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Ljubǐsa D.R. Kočinac
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1.1 Introduction

Working on Tauberian theory in the 1930’s, J. Karamata initiated in-
vestigation in asymptotic analysis of divergent processes, nowadays known
as Karamata’s theory of regular variation (see [26, 27, 28, 29, 30], and also
[4, 35]).

In 1970, de Haan [25] defined and investigated rapid variation and so ini-
tiated further development in asymptotic analysis.

The theory of regular and rapid variability has many applications in dif-
ferent mathematical disciplines: differential and difference equations, in par-
ticular in description of asymptotic properties of solutions of these equations,
dynamic equations, number theory, probability theory, time scales theory, se-
lection principles theory, game theory and so on (see, for example, [31] and
references therein and also [19, 21, 24, 34, 36, 37]).

In this chapter we consider only measurable functions ϕ : [a,∞)→ (0,∞),
a > 0 (the set of such functions we denote by F), and sequences of positive
real numbers (the set of such sequences is denoted by S). We use the notation
x = (xn)n∈N, y = (yn)n∈N, and so on, for sequences from S.
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2ADVANCES IN MATHEMATICAL ANALYSIS AND ITS APPLICATIONS

We will also need the following class A of functions:

A = {ϕ ∈ F : ϕ is nondecreasing and unbounded}.

If ϕ ∈ A, then the function ϕ← defined by

ϕ←(t) := inf{u ≥ a : ϕ(u) > t}, t ≥ ϕ(a)

is the generalized inverse of ϕ [4].
Notice the following two facts:
(1) If ϕ ∈ A is continuous and increasing, then ϕ← is the inverse function

ϕ−1 of ϕ, i.e. ϕ(t) = ϕ−1(t), t ≥ ϕ(a);
(2) If ϕ ∈ A, then ϕ← ∈ A.

To each function ϕ ∈ F we assign the following three functions depending
on λ > 0:

kϕ(λ) := lim
t→∞

ϕ(λt)

ϕ(t)|
, λ > 0;

kϕ(λ) := lim sup
t→∞

ϕ(λt)

ϕ(t)
, λ > 0;

kϕ(λ) := lim inf
t→∞

ϕ(λt)

ϕ(t)
, λ > 0.

Similarly, to each sequence x = (xn)n∈N ∈ S and each λ > 0 one assigns
the following three functions:

kx(λ) := lim
n→∞

x[λn]

xn
;

kx(λ) := lim sup
n→∞

x[λn]

xn
;

kx(λ) := lim inf
n→∞

x[λn]

xn
.

The function kϕ(λ), λ > 0, is called the index function of ϕ, and the
function kϕ(λ) is called the auxiliary index function of ϕ.

Karamata theory of regular variation has two basic lines of investigation:
functional and sequential.

Definition 1 (1) A function ϕ ∈ F, is said to be regularly varying if for each
λ > 0 it satisfies the condition

kϕ(λ) <∞.

The class of these functions is denoted by RVf . When kϕ(λ) = 1, one obtains
the class SVf of slowly varying functions.

(2) A sequence x = (xn)n∈N ∈ S is said to be regularly varying if for each
λ > 0 it satisfies the condition

kx(λ) <∞.

The class of these sequences is denoted by RVs.
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In the case kx(λ) = 1 we have the class SVs of slowly varying sequences.
These two types of research developed independently of each other until

the results by Galambos-Seneta [23] and Bojanić-Seneta [5].
In these two papers the authors proved the following result giving a natural

connection between the two theories and nowadays these results are called
Galambos-Bojanić-Seneta type theorems.
Theorem GBS. For a sequence x = (xn)n∈N ∈ S the following are equivalent:

(a) x is slowly varying (respectively, regularly varying);

(b) The function ϕx, ϕx(t) = x[t], t ≥ 1, is slowly varying (respectively,
regularly varying).

During the years Karamata’s theory of regular variation was extended and
modified in different directions (see [4, 31]) and a natural question arose: what
about Galambos-Bojanić-Seneta result in the context of those modifications?
Several such results, showing that similar assertions are true for the modifi-
cations of regular variation, have been proved. We are going to review these
known results obtained by several authors and to prove a new result of this
type for one of modifications of regular variation. We also give (without proof)
a new result for a subclass of the class of rapidly varying sequences.

