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1.1 Introduction

In this chapter we discuss relationships between theory of real double se-
quences and selection principles theory, a field of mathematics having nice
and deep relations with various mathematical disciplines: game theory, com-
binatorics, function spaces, and so on. By N and R denote the set of natural
numbers and the set of real numbers, respectively. Single sequences will be
denoted by x = (xn)n∈N, y = (yn)n∈N and so on, while double sequences will
be denoted by X = (xm,n)m,n∈N, Y = (ym,n)m,n∈N and so on. We use the
symbol c2 to denote the set of real double sequences; c2,+ denotes the set of
double sequences of positive real numbers.

1.1.1 Double sequences

In 1900, Alfred Israel Pringsheim introduced the concept of convergence
of real double sequences:

1
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1. a double sequence X = (xm,n)m,n∈N converges to a ∈ R (notation
P-lim X = a or P-limxm,n = a), if

lim
min{m,n}→∞

xm,n = a,

i.e. if for every ε > 0 there is n0 ∈ N such that |xm,n − a| < ε for all m,n > n0

(see [27], and also [14, 29]). The limit a is called the Pringsheim limit of X.

In this chapter we denote by ca,P2 the set of all double real sequences

converging to a point a ∈ R in Pringsheim’s sense,and similarly for ca,P2,+ .

We also consider the following two kinds of convergence of double se-
quences.

2. a double sequence X = (xm,n)m,n∈N max-converges to a ∈ R (notation
max-lim X = a or max-limxm,n = a), if

lim
max{m,n}→∞

xm,n = a,

i.e. if for every ε > 0 there is n0 ∈ N such that |xm,n − a| < ε for all m > n0

or for all n > n0.

ca,max
2 denotes the class of real double sequences such that limmax{m,n}→∞ xm,n =

a;

3. a double sequence X = (xm,n)m,n∈N sum-converges to a ∈ R (notation
sum-lim X = a or sum-limxm,n = a), if

lim
m+n→∞

xm,n = a,

i.e. if for every ε > 0 there is n0 ∈ N such that |xm,n − a| < ε for all m,n ∈ N
such that m+ n > n0.

ca,sum2 denotes the set of real double sequences sum-converging to a.

Observe
ca,sum2 ( ca,max

2 ( ca,P2 .

The most investigated convergence of double sequence is P -convergence.
A considerable number of papers which appeared in recent years study mostly
the set ca,P2 and its subsets from different points of view (see, for instance,
the papers [1, 10, 12, 19, 20, 21, 23, 24, 25, 30, 31] and the books [22, 32]).
Some results in this investigation generalize known results concerning single
sequences to certain classes of double sequences, while other results reflect a
specific nature of the Pringsheim convergence (for example, a double sequence
may converge without being bounded).

In [13], Hardy introduced the notion of regular convergence for double
sequences: a double sequence X = (xm,n)m,n∈N regularly converges to a point
a ∈ R if it P-converges to a and for each m ∈ N and each n ∈ N there exist
the following two limits:
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lim
n→∞

xm,n = Rm,

lim
m→∞

xm,n = Cn.

ca,P2 denotes the set of elements (xm,n)m,n∈N in ca,P2 which are bounded,
regular and such that limm→∞ xm,n = limn→∞ xm,n = a.

A double sequence X = (xm,n)m,n∈N is bounded if there is M > 0 such
that |xm,n| < M for all m,n ∈ N.

Notice that a P-convergent double sequence need not be bounded.

If P-lim |X| =∞, (equivalently, for every M > 0 there are n1, n2 ∈ N such
that |xm,n| > M whenever m ≥ n1, n ≥ n2), then X is said to be definitely
divergent.

We give now a few facts which will be used in the sequel without special
mention.

Fact 1. To each double sequence X = (xm,n)m,n∈N the following single
sequences are assigned:

1.1. the Landau-Hurwicz sequence ω(X) = (ωn(X))n∈N, where for each
n ∈ N

ωn(X) = sup{|xk,l − xp,q| : k ≥ n, l ≥ n, p ≥ n, q ≥ n}.

1.2. the diagonal sequence d(X) = (dn(X))n∈N, where

dn(X) =

n∑
k=1

(
n∑
l=1

xk,l

)
.

If there is D(X) ∈ R such that limn→∞ dn(X) = D(X), one says that X has
the finite diagonal sum, denoted by D-ΣX.

`D2 denotes the class of double sequences X from c2 with finite diagonal
sum D-ΣX;

1.3. the sequence v(X) = (vn(X))n ∈ N, where

vn(X) =

n−1∑
i=1

(xi,n + xn,i) + xn,n.

Fact 2. To each double sequence X = (xm,n)m,n∈N one assigns the double
sequence

S(X) = (sm,n(X))m,n∈N,

where

sm,n(X) =

m∑
k=1

(
n∑
l=1

xk,l

)
.

If there is a number T (X) = P−lim S(X), then we say that X has the finite
Pringsheim sum, denoted by P -ΣX.
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`P2 denotes the class of double sequences X ∈ S2 with finite Pringsheim
sum P -ΣX.

Fact 3. If we have a double sequence (Xk,l)k,l∈N of double sequences
Xk,l = (xk,lm,n)m,n∈N, then we can arrange it in a sequence (Xi = (xim,n)m,n∈N :
i ∈ N) of double sequences.

The following proposition shows a connection between P -converges of dou-
ble sequences and their Landau-Hurwicz sequences.

