,
instead of material parameters, shell thickness could be
changed, until minimum weight is achieved. Advanced
structural optimization such as shape or topology
optimization [14] would require changes in node number
and location, element number and defining nodes, and it
would be significantly more difficult to implement within
a Bash/Python script.

In the following figures, models for FEM analysis of
Djerdap 1 (machine room) and Grancarevo dams are
shown. Figures show great complexity of the model, with
every color representing different material, and parameters
of each of these materials need to be calibrated during the
series of FEM analysis.

Figure 3. Djerdap 1 dam machine room

Figure 4. Arc dam Grancarevo

IV. CONCLUSION

In this paper, we highlighted all the key features of the
Bash script and Python language that we combined to
accomplish our goal to develop a Bash script which will
prepare input files, and run consecutive FEM analysis
jobs. Advantages of Bash are its versatility and numerous
powerful functions such as sed, cat, grep, awk, bc, but it
has some drawbacks as well, such as floating point
calculation and scientific formatting recognition. Python,
on the other hand, handles scientific notation very well,
but it has some disadvantages as well, for instance, it uses
white spaces for the block identification, upper boundary
for loops is not included, and invocation of Python code
from Bash can create difficulties as well. Summarized
experience in this paper could facilitate the work of other
researchers, engineers and programmers faced with the
similar hurdles, and will also be used for our future
research in optimization of structures using FEM analysis.

ACKNOWLEDGMENT

This research is supported by the Ministry of
Education, Science and Technological Development,
Republic of Serbia, Grant TR32036

REFERENCES

[1] Y. Liguo, “An empirical study of software market share: Diversity
and symbiotic relations,” First Monday, vol. 17, no. 8, 2012.

[2] S. H. Hong and L. Rezende, “Lock-in and unobserved preferences
in server operating systems: A case of Linux vs. Windows,”
Journal of Econometrics, vol. 167, no. 2. pp. 494-503, 2012.

[3] M. Kojić, R. Slavković, M. Živković and N. Grujović, Metod
konačnih elemenata I, Linearna analiza, Kragujevac: Mašinski
fakultet, Univerzitet u Kragujevcu, 1998.

[4] M. Živković, Nelinearna Analiza Konstrukcija, Kragujevac:
Univerzitet u Kragujevcu, Mašinski fakultet, 2006.

[5] D. Rakić, M. Živković, and M. Bojović, “Implicit stress
integration of the elasticplastic strain hardening model based on
Mohr-Coulomb,” 6th International Congress of Serbian Society of
Mechanics, Mountain Tara, Serbia, 2017, 19-21 June, pp. S2b.1-
S2b.11, ISBN 978-86-909973-6-7.

[6] D. Rakić, M. Živković, and V. Milovanović, “Stress integration of
the Hoek-Brown material model using incremental plasticity
theory,” 84th Annual Meeting of the International Association of
Applied Mathematics and Mechanics-GAMM, Novi Sad, Serbia
2013, 18-22 March, pp. 157-158, ISBN
10.1002/pamm.201310074.

[7] G. Speake, Eleventh Hour Linux+, Chapter 5 - Using Bash,
Syngress, 2010.

[8] L. Prechelt, “Are Scripting Languages Any Good? A Validation of
Perl, Python, Rexx, and Tcl against C, C++, and Java,” Advances
in Computers, vol. 53, pp. 205-270, 2003.

[9] O. Pelz, Fundamentals of Linux, Packt Publishing, 2018.

[10] A. Robbins, Effective awk Programming, 4th Edition, Universal
Text Processing and Pattern Matching, O'Reilly Media, 2015.

[11] D. Beazley and B. K. Jones, Python Cookbook, 3rd Edition,
O'Reilly Media, 2013.

[12] G. van Rossum, B. Warsaw and N. Coghlan, PEP 8 -- Style Guide
for Python Code, 2001

[13] M. Topalović, V. Milovanović, M. Blagojević, A. Dišić, D. Rakić
and M. Živković, "Freight Wagon Mass Reduction using
Parametric Optimization," in VIII International Conference
“Heavy Machinery-HM 2014”, Zlatibor, 2014.

[14] N. Jovanović, M. Topalović, V. Milovanović, S. Vulović and M.
Živković, "Topology Optimization Used to Reduce Weight of
Four-Axle Bogie Freight Wagon," in 7th International Scientific
and Expert Conference TEAM 2015, Technique, Education,
Agriculture & Management, Belgrade, 2015.

235