Some known theorems will be proven in order to demonstrate the methods
of proving results of Galambos-Bojanić-Seneta type. Let us mention that in
all these proofs one uses the classical (topological) Baire category theorem
[22].

1.2 Known results

1.2.1 Classes ORVs and ORVf and their subclasses

In this subsection we present results on the classes of O-regularly varying
sequences and functions and their important subclasses.

Definition 2 ([3]) A function ϕ ∈ F is said to be O-regularly varying if for
each λ > 0 satisfies the condition

kϕ(λ) <∞.

or, equivalently,
kϕ(λ) > 0.

The class of all these functions is denoted by ORVf .
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Definition 3 A sequence x = (xn)n∈N ∈ S is said to be O-regularly varying
for each λ > 0 satisfies the condition

kx(λ) <∞.

The class of these sequences is denoted by ORVs.

The classes ORVf and ORVs have been studied in a number of papers (see,
for instance, [1, 2, 8, 9]).

Observe that when kϕ(λ) = kϕ(λ) (respectively, kx(λ) = kx(λ)) we have
the class RVf of regularly varying functions (respectively, the class of regularly
varying sequences) in the sense of Karamata.

When the index function kϕ(λ), λ > 0, of a function ϕ ∈ ORVf is continu-
ous, we say that ϕ belongs to the class CRVf . Similarly, one defines the class
CRVs of sequences. Notice that a function ϕ belongs to the class CRVf if and
only if limλ→1 kϕ(λ) = 1.

We begin with the Galambos-Bojanić-Seneta type theorem for the classes
ORVs and ORVf .

Theorem 1 ([9]) Let x = (xn)n∈N be a sequence in S. Then the following
assertions are equivalent:

(a) x ∈ ORVs;

(b) The function ϕx(t) = x[t], t ≥ 1, belongs to ORVf .

We also have a similar result for the classes CRVs and CRVf .

Theorem 2 ([17]) For a sequence x = (xn)n∈N ∈ S the following assertions
are equivalent:

(a) x ∈ CRVs;

(b) ϕx(t) = x[t], t ≥ 1, belongs to CRVf .

An important subclass of of the class ORVf ofO-regularly varying functions
is the class of Seneta functions defined as follows.

For a given β ≥ 1, denote by SOβf the set of all functions ϕ ∈ ORVf such

that kϕ(λ) ≤ β for all λ > 0. Put SOf =
⋃
β≥1 SO

β
f . Functions in the class

SOf are called the Seneta functions.
Similarly, a sequence x = (xn)n∈N belongs to the class SOβs for a given

β ≥ 1 if kx(λ) ≤ β for each λ > 0. The set SOs =
⋃
β≥1 SO

β
s is called the class

of Seneta sequences.

Theorem 3 ([18]) Let x = (xn)n∈N be a sequence in S. Then the following
are equivalent:

(a) x ∈ SOs;



On Theorems of Galambos-Bojanić-Seneta Type 5

(b) ϕx(t) = x[t] ∈ SOf on the interval [1,∞).

In fact, we have the following more precise result whose consequence is the
above theorem.

Theorem 4 ([18, Peroposition 1]) The following hold:

(a) If a sequence x = (xn)n∈N belongs to the class SOβs , then the function

ϕx(t) = x[t], t ≥ 1, belongs to the class SOβ
2

f ;

(b) If ϕx(t) = x[t], t ≥ 1, belongs to the class SOβf , then x ∈ SOβs .

Remark 1 (1) From the above theorem one concludes that a sequence x
belongs to SO1

s if and only if ϕx ∈ SO1
f . But, it is not so for β > 1 (see [18,

Proposition 2]). For each β > 1 consider the function

g(t) = exp{2ln(β)
√
| sin(ln t)|}, t > 0

which is O-regularly varying, hence, by Theorem 1, the sequence x = (xn)n∈N,

xn = g(n), is in the class ORVs. Moreover, x ∈ SOβ
2

s \SOβs . On the other hand,

the function ϕx(t) = x[t], t ≥ 1, belongs to SOβ
2

f .
(2) Following [5], call a sequence x embedable in the function g(t), t ≥

a, a > 0, if g(n) = xn for each n ≥ [a] + 1. A sequence x is embedable in a
Seneta function g(t), t ≥ a, a > 0, if and only if it is a Seneta sequence.