Proposition 1 ([2]) A double sequence X = (xm,n)m,n∈N belongs to the class

ca,P2 , a ∈ R, if and only if limn→∞ ωn(X) = 0.

Proof (⇒) Assume that then double sequence X belongs to ca,P2 for an ar-
bitrary and fixed a ∈ R. Let ε > 0 be given. There is n0 ∈ N such that
|xj,k − a| ≤ ε/2 for each j ≥ n0 and each k ≥ n0. Therefore we have

|xj,k − xr,s| = |xj,k − a+ a− xr,s| ≤ |xj,k − a|+ |xr,s − a| ≤ ε/2 + ε/2

for all j, k, r, s ≥ n0. This implies that for each n ≥ n0 we have

0 ≤ ωn(X) ≤ sup{|xj,k − xr,s| : j ≥ n0, k ≥ n0, r ≥ n0, s ≥ n0} ≤ ε,

i.e. limn→∞ ωn(X) = 0.

(⇐) Let X = (xm,n)m,n∈N be a double sequence with limn→∞ ωn(X) = 0.
For a given ε > 0, there is n1 ∈ N such that 0 ≤ |xj,k − xr,s| ≤ ε/2 for j ≥ n1,
k ≥ n1, r ≥ n1, s ≥ n1, because

0 ≤ ωn(X) = sup{|xj,k − xr,s| : j ≥ n1, k ≥ n1, r ≥ n1, s ≥ n1} ≤ ε/2

for n ≥ n1. Since for all j, r ≥ n1 it holds |xj,j − xr,r| ≤ ε/2, it follows that the
sequence (xt,t) is convergent (as a Cauchy sequence), i.e. there is A ∈ R such
that limt→∞ xt,t = A. This implies there is n2 ∈ N such that |xt,t −A| ≤ ε/2
for each t ≥ n2. Therefore, for n0 = max{n1, n2} and all j, k ≥ n0 we have

|xj,k −A| ≤ |xj,k − xj,j |+ |xj,j −A| ≤ ε.

1.1.2 Selection principles

Selection principles theory is an old theory with roots in 1920s and 1930s.
Nowadays it is one of the most investigated areas of mathematics. For more
details concerning this theory see, for example, [15]. In this chapter we will
discuss the selection principles related to collections of single or double se-
quences.

Let A and B be (not necessarily distinct) subfamilies of c2. Then:

1. S1(A,B) denotes the selection hypothesis: for each sequence (An : n ∈ N)
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of elements in A there is a sequence (an : n ∈ N) such that for each n, an ∈ An
and (an : n ∈ N) ∈ B [15].

2. S
(d)
1 (A,B) denotes the selection hypothesis: for each double sequence

(Am,n : m,n ∈ N) of elements of A there are elements am,n ∈ Am,n such that
the double sequence (am,n)m,n∈N belongs to B [8].

3. Consider now an order on the set N × N. Let ϕ : N × N → N be a
bijection. Set (m1, n1) ≤ϕ (m2, n2)⇔ ϕ(m1, n1) ≤ ϕ(m2, n2), where ≤ is the
natural order in N.

Sϕ1 (A,B) denotes the selection hypothesis: for each sequence (An : n ∈ N)
of elements of A there is an element B = (bϕ−1(n))n∈N in B such that bϕ−1(n) ∈
An for all n ∈ N [8].

4. α2(A,B) denotes the selection hypothesis: for each sequence (An : n ∈
N) of elements of A there is an element B in B such that B ∩An is infinite
for all n ∈ N [16, 17].

5. α
(d)
2 (A,B) denotes the selection hypothesis: for each double sequence

(Am,n : m,n ∈ N) of elements of A there is an element B in B such that
B ∩Am,n is infinite for all (m,n) ∈ N× N [8].

Notice that to each of these selection principles one associates, in a natural
way, an infinitely long two person game.

1.1.3 Asymptotic analysis

In [5] (see also [18] about asymptotic analysis of divergent processes) the
class Tr(Rs,−∞) of translationally rapidly varying (single) sequences was intro-
duced and studied: a sequence x = (xn)n∈N of positive real numbers belongs
to the class Tr(Rs,−∞) of translationally rapidly varying sequences if

lim
n→∞

x[n+α]

xn
= 0

for each α ≥ 1. (Here [r] denotes the integer part of r ∈ R.)

By `D2,Tr(Rs,−∞) we denote the subclass of `D2 consisting of double sequences

X such that ω(S(X)) ∈ Tr(Rs,−∞).

A generalization of this notion to double sequences is given in the following
definition.

Definition 1 ([2]) A double sequence X = (xm,n)m,n∈N ∈ c2,+ belongs to
the class Tr(Rs2,−∞) of translationally rapidly varying double sequences if

lim
min{m,n}→∞

x[m+α],[n+β]

xm,n
= 0

for each α ≥ 0 and each β ≥ 0 such that max{α, β} ≥ 1. Here [x] denotes the
integer part of x ∈ R.
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Example 1 The class Tr(Rs2,−∞) is nonempty. The double sequence
(xm,n)m,n∈N defined by

xm,n =
1

(m+ n)!
, m ∈ N, n ∈ N.

belongs to this class.

Proposition 2 ([2]) Tr(Rs2,−∞) ⊂ c0,P2,+.

Proof Let X = (xm,n)m,n∈N ∈ Tr(Rs2,−∞) and let ε = 1
2 , α = β = 1. There is

n0 = n0(1/2, 1, 1) ∈ N such that

xm+1,n+1

xm,n
≤ 1

2

for all m,n ≥ n0. For m = n ≥ n0 we have xn+1,n+1 ≤ 1
2xn,n. Therefore,

limn→∞ xn,n = 0. Similarly, for ε = 1
2 and α = 1, β = 0, there is n1 =

n1(1/2, 1, 0) ∈ N such that xm+1,n ≤ 1
2xm,n for all m,n ≥ n1 which implies

that for n ≥ n1, limm→∞ xm,n = 0. Finally, for ε = 1
2 , α = 0, β = 1 there

is n2 = n2(1/2, 0, 1) ∈ N such that xm,n+1 ≤ 1
2xm,n for all m,n ≥ n2. From

here we get limn→∞ xm,n = 0, for each m ≥ n2.
Let now ε > 0 be arbitrary (and fixed). Then there is nε ∈ N such that

xn,n ≤ ε for each n ≥ nε. Set n∗ = max{nε, n1, n2}. Then xm,n ≤ ε for each

m,n ≥ n∗, which means that X ∈ c0,P2,+.

The following example shows that the inclusion in the above proposition
is proper.

Example 2 The double sequence X = (xm,n)m,n∈N defined by

xm,n = 1/m,

for m ∈ N, n ∈ {1, 2, · · · ,m},1/n, for n ∈ N, m ∈ {1, 2, · · · , n}.

evidently belongs to the class c0,P2,+. However, it does not belong to Tr(Rs2,−∞)
because for α = β = 1 and m = n we have

lim
n→∞

xm+1,n+1

xm,n
= lim
n→∞

n

n+ 1
= 1.

1.2 S1 selection principle and double sequences

In this section we present a few results which show applications of the
selection principle S1 to double sequences.
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Theorem 1 ([8]) For a ∈ R the selection principle S
(d)
1 (ca,P2 , ca,P2 ) is true.

Proof Let (Xj,k : j, k ∈ N) be a double sequence of elements in ca,P2 , and as-
sume that for all j, k ∈ N, Xj,k = (xj,km,n)m,n∈N. Construct the double sequence
Y = (ym,n)m,n∈N in the following way:

1. y1,1 = x1,1m1,m1
∈ X1,1, where m1 ∈ N is such that

∣∣x1,1m,n − a∣∣ ≤ 1
2 for

each m ≥ m1 and each n ≥ m1.

For s, t ∈ N and q = max{s, t} ≥ 2, we select ys,t to be xs,tmp,mp
∈ Xs,t,

where
p = (q − 1)2 + t,

if q = s, (q − 1)2 + 2t − s, if q = t,and
∣∣xs,tm,n − a∣∣ ≤ 1

2q for each m ≥ mp

and each n ≥ mp.

We prove Y = (ym,n)m,n∈N ∈ ca,P2 . Let ε > 0 be given. Choose r ∈ N such
that 1

2r < ε. For each m ≥ r and each n ≥ r, by construction of Y, we have

|ym,n − a| ≤ 1
2r < ε, i.e. Y ∈ ca,P2 . From the of Y we also easily conclude that

Y actually belongs to ca,P2 . The theorem is proved.

Corollary 1 For a ∈ R the selection principle S
(d)
1 (ca,P2 , ca,P2 ) is satisfied.

An improvement of this corollary is the following result.

Theorem 2 ([9]) For a given a ∈ R, the selection principle S
(d)
1 (ca,P2 , ca,sum2 )

holds.

Proof Let (Xj,k = (xj,km,n)m,n∈N : j, k ∈ N) be a double sequence of elements

in ca,P2 . We define a sequence Y = (yj,k)j,k∈N in the following way.
For fixed j, k ∈ N pick an element xj,km,n ∈ Xj,k such that

∣∣xj,km,n − a∣∣ ≤(
1
2

)j+k−1
. In this way we get the double sequence Y. We prove Y ∈ ca,sum2 .

For each ε > 0 find i0 ∈ N so that 1
2i < ε for all i ≥ i0. Then for all j, k ∈ N

such that j + k − 1 ≥ i0, it holds |yj,k − a| ≤ ε. Therefore, Y ∈ ca,sum2 which
completes the proof.

Theorem 3 ([11]) The selection principle S
(d)
1 (c0,P2,+, `

D
2,Tr(Rs,−∞)) is satisfied.

Proof Let (Xk,l : k, l ∈ N) be a double sequence of double sequences Xk,l =

(xk,lm,n)m,n∈N in c0,P2,+. We construct the double sequence Y = (yk,l)k,l∈N in the
following way (n ∈ N):

[Step 1: (k, l) = (1, 1)] Pick y1,1 in the double sequence X1,1 such that
y1,1 ≤ 1;

[Step 2: (k, l) ∈ {(1, 2), (2, 1), (2, 2)}] Choose yk,l ∈ Xk,l so that yk,l ≤
1
22 ·

v1(Y)
3 ;

[Step n: (k, l) ∈ {(i, n), (n, i) : i ≤ n}] Choose yk,l ∈ Xk,l so that yk,l ≤
1
n2 · vn−1(Y)

2n−1 . And so on.
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In this way we obtain that Y is a double sequence of positive real numbers.

Claim 1. Y ∈ `D2 .

Observe that for every n ∈ N, dn(Y) ≤
∑n
i=1

1
i2 , since dn(Y) =∑n

i=1 vi(Y). Therefore, the sequence (dn(Y))n∈N converges, i.e. Y ∈ `D2 .