We present now results on another subclasses of ORVf and ORVs intro-
duced by Matuszewska.

Definition 4 ([32, 33]) A function ϕ ∈ F is said to be in the class ERVf of
Matuszewska if for each λ ≥ 1 there are c, d ∈ R, c ≤ d, such that

λc ≤ kϕ(λ) ≤ kϕ(λ) ≤ λd.

Similarly one defines the class ERVs of sequences.

Definition 5 A sequence x = (xn)n∈N ∈ S belongs to the class ERVs if

λc ≤ kx(λ) ≤ kx(λ) ≤ λd

for each λ ≥ 1 and some c, d ∈ R with c ≤ d.

Notice that the following inclusions hold:

RVf $ ERVf $ CRVf $ ORVf % SOf

and
RVs $ ERVs $ CRVs $ ORVs % SOs.

The following result holds for the ERV classes of sequences and functions.

Theorem 5 ([17]) For a sequence x = (xn)n∈N ∈ S the following assertions
are equivalent:

(a) x ∈ ERVs;

(b) The function ϕx(t) = x[t], t ≥ 1, belongs ERVf .
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1.2.2 Rapid and related variations

In this section we quote Galambos-Bojanić-Seneta type results for rapidly
varying sequences and functions and their variants.

Definition 6 ([25]) A function ϕ ∈ F is said to be rapidly varying of index
of variability ∞ if it satisfies the asymptotic condition

kϕ(λ) =∞, λ > 1.

The class of rapidly varying functions of index of variability ∞ we denote by
Rf,∞.

Definition 7 A sequence x = (xn)n∈N ∈ S is rapidly varying (of index of
variability ∞) if the following asymptotic condition is satisfied:

kx(λ) =∞, λ > 1.

or, equivalently.

lim
n→∞

x[λn]

xn
= 0, 0 < λ < 1.

Rs,∞ denotes the class of rapidly varying sequences of index of variability ∞.

Properties of the important class of rapidly varying sequences have been
studied in [11] where a result of Galambos-Bojanić-Seneta type theorem was
proved.

Theorem 6 For a sequence x = (xn)n∈N ∈ S the following are equivalent:

(a) x belongs to the class Rs,∞;

(b) The function ϕ defined by ϕ(t) = x[t], t ≥ 1, is in the class Rf,∞.

Proof (a) ⇒ (b): Let λ ∈ (0, 1). Then for every α ∈ (λ, 1) we have
limn→∞

x[αn]

xn
= 1. We prove that for a given ε > 0 there exist an interval

[A,B] which is a proper subset of (λ, 1) and n0 ∈ N such that
x[αn]

xn
< ε for

each n ≥ n0 and each α ∈ [A,B]. For an arbitrary and fixed α ∈ (λ, 1) define
nα ∈ N in the following way:

nα =

{
1, if

x[αn]

xn
< ε for each n ∈ N;

1 + max{n ∈ N :
x[αn]

xn
≥ ε}, otherwise.

It is easy to see that 1 ≤ nα <∞ for each considered α. For each k ∈ N define

Ak = {α ∈ (λ, 1) : nα > k}.

Then (Ak)k∈N is a non-increasing sequence of sets such that
⋂
k∈NAk = ∅. We

prove that not all sets Ak are dense in (λ, 1). If k ∈ N is fixed and α ∈ Ak,
then x[α(nα−1)]

xnα−1
≥ ε
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and there is some δα > 0 such that for each t ∈ [α, α+ δα) ⊂ (λ, 1) we have

x[t(nα−1)]

xnα−1
=
x[α(nα−1)]

xnα−1
≥ ε

This means that each t ∈ (α, α + δα) belongs to the set Ak, since nt ≥
(nα−1)+1 > k. It follows that if α ∈ Ak, then (α, α+δα) ⊂ Ak. If we assume
that some of the sets Ak is dense in (λ, 1), then the set Int(Ak) is also dense in
(λ, 1). If, on the other side, we suppose that all the sets Ak are dense in (λ, 1),
then (Int(Ak))k∈N is a sequence of open, dense subsets of the set (λ, 1) of the
second category. It follows that the set

⋂
k∈NAk is dense in (λ, 1) and thus

nonempty, and we have a contradiction. Therefore, there is n0 ∈ N such that
the set An0 is not dense in (λ, 1). Consequently, there is an interval [A,B], a
proper subset of (λ, 1), such that

[A,B] ⊂ (λ, 1) \An0 = {α ∈ (λ, 1) : nα ≤ n0}.

From here it follows that nα ≤ n0 for each α ∈ [A,B], and thus for each
n ≥ n0 ≥ nα and each α ∈ [A,B] it holds

x[αn]

xn
< ε.

We conclude that for λ ∈ (0, 1) and each t ∈ [1,∞) large enough, we have

x[λt]

x[t]
=
x[u[η[t]]]

x[η[t]]
·
x[η[t]]

x[t]
,

where u = u(x) ∈ [A,B] and η = 2λ
A+B .

Since η ∈ (0, 1) we have

lim sup
t→∞

x[λt]

x[t]
≤ ε · lim sup

t→∞

x[η[t]]

x[t]
= 0.

This means that the function ϕ defined by ϕ(t) = x[t], t ≥ 1, belongs to the
class Rf,∞.

(b) ⇒ (a): It is trivial, because for an arbitrary and fixed λ ∈ (0, 1) we
have

lim
n→∞

x[λn]

xn
= lim
x→∞

x[λt]

c[t]
= 0.

There is another class of rapidly varying functions (see [25] and also [4]).

Definition 8 A function ϕ ∈ F is said to be rapidly varying of index of
variability −∞ if for each λ > 1 it satisfies

lim
t→+∞

ϕ(λt)

ϕ(t)
= 0.

Rf,−∞ denotes the class of rapidly varying functions of index −∞.

Definition 9 A sequence x = (xn)n∈N ∈ S is said to belong to the class Rs,−∞
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of rapidly varying sequences of index of variability −∞ if for each λ > 1 the
following condition is satisfied:

lim
n→∞

x[λn]

xn
= 0.

The class of rapidly varying sequences of index of variability −∞ is denoted
b Rs,−∞.

We have the following result which is parallel to Theorem 6.

Theorem 7 ([12]) For a sequence x = (xn)n∈N in S the following are equiv-
alent:

(a) x belongs to the class Rs,−∞;

(b) The function ϕx defined by ϕx(t) = x[t], t ≥ 1, is in the class Rf,−∞;

(c) limn→∞
x[λn]

xn
=∞, 0 < λ < 1.

The following is one more kind of rapid variation.

Definition 10 A function ϕ ∈ F belongs to the class Tr(Rf,∞) of transla-
tionally rapidly varying functions if for each λ ≥ 1, the following condition
holds:

lim
n→∞

ϕ(t+ λ)

ϕ(t)
=∞.

Definition 11 A sequence x = (xn)n∈N ∈ S is in the class Tr(Rs,∞) of trans-
lationally rapidly varying sequences if for each λ ≥ 1, the following condition
holds:

lim
n→∞

x[n+λ]

xn
=∞.

Note that
Tr(Rf,∞) $ Rf,∞ and Tr(Rs,∞) $ Rs,∞.

The class Tr(Rs,∞) (and its subclasses) was studied in [13, 14, 15], in par-
ticular in connection with selection principles and game theory,

The following new result of Galambos-Bojanić-Seneta type we give without
proof because it is similar to proof of Theorem 9.

Theorem 8 For a sequence x = (xn)n∈N ∈ S the following are equivalent:

(1) x ∈ Tr(Rs,∞);

(2) The function ϕ(t) = x[t], t ≥ 1, belongs to the class Tr(Rf,∞).

We consider now an important subclass of the class Rs,∞, that we denote
by KRs,∞.
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Definition 12 For a sequence x = (xn)n∈N ∈ S the lower Matuszewska index
d(x) is defined as the supremum of all d ∈ R such that for each Λ > 1

x[λn]

xn
≥ λd(1 + o(1)) (n→∞)

holds uniformly (with respect to λ) on the segment [1,Λ]. The sequence x
belongs to the class KRs,∞ if d(x) =∞.

The definition of lower Matuszewska index for functions can be found in
[4, p. 68]. By a result from [4] we have KRf,∞ $ Rf,∞.

Lemma 1 For a sequence x = (xn)n∈N ∈ S the following are equivalent:

(1) x ∈ KRs,∞;

(2) For each d ∈ R it holds lim infn→∞ infλ≥1
x[λn]

λdxn
≥ 1.