Claim 2. ω(S(Y)) = (ωn(S(Y)))n∈N ∈ Tr(Rs,−∞).

First, notice that for each n ∈ N, ωn(S(Y)) = D−ΣY − dn(Y). For
sufficiently large n ∈ N we have

ωn+1(S(Y))

ωn(S(Y))
=

D−ΣY − dn+1(Y)

D−ΣY − dn(Y)
= 1− dn+1(Y)− dn(Y)

D−ΣY − dn(Y)

= 1− vn+1(Y)

vn+1(Y) + vn+2(Y) + . . .
= 1− 1

1 + vn+2(Y)
vn+1(Y) + vn+3(Y)

vn+1(Y)+...

= 1− 1

1 + vn+2(Y)
vn+1(Y) + vn+3(Y)

vn+2(Y) ·
vn+2(Y)
vn+1(Y) + . . .

≤ 1− 1

1 + vn+2(Y)
vn+1(Y) + vn+3(Y)

vn+2(Y) + . . .
.

Since the series
∑∞
n=1

vn+1(Y)
vn(Y) is convergent, we have that vn+2(Y)

vn+1(Y) + vn+3(Y)
vn+2(Y) +

. . . tends to 0 for n→∞. Thus we conclude

lim
n→∞

ωn+1(S(Y))

ωn(S(Y))
= 0

which means that ω(S(Y)) ∈ Tr(Rs,−∞), i.e. Y ∈ `D2,Tr(Rs,−∞).

This completes the proof of the theorem.

Remark 1 The double sequence Y in the proof of the previous theorem P -
converges to 0, i.e. Y ∈ c0,P2,+. Indeed, since Y ∈ `D2 , for each ε > 0 there is
n0 ∈ N such that vn(Y) ≤ ε for all n ≥ n0. It follows that for all p, q ∈ N,

yn0+p,n0+q ≤ ε, hence Y ∈ c0,P2,+.

Below, we give another result involving translational rapid variability.
Because the selection property S1 is monotone in the second coordinate,

by Proposition 2, the following theorem is an improvement of Corollary 1 (and
Theorem 1).

Theorem 4 ([2]) The selection principle S
(d)
1 (c0,P2,+,Tr(Rs2,−∞)) is satisfied.

Proof 1 Let (Xj,k = (xj,km,n)m,n∈N : j, k ∈ N) be a double sequence of double

sequences in c0,P2,+. We construct a new double sequence Y = (yj,k)j,k∈N as
follows.

1. y1,1 = x1,1m,n for arbitrary (and fixed) m,n ∈ N.

2. Let i ≥ 2.
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(i) Choose yi,1 = xi,1m,n ∈ Xi,1 so that yi,1 <
(
1
2

)i
yi−1,1. For p ∈

{2, 3, · · · , i − 1} pick yi,p = xi.pm,n such that yi,p <
(
1
2

)i
yi,p−1 and yi,p <(

1
2

)i
yi−1,p.

(ii) Similarly, y1,i = x1,im,n ∈ X1,i such that y1,i <
(
1
2

)i
y1,i−1. Select also

yp,i = xp,im,n such that yp,i <
(
1
2

)i
yp−1,i and yp.i <

(
1
2

)i
yp,i−1.

(iii) Finally, choose yi,i to be some xi,im,n ∈ Xi,i such that yi,i <(
1
2

)i
min{yi,i−1, yi−1,i}.

It remains to prove that Y ∈ Tr(Rs2,−∞). Let ε > 0 and α, β ≥ 0 with
max{α, β} ≥ 1 be given. Denote h = h(α, β) = [α] + [β]. Choose r0 ∈ N such
that ( 1

2 )r ≤ ε for all r ≥ r0. For j ≥ r0, k ≥ r0 we have

yj+1,k

yj,k
≤
(

1

2

)r0+1

and
yj,k+1

yj,k
≤
(

1

2

)r0+1

,

and thus

y[j+α],[k+β]

yj,k
=
yj+[α],k+[β]

yj,k
≤
(

1

2

)(r0+1)h

≤
(

1

2

)r0
≤ ε.

This means that Y ∈ Tr(Rs2,−∞).

Theorem 5 ([8]) Let a ∈ R and let ≤ϕ be as above. Then the selection hy-

pothesis Sϕ1 (ca,P2 , ca,P2 ) is satisfied.

Proof Let (Xk : k ∈ N), Xk = (xkm,n)m,n∈N, be a sequence in ca,P2 . Construct
a double sequence Y = (ys,t)s,t∈N as follows.

Fix k ∈ N. Let (s(k), t(k)) = ϕ−1(k), and let p(k) = max{s(k), t(k)}.
There is n0(k) ∈ N such that |xkm,n − a| < 2−p(k) for all m,n ≥ n0(k). Set

ys(k),t(k) = xkn0(k),n0(k)
and Y = (ys(k),t(k))k∈N. Then, by the construction,

Y ∈ ca2 and Y has exactly one common element with Xk for each k ∈ N, i.e.
Y is the desired selector.

Theorem 6 ([2]) The selection principle Sϕ1 (c0,P2,+,Tr(Rs2,−∞)) is satisfied.

1.3 α2 selection principle and double sequences

Now we give certain results about applications of α2-type selection princi-
ples to double sequences.

Lemma 1 [8] For a ∈ R, the selection principle α2(ca,P2 , ca,P2 ) is satisfied.
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Proof Let (Xk : k ∈ N) be a sequence of elements from ca,P2 and let for each
k ∈ N, Xk = (xkm,n)m,n∈N.

1. Form first an increasing sequence j1 < j2 < · · · < ji < · · · in N so that:

1.a. j1 = min{n0 ∈ N :
∣∣x1m,n − a∣∣ ≤ 1

2 ∀m ≥ n0 and ∀n ≥ n0};
1.b. Let i ≥ 2. Find pi = min{n0 ∈ N :

∣∣xim,n − a∣∣ ≤ 1
2i ∀m,n ≥ n0}, and

then define
ji = pi,

if pi > ji−1;ji−1 + 1, if pi ≤ ji−1.

2. Define now a double sequence Y = (ys,t)s,t∈N in this way:

2.a. ys,t = x1s,t for each 1 ≤ s < j2, t ∈ N, and each 1 ≤ t < j2, s ∈ N;

2.b. For i ≥ 2, ys,t = xis,t, for ji ≤ s < ji+1, t ≥ ji, and ji ≤ t < ji+1,
s ≥ ji.

By construction, Y ∈ ca2 and Y has infinitely many common elements with
each Xk, k ∈ N, i.e. the selection principle α2(ca2 , c

a
2) is satisfied.

Remark 2 Using the technique from [4] we can prove that the double se-
quence Y in the proof of the previous lemma can be chosen in such a way
that Y has infinitely many common elements with each Xk, k ∈ N, but on
the same (corresponding) positions.

Let for each k ∈ N, xk denote the sequence (xkm,m)m∈N. Then each xk

converges to a, so that we have the sequence (xk : k ∈ N) of sequences
converging to a. Let 2 = p1 < p2 < p3 < · · · be a sequence of prime natural
numbers. Take sequence x1 = (x1m,m)m∈N. For each i ∈ N, replace the elements

of x1 on the positions phi , h ∈ N, by the corresponding elements of the sequence
xi+1. One obtains the sequence (zm)m∈N converging to a which has infinitely
many common elements with each xk on the same positions as in xk. Define
now the double sequence Y = (ys,t)s,t∈N so that ys,s = zs, s ∈ N, and ys,t = a

whenever s 6= t. By construction, Y ∈ ca,P2 and has infinitely many common
positions with each Xk.

Theorem 7 Let a ∈ R be given. The selection principle α
(d)
2 (ca,P2 , ca,P2 ) is

true.

Proof Let (Xj,k : j, k ∈ N) be a double sequence of elements in ca,P2 and
let Xj,k = (xj,km,n)m,n∈N. In a standard way form from this double sequence a

sequence can be arranged (xim,n)m,n∈N. Apply now Lemma 1 to this sequence

and find a double sequence Y ∈ ca,P2 such that Y ∩ Xi is infinite for each
i ∈ N. But then Y ∩Xj,k is infinite for all j, k ∈ N.
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Remark 3 Notice that the double sequence Y from the proofs of Lemma 1
and Theorem 7 satisfies: (a) Y is bounded; (b) Y is regular and limn→∞ ym,n =
limm→∞ ym,n = a for each m ∈ N and each n ∈ N.

From Theorem 7 we have the following corollary.

Corollary 2 Let a ∈ R be given. The selection principle α
(d)
2 (ca,P2 , ca,P2 ) is

true.

This corollary can be improved by replacing the second coordinate in it
with a smaller class.

Theorem 8 ([2]) The selection principle α
(d)
2 (c0,P2,+,Tr(Rs2,−∞)) is satisfied.

Proof Let (Xj,k = (xj,km,n)m,n∈N : j, k ∈ N) be a double sequence of double

sequences belonging to c0,P2,+. We are going to create a new double sequence
Y = (yp,q)p,q∈N in the following way.

Step 1. Using some standard method arrange the given double sequence
(Xj,k : j, k ∈ N) of double sequences in a sequence (xr = (xrn,m)m,n∈N : r ∈ N)

from c0,P2,+.

Step 2. Consider the sequence of sequences (xrn,n)n,r∈N. Notice that for
each r ∈ N, (xrn,n)n,r∈N ∈ S0, where S0 denotes the set of all sequences of
positive real numbers converging to 0 (see, for example, [7]). Let T0 be the
set {(an)n∈N : a1 > 0, an+1 ≤ an

n+1} of sequences of positive real numbers. It
holds T0 & S0 and the selection principle S1(S0,T0) is satisfied.

Step 3. (In this part of the proof we use some techniques from [4]) Take
an increasing sequence 2 = p1 < p2 < p3 < . . . of prime numbers and a
fixed r ∈ N. Consider subsequences (xrpnt ,pnt )t∈N, of the sequence (xrn,n)n∈N.
These subsequences are in the class S0. Varying t and r in N, arrange those
subsequences in a sequence of sequences from S0. Apply S1(S0,T0) and find
a sequence z = (zq)q∈N ∈ T0 such that z has infinitely many elements with
the sequence (xrn,n)n∈N for each r ∈ N. In other words, we conclude that the
selection principle α2(S0,T0) is true.

Let now yq,q = zq, q ∈ N. For q ≥ 2 we choose yu,q =
√
u+ 1 · yu+1,q

for u ∈ {1, 2, · · · , q − 1}, and yq,u =
√
u+ 1 · yq,u+1. It is easy to see that

the double sequence Y constructed in this way has infinitely many common
elements with each double sequence Xj,k = (xj,km,n)m,n∈N for arbitrary and
fixed (j, k) ∈ N× N.