Proof (1) ⇒ (2) From d(x) = ∞, it follows that for every d ∈ R, every
Λ > 1, and sufficiently large n we have

x[λn]

xn
≥ λd(1 + o(1)), where λ ∈ [1,Λ]

is an arbitrary fixed element. For the same d, λ,Λ, for sufficiently large n
we have infλ∈[1,Λ]

x[λn]

λdxn
≥ 1 + o(1). In other words, for each ε > 0 there is

n0 = n0(ε) ∈ N such that infλ∈[1,Λ]
x[λn]

λdxn
≥ 1− ε for each n ≥ n0. Because the

last inequality is true for each Λ > 1, it follows that (for the same d) for each
λ ≥ 1 we have infλ≥1

x[λn]

λdxn
≥ 1− ε. As ε was arbitrary (2) follows.

(2) ⇒ (1) Suppose that for an arbitrarily fixed d ∈ R,
lim infn→∞ infλ≥1

x[λn]

λdxn
≥ 1 is satisfied. Then for the same d and each ε > 0

there exists n0 = n0(ε) ∈ N such that infλ≥1
x[λn]

λdxn
≥ 1− ε for each n ≥ n0. In

other words, for the same d, ε, n0, and for each λ ≥ 1, especially for λ ∈ [1,Λ],
Λ > 1 an arbitrary real number, it holds

x[λn]

xn
≥ λd(1 − ε) for each n ≥ n0.

This means that for each Λ > 1 we have
x[λn]

xn
≥ λd(1 + o(1)) uniformly with

respect to λ ∈ [1,Λ] for n→∞. Since d was arbitrary, (1) follows.

The next statement is a result of the Galambos-Bojanić-Seneta type.

Theorem 9 ([10]) For a sequence x = (xn)n∈N ∈ S the following are equiva-
lent:

(1) x ∈ KRs,∞;

(2) The function ϕ(t) = x[t], t ≥ 1, belongs to the class KRf,∞

Proof (1) ⇒ (2) Let x = (xn)n∈N ∈ KRs,∞. Then by Lemma 1 we have
lim infn→∞ infλ≥1

x[λn]

λdxn
≥ 1 for each d ∈ R. This means that for the same d

and each ε > 0 there is n0 = n0(d, ε) ∈ N such that infλ≥1
x[λ[t]]

λdx[t]
≥ 1 − ε for

each t ≥ n0 (≥ 1). Therefore, for the same d, ε, n0 it is true

inf
λ≥1

x[λt]

λdx[t]
= inf
λ≥1

x[ t
[t]
·[t]·λ]

λdx[t]
≥ inf
λ≥1

x[[t]·λ]

λdx[t]
≥ 1− ε,
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i.e. (for this d)

lim inf
t→∞

inf
λ≥1

x[λt]

λdx[t]
≥ 1.

By [4, Proposition 2.4.3(ii)] it follows that the function x[t] belongs to the
class KRf,∞.

(2) ⇒ (1) From lim inft→∞ infλ≥1
x[λt]

λdx[t]
≥ 1 it follows that for this d and

each ε > 0 there is t0 = t0(d, ε) ≥ 1 such that infλ≥1
x[λt]

λdx[t]
≥ 1 − ε for all

t ≥ t0. Since

inf
λ≥1

x[λn]

λdx[n]
≥ inf
λ≥1

x[λt]

λdx[t]
for n ≥ [t0] + 1,

one obtains
lim inf
n→∞

inf
λ≥1

x[λn]

λdx[n]
≥ 1,

i.e., (1) is true.

Then following are the definitions of classes of functions and sequences
containing the classes of rapidly varying functions and sequences of index of
variability ∞ (see ([7] and also [12, 13]).

Definition 13 A function ϕ ∈ F is said to be in the class ARVf if for each
λ > 1 it satisfies

kϕ(λ) > 1.

Definition 14 A sequence x = (xn)n∈N ∈ F belongs to the class ARVs if for
each λ > 1 it satisfies

kx(λ) > 1.

The next theorem show the relationship between the classes CRVf and
ARVf .

Theorem 10 ([20, Theorems 3 and 4]). Let ϕ ∈ A. Then:

(a) ϕ ∈ ARVf if and only if ϕ← ∈ CRVf ;

(b) ϕ ∈ CRVf if and only if ϕ← ∈ ARVf .