It remains to prove Y ∈ Tr(Rs2−∞). Let ε > 0 and α ≥ 0, β ≥ 0 with
max{α, β} ≥ 1, be given. Set h = [α] + [β]. There is n0 ∈ N such that(

1√
N+1

)h
≤ ε for each N ∈ N with N ≥ n0 (n0 ≥ ε−(2/h) − 1). For p, t ≥ n0

we have
yp+1,t

yp,t
≤ 1√

n0 + 1
and

yp,t+1

yp,t
≤ 1√

n0 + 1
.
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So
y[p+α],[t+β]

yp,t
=
yp+[α],t+[β]

yp,t

(
1√

n0 + 1

)h
≤ ε,

i.e. Y ∈ Tr(Rs2,−∞).

Theorem 9 ([11]) The selection principle α
(d)
2 (c0,P2,+, `

D
2 ) is satisfied.

Proof Let (Xk,l : k, l ∈ N) be a double sequence of double sequences Xk,l =

(xk,lm,n)m,n∈N in c0,P2,+. In a standard way we reorganize (Xk,l : k, l ∈ N) in a
sequence (Xt = (xtm,n)m,n∈N : t ∈ N) of double sequences such that for each

t ∈ N, the double sequence Xt ∈ c0,P2,+. We construct the double sequence
Y = (yi,j)i,j∈N as follows.

[Step 1: i = 1]: Let Y1 = (y1s,t)s,t∈N be a double sequence such that for all

s, t ∈ N it holds 0 < y1s,t ≤ 1
M2(2M−1) , where M = max{s, t}.

[Step 2: i ≥ 2] Suppose that double sequences Y1,Y2, . . . ,Yi−1 be de-
fined. We construct the sequence Yi. Take an increasing sequence (pi)i∈N of
prime numbers with p1 = 2 and a bijection ϕi : N → N such that the series∑∞
q=1 x

i

p
ϕi(q)

i

converges and≤ 1
i2 . We replace now elements y

p
ϕi(q)

i ,p
ϕi(q)

i

∈ Yi−1

with elements xi
p
ϕi(q)

i ,p
ϕi(q)

i

∈ Xi. Proceed with this procedure as i → ∞. We

obtain the double sequence Y as required. Indeed, evidently Y ∈ c0,P2,+ and

Y ∈ `D2 , and, by construction, Y has infinitely many common elements with
each sequence Xk,l.

Theorem 10 ([9]) For a given a ∈ R the selection principle α
(d)
2 (ca,P2 , ca,sum2 )

holds.

Proof Let (Xj,k = (xj,km,n)m,n∈N : j, k ∈ N) be a double sequence of double

sequences in c0,P2,+. We are going to form a new double sequence Y = (yj,k)j,k∈N
as follows.

For j, k ∈ N with j 6= k we take yj,k = a. Let j = k. Take first an increasing
sequence (pi)i∈N, 2 = p1 < p2 < p3 < . . ., of prime numbers. Then, the initial
double sequence of double sequences organize as a sequence x = (xim,n)i∈N. For

i ≥ 2 we take yj,j = xipsi ,psi if j = psi for some s ∈ N. If
∣∣∣xipsi ,psi − a∣∣∣ > 1

2i , then

already defined yj,j replace with yj,j = a. Put ji = min{j ∈ N : yj,j = xipsi ,psi }.
If ji+1 < ji, then already defined yj,j , j ∈ {ji+1, ji+1 + 1, . . . , ji − 1}, replace
by putting yj,j = a. If pi and s with j = psi do not exist, then take yj,j = a.
According to the construction of Y we have:

(1) Y = (yj,k)j,k∈N ∈ ca,sum2 , and
(2) Y has infinitely many common elements (at the same positions) with

every double sequence Xj,k.
This completes the proof.

Double sequences of positive real numbers X = (xm,n)m,n∈N and Y =
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(ym,n)m,n∈N are said to be P -strongly asymptotically equivalent (or P -

asymptotically equal), denoted X
P∼ Y, if for every ε > 1 there is n0 = n0(ε)

such that 1
ε ≤

xm,n

ym,n
≤ ε for all m ≥ n0, n ≥ n0. The relation

P∼ is an equiv-

alence relation od the set of double sequences of positive real numbers, and
[X]P denotes the equivalence class of X.

In a similar way we define max-strong asymptotic equivalence relation
max∼

by

X
max∼ Y ⇔ max−lim

xm,n
ym,n

= 1

and sum-strong asymptotic equivalence
sum∼ by

X
sum∼ Y ⇔ sum−lim

xm,n
ym,n

= 1

The corresponding equivalence classes of X are denoted by [X]max and [X]sum,
respectively. Evidently,

[X]sum ( [X]max ( [X]P.

Theorem 11 Let X = (xm,n)m,n∈N be a given double sequence of positive

real numbers. Then the selection principle α
(d)
2 ([X]P, [X]sum) holds.

Proof Let (Yj,k = (yj,km,n)m,n∈N : j, k ∈ N) be a double sequence of double
sequences in [X]P. Take an increasing sequence (pi)i∈N of prime numbers with
p1 = 2, and arrange the double sequence (Yj,k : j, k ∈ N) into a sequence
(Yi = (yim,n)m,n∈N : i ∈ N) of double sequences. Then we define the double
sequence Z = (zj,k)j,k∈N as follows.

Inductively we construct a sequence (Zi : i ∈ N) of double sequences. Let
Z1 = X. Then for i ≥ 2 we construct the double sequence Zi by replacing
elements at positions (psi , p

s
i ), s ∈ N, in the double sequence Zi−1 by elements

yipsi ,psi , s ∈ N, if

2i − 1

2i
≤
yipsi ,psi
xpsi ,psi

≤ 2i

2i − 1
.

Continuing this procedure as i → ∞ we get the required double sequence Z.
Indeed, by construction, Z has infinitely many common elements (at the same
positions) with double sequences Yi, i ∈ N, and Z ∈ [X]sum.

The following result is given without proof.

Theorem 12 Let a ∈ R be given. Then the selection principle Sϕ1 (ca,P2 , ca,sum2 )
holds.

Theorem 13 Let a ∈ R and let (Xk : k ∈ N) be a sequence of dou-

ble sequences in ca,P2 , Xk = (xkm,n)m,n∈N. Then there is a double sequence

Y = (ys,t)s,t∈N in ca,P2 such that for each k ∈ N the set {(s, t) ∈ N×N : ys,t =
xkm,n for some (m,n) ∈ N× N} is infinite.
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Proof The double sequence Y is defined in the following way:
Let k ∈ N. There is ik ∈ N such that

∣∣xkm,n − a∣∣ < 2−k for all m,n ≥ ik.
Let

s∗ = ik,

for s=k, ik + p, for s=k+p, p∈ N,

and
t∗ = ik,

for t=k, ik + p, for t=k+p, p∈ N.

For t ≥ k let yk,t = xkik,t∗ , and for s ≥ k let ys,k = xks∗,ik . The double sequence
Y = (ys,t)s,t∈N constructed in this way is as required, because Y has the
following properties:

(1) Y ∈ ca,P2 ;
(2) The set Bk = {yk,t : t ≥ k}∪ {ys,k : s ≥ k} is a subset of Ak = {xkm,n :

m,n ∈ N};
(3) For each k ∈ N, Bk is countable;
(4)

⋃
k∈NB

k = {ys,t : s, t ∈ N}.

Another similar result is given in the next theorem.

Theorem 14 Let a ∈ R and let (Xk : k ∈ N) be a sequence of dou-

ble sequences in ca,P2 , Xk = (xkm,n)m,n∈N. Then there is a double sequence

Y = (ys,t)s,t∈N in ca,P2 which has one common row with Xk for each k ∈ N.

Proof For each k ∈ N there is n0(k) ∈ N such that
∣∣xkm,n − a∣∣ < 2−k for all

m,n ≥ n0(k), n0(k1) > n0(k2) whenever k1 > k2, and n0(k) ≥ min
{
i(k) ∈

N :
∣∣xk+1
m,n − a

∣∣ < 2−k for all m,n ≥ i(k)
}

. Then the desired double sequence

Y is defined in such a way that its n0(k)th row is the n0(k)th row of Xk,
i.e. yn0(k),n = xkn0(k),n

(n ∈ N), and ys,t = a otherwise. Let us prove that

Y ∈ ca,P2 . Indeed, if ε > 0 is given, then choose p ∈ N such that 2−p < ε.
Then for each k ∈ N we have

∣∣xkm,n − a∣∣ < ε for all m,n ≥ p. By construction

of Y we have actually that |ym,n − a| < ε for all m,n ≥ p, i.e. Y ∈ ca,P2 .

1.4 Double sequences and the exponent of convergence

The notion of exponent of convergence of single real sequences play an im-
portant role in the theory of convergence/divergence of sequences. This notion
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was implicitly defined by Pringsheim [28]. In 1931, Serbian mathematician M.
Petrović [26] introduced the notion of sequence of exponents of convergence
and gave an important contribution to this field.

The first application of the exponent of convergence for single sequences
in the theory of selection was presented in [6]. The authors of [3] defined the
exponent of convergence for double sequences and studied its applications in
selection principles theory.

Definition 2 ([3] A real number λ is said to be the exponent of convergence

(in the Prinsheim sense) of a double sequence X = (xm,n)m,n∈N ∈ c0,P2,+ if for

every ε > 0, the double sequence X+
ε = (xλ+εm,n)m,n∈N has a finite P -sum, while

the double sequence X−ε = (xλ−εm,n)m,n∈N does not have.
If for every ε > 0, the double sequence Xε = (xεm,n)m,n∈N does not have a

finite P -sum, then we say that λ =∞ is the exponent of convergence of X.

Let λ ∈ [0,∞] and let c0,P2,+(λ) denote the set of all double sequences from

c0,P2,+ which P -converge to zero and whose exponent of convergence is λ.

Theorem 15 ([3]) The selection principle S
(d)
1 (c0,P2,+, c

0,P
2,+(λ)) is satisfied for

λ = 0.

Proof Let (Xk,l = (xk,lm,n)m,n∈N : k, l ∈ N) be a double sequence of double

sequences from the class c0,P2,+. We will form a double sequence Y = (yk,l)k,l∈N
in the following way:

[Step 1: n = 1] Choose an element y1,1 from double sequence X1,1 such
that y1,1 ≤ 1

2 .

[Step 2: n ≥ 2] For (k, l) ∈ {(i, n), (n, i) : i ≤ n}, choose yk,l from the
double sequence X(k,l) such that yk,l ≤ 1

2n .