Proof (a) (⇒) Let ϕ ∈ A ∩ ARVf . Then for all λ > 1 and all t ≥ t0 = t0(λ)
we have ϕ(t) ≥ c(λ)ϕ(t), where c(λ) is a function depending on ϕ, such that

c(λ) > 1, λ > 1. It follows ϕ(λt)
c(λ) ≥ ϕ(t) for λ > 1, hence ϕ←(c(λ)t)

λ ≤ ϕ←(t).

Therefore, for all λ > 1 we have

kϕ←(c(λ)) = lim sup
t→∞

ϕ←(c(λ)t)

ϕ←(t)
≤ λ.
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As ϕ← is nondecreasing, its index function kϕ←(c(λ)), λ > 0, is also non-
decreasing in R. The facts that kϕ←(c(λ)) is defined for λ ∈ (0, c(λ)),and
c(λ) > 1 imply ϕ← ∈ ORVf . It follows

1 ≤ lim inf
λ→1+

kϕ←(c(λ)) ≤ lim sup
λ→1+

kϕ←(c(λ)) ≤ 1,

which gives limλ→1+ kϕ←(c(λ) = 1. Let A = lim infλ→1+ c(λ) we have A > 1.
There is a sequence (λn)n∈N with λn > 1 for all n, limn→∞ λn = 1+ and
limn→∞ c(λn) = A. Define cn = c(λn), n ∈ N. Then limn→∞ kϕ←(cn) = 1.
If A = 1, then limλ→1+ kϕ←(λ) = 1 since kϕ← is nondecreasing. So, in this
case ϕ← ∈ CRVf . If A > 1, then similarly limλ→A− kϕ←(λ) = 1. So, if λ ∈
[1, (A+ 1)/2], then kϕ←(λ) = 1, and by [4], ϕ← ∈ SVf ⊂ CRVf .

(⇐) Suppose now ϕ ∈ A and ϕ← ∈ CRV. Then by [8] it holds

lim
t→∞,λ→1

ϕ←(λt)

ϕ←(t)
= 1.

Therefore, for each ε > 1 there are t0 = t0(ε) > 0 and δ0 = δ0(ε) > 0 such
that

1

ε
≤ ϕ←(λt)

ϕ←(t)
≤ ε

for each t ≥ t0 and each λ ∈ [1− δ0, 1 + δ0]. Hence, for these λ and t we have

ϕ←(λt)

ε
≤ ϕ←(t) and (ϕ(εt)/λ)← ≤ ϕ←(t)

so that
((ϕ(εt)/λ)←)← ≥ (ϕ←(t))←.

Since for every function h in A and each β > 1 it holds h(t) ≤ ((h(t)←))← ≤
h(βt), t ≥ a,we obtain ϕ(t) ≤ ϕ(ε2t)/λ, i.e., ϕ(ε2t) ≥ λϕ(t). So ϕ(ε2t) ≥
(1 + δ0(ε))ϕ(t) for t ≥ t0.

If α > 1, take ε =
√
α. So, we have

ϕ(αt) ≥ (1 + δ0(
√
α))ϕ(t)

for t ≥ t0(
√
α) > 0, which means ϕ ∈ ARVf .

(b) (⇒) Since ϕ ∈ A ∩ CRVf we have

lim
t→∞,λ→1

ϕ(λt)

ϕ(t)
= 1.

It follows that for each ε > 1 there exist t0 = t0(ε) and δ0 = δ0(ε) such that
1
ε ≤

ϕ(λt)
ϕ(t) ≤ ε for each t ≥ t0 and each λ ∈ [1− δ0, 1 + δ0], so that for these λ

and t, ϕ(λt)/ε ≤ ϕ(t), and consequently ϕ←(εt) ≥ λϕ←(t). Therefore,

ϕ←(εt) ≥ (1 + δ0)ϕ←(t) for t ≥ t0
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which means that ϕ← ∈ ARVf .

(⇐) Let now ϕ ∈ A and ϕ← ∈ ARVf . Then for each λ > 1 and each
t ≥ t0 = t0(λ), we have ϕ←(λt) ≥ c(λ)ϕ←(t), where c(λ) > 1 depends on ϕ.
So, for these λ and t, ϕ←(λt)/c(λ) ≥ ϕ(t), and thus (ϕ(c(λ)t)/λ)← ≥ ϕ←(t).
Similarly to the proof of the second part of the previous theorem we get

ϕ(c(λ)t)

λ
≤ ϕ(t

√
c(λ)), i.e.