Claim 1. Y ∈ c0,P2,+.

For any n ∈ N we have

vn(Y) ≤ 2n− 1

2n

and thus

0 <

∞∑
n=1

vn(Y) ≤
∞∑
n=1

2n− 1

2n
.

The series
∑∞
n=1

2n−1
2n is convergent in R, hence the series

∑∞
n=1 vn(y) is

convergent in R. Thus, we conclude that the double sequence Y has the finite
diagonal sum

D−ΣY = lim
n→∞

dn(Y) = lim
n→∞

(
n∑
k=1

n∑
l=1

yk,l

)
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in R (more about diagonal sums can be seen in [11]). By results obtained in

[11, Proposition 1.2], we conclude that Y ∈ c0,P2,+.

Claim 2. For any ε > 0, Y+
ε = (x0+εm,n)m,n∈N has finite P -sum.

For n, k, l ∈ N we have yεk,l ≤ 1
2εn . Therefore, for the double sequence

Yε = (yεk,l)k,l∈N it holds vn(Yε) ≤ 2n−1
2εn , and thus

D−ΣYε ≤
∞∑
n=1

2n− 1

2εn
.

Since

lim
n→∞

(2n+ 1)2εn

(2n− 1)2ε(n+1)
=

1

2ε
< 1,

the series
∑∞
n=1

2n−1
2εn is convergent. Again by results from [11, Proposition

1.2] we obtain that the double sequence Y ε has finite P -sum P−ΣY+
ε .

Claim 3. For any ε > 0, Y−ε = (x0−εm,n)m,n∈N| does not have finite P -sum.

By construction of the double sequence Y, we have that limn→∞ yn,n = 0,
which implies limn→∞ y0−εn,n = ∞, and thus the double sequence Y does not
P -converge to zero. By results from [11, Proposition 1.3] the double sequence
Y−ε does not have finite P -sum.

The following theorem we give without proof.

Theorem 16 ([3]) The selection principle Sϕ1 (c0,P2,+, c
0,P
2,+(λ)) is satisfied for

λ = 0.

Theorem 17 ([3]) The selection principle α
(d)
2 (c0,P2,+, c

0,P
2,+(λ)) is satisfied for

λ = 0.

Proof Let (Xk,l = (xk,lm,n)m,n∈N : k, l ∈ N) be a double sequence of double

sequences from the class c0,P2,+. As in the proof of Theorem 15 create the double
sequence Y = (yk,l)k,l∈N; therefore, for a fixed n ∈ N we have that for (k, l) ∈
{(i, n), (n, i) : i ≤ n}, zk,l ≤ 1

2n . By the standard method arrange given double

sequence of double sequences in a sequence (Xt = (xk,lt )k,l∈N : t ∈ N) of double

sequences belonging to c0,P2,+.
Take a sequence 2 = p1 < p2 < p< . . . of prime numbers. For a fixed t ∈ N,

consider a sequence (xtpst ,pst )s∈N. Clearly, this sequence converges to zero when
s→∞. There exist spt ∈ N and a subsequence

(xt
p
h(s)
t ,p

h(s)
t

),

such that
∞∑

s=spt

xt
p
h(s)
t ,p

h(s)
t

≤ 1

2t
.
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For each s ≥ spt it holds xt
p
h(s)
t ,p

h(s)
t

≤ 1
2t , which implies xεt

p
h(s)
t ,p

h(s)
t

≤ 1
2εt for

the same s.
In the double sequence Y, replace elements yk,k, where k = p

h(s)
t for

s ≥ spt , with the elements xt
p
h(s)
t ,p

h(s)
t

. This will be done for every t ∈ N. In

this way, we obtain the double sequence Y = (yk,l). Then we have

0 < D−
∑

Y ≤ D−
∑

Y +

∞∑
t=1

1

2t
<∞,

and therefore P -limY = 0. Moreover, the following hold:

(1) y ∩ (xtk,l) is an infinite set, for every t ∈ N;

(2) Y ∈ c0,P2,+;

(3) P -lim Y ∈ R.

Let an arbitrary ε > 0 be given. Then

0 < D−
∑

Y
ε

+ ≤ D−
∑

Yε
+ +

∞∑
t=1

1

2εt
<∞,

since limt→∞
2εt

2ε(t+1) = 2−ε < 1. Thus, D−
∑

Y
ε

+ is finite, so the double

sequence Y
ε

+ has a finite P -sum according to [11, Proposition 1.2].

Let now ε < 0 be arbitrary. Consider the double sequence Y
ε

= (yε)k,l.
Since limk→∞ yk,k = 0 implies limk→∞ yεk,k =∞, we can conclude that double

sequence Y
ε

does not have finite P -sum.
This completes the proof of the theorem.

1.5 Concluding remarks

We have investigated here selection properties related mainly to P -limits
of double sequences. There is another interesting notion in the theory of real
double sequences. A number L ∈ R is said to be a Pringsheim limit point of
a double sequence X = (xm,n)m,n∈N if there exist two increasing sequences
m1 < m2 · · · < mi, . . . and n1 < n2 · · · < ni, . . . such that

lim
i→∞

xmi,ni
= L.

It would be worth to study selection properties related to the Pringsheim limit
points instead of the P -limits. As far we know, there is no investigation in this
direction so far.
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[1] Hüseyin Çakalli, Ekrem Savaş, Statistical convergence of double sequences in topological
groups, Journal of Computational Analysis and Applications 12:2 (2010), 421–426.
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