ϕ(c(λ)t)

ϕ(t
√
c(λ))

≤ λ.

Therefore, for each λ > 1 we have ϕ(u
√
c(λ))/ϕ(u) ≤ λ for each u ≥

t0
√
c(λ) = u0(λ) which means that kϕ(

√
c(λ) ≤ λ (for each λ > 1). This

implies
1 ≤ lim inf

λ→1+
kϕ(
√
c(λ)) ≤ lim sup

λ→1+
kϕ(
√
c(λ)) ≤ 1,

which gives
lim
λ→1+

kϕ(
√
c(λ)) = 1.

Set A = lim infλ→1+

√
c(λ) ≥ 1. There exists a sequence (λn)n∈N with λn > 1

for all n, limn→∞ λn = 1+ and limn→∞
√
c(λn) = A.

Define cn =
√
c(λn), n ∈ N. Then limn→∞ kϕ(cn) = 1. If A = 1, then

limλ→1+ kϕ(λ) = 1 since kϕ is nondecreasing. So, ϕ ∈ CRVf . If A > 1, then
limλ→A− kϕ(λ) = 1. So, if λ ∈ [1, (A + 1)/2], then kϕ(λ) = 1, and thus
ϕ ∈ SVf $ CRVf .

The following Galambos-Bojanić-Seneta type result is true.

Theorem 11 ([7]) Let x = (xn)n∈N be a sequence in S. Then the following
assertions are equivalent:

(a) x ∈ ARVs;

(b) ϕx(t) = x[t], t ≥ 1, belongs to ARVf .

1.3 New result

In this section we prove a new result of Galambos-Bojanić-Seneta type.

Definition 15 ([6, 7]) A function ϕ ∈ F is said to be in the class PI∗f if there
exists λ0 ≥ 1 such that for each λ > λ0

kϕ(λ) := lim inf
x→∞

ϕ(λx)

ϕ(x)
> 1.
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Definition 16 A sequence x = (xn)n∈N ∈ S is said to belong to the class PI∗s
if there is λ0 ≥ 1 such that for each λ > λ0 it holds

kx(λ) > 1.

Clearly, if in the previous two definitions λ0 = 1 we have the classes ARVf

and ARVs, respectively, from the previous section.
Observe that the following holds:

Rs,∞ $ ARVs $ PI∗s .

The next theorem shows the importance of the class PI∗f because it is
conjugate (by the generalized inverse) with the very important class ORVf .

Theorem 12 ([16, Propositions 3 and 4]) Let ϕ ∈ A. Then:

(a) ϕ ∈ PI∗f if and only if ϕ← ∈ ORVf ;

(b) ϕ ∈ ORVf if and only if ϕ← ∈ PI∗f .

Proof (a) First assume ϕ ∈ A ∩ PI∗f . Then for some λ0 ≥ 1 and for some
λ > λ0 it holds

ϕ(λt) ≥ c(λ)(t), t ≥ t0 = t0(λ),

where c(λ) = cϕ(λ) > 1 for λ > λ0. Therefore, for these λ and t we have
ϕ(λt)/c(λ) ≥ ϕ(t). It follows ϕ←(c(λ)t)/λ ≤ ϕ←(t). Hence, for this λ we have

kϕ←(c(λ)) ≤ λ <∞

which means ϕ← ∈ ORVf .

Conversely, assume ϕ← ∈ ORVf ∩ A. Then by [1] we have

lim sup
t→∞

sup
λ∈[1,2]

ϕ←(λt)

ϕ←(t)
= lim sup

t→∞

ϕ←(2x)

ϕ←(t)
= kϕ←(2) ≥ 1.

For each ε > 0 there is a t0 = t0(ε) > 0 such that

sup
λ∈[1,2]

ϕ←(λt)

ϕ←(t)
≤ kϕ←(2) + ε = M(ε), t ≥ t0,

so that for each t ≥ t0 and each λ ∈ [1, 2] we have

ϕ←(λt)

ϕ←(t)
≤M(ε).
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It follows

ϕ←(λt)

M(ε)
≤ ϕ←(t) ⇒

((f(M(ε)t)

λ

)←)←
≥ (ϕ←(t))

←

⇒ ϕ(t) ≤ ϕ(M2(ε)t)

λ

⇒ ϕ(M2(ε)t)

ϕ(t)
≥ λ

⇒ ϕ(M2(ε)t)

ϕ(t)
≥ 2 > 1

⇒ lim inf
t→∞

ϕ(M2(ε)t)

ϕ(t)
= kϕ(M2(ε)) ≥ 2 > 1.

Since kϕ(u) is nondecreasing for u > 0, we find that kϕ(λ) > 1, for λ >

M2(ε) > 1. Hence, ϕ ∈ PInf ∗ ∩ A.

(b) First assume ϕ ∈ A ∩ ORVf . By [1]

lim sup
t→∞

sup
λ∈[1,2]

ϕ(λt)

ϕ(t)
= lim sup

t→∞

ϕ(2t)

ϕ(t)
= kϕ(2) ≥ 1.

For each ε > 0, there is t0 = t0(ε) > 0 such that

sup
λ∈[1,2]

ϕ(λt)

ϕ(t)
≤ kϕ(2) + ε = m(ε), for all t ≥ t0.

So, for the same t and for each λ ∈ [1, 2] we have ϕ(λt)/ϕ(t) ≤ m(ε). Therefore,
ϕ(λt)/m(ε) ≤ ϕ(t). It follows

ϕ←(m(ε)t)

λ
≥ ϕ←(t) ⇒ ϕ←(m(ε)t) ≥ λϕ←(t)

⇒ ϕ←(m(ε)t) ≥ 2ϕ←(t)

⇒ ϕ←(m(ε)t)

ϕ←(t)
≥ 2 > 1

⇒ lim inf
t→∞

ϕ←(m(ε)t)

ϕ←(t)
≥ 2 > 1

⇒ kϕ←(m(ε)) < 1.

Hence, kϕ←(λ) > 1 for λ > m(ε) = λ0 ≥ 1, which means ϕ← ∈ PI∗f .

Conversely, assume ϕ← ∈ PI∗f ∩ A. Then for some λ0 ≥ 1 and all λ > λ0

we have ϕ←(λt) ≥ c(λ)ϕ←(t), for all t ≥ t0 = t0(λ), where c(λ) = cϕ(λ) > 1,
λ > λ0. Hence, for those λ and t we have ϕ←(λt)/c(λ) ≥ ϕ←(t), so that(
ϕ(c(λ)t)/λ)

)← ≥ ϕ←(t). As in the previous proof, we have ϕ(c(λ)t)/λ ≤
ϕ(
√
c(λ)t). Therefore, ϕ(c(λ)t)/ϕ(

√
c(λ)t) ≤ λ, and consequently, for a fixed

λ > λ0, we obtain kϕ(
√
c(λ)) ≤ λ <∞. In other words, ϕ ∈ ORVf .

We prove now a new result of the Galambos-Bojanić-Seneta type for the
classes PI∗.
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Theorem 13 Let x = (xn)n∈N be a sequence in S. Then the following are
equivalent:

(a) x belongs to the class PI∗s ;

(b) The function ϕ(t) = x[t], t ≥ 1, belongs to the class PI∗f .

Proof (a)⇒ (b): Let the sequence x = (xn)n∈N belong to the class PI∗s . Then

lim inf
n→∞

x[λn]

xn
> 1 for some λ0 ≥ 1 and each λ > λ0.

Consider the interval (λ0, λ
2
0). Then kx(λ) > 1 on the interval (λ0, λ

2
0). For

each λ ∈ (λ0, λ
2
0) define nλ ∈ N in the following way:

nλ =

{
1, if

x[λn]

xn
> 1 for each n ∈ N;

1 + max{n ∈ N :
x[λn]

xn
≤ 1}, otherwise.

Evidently, 1 ≤ nλ <∞ for each λ. Then one defines the sequence (Ak)k∈N by

Ak = {λ ∈ (λ0, λ
2
0) : nλ > k}

which is non-increasing and
⋂
k∈NAk = ∅.

We prove that not all sets Ak are dense in (λ0, λ
2
0). If λ ∈ Ak for some k,

then
x[λ(nλ−1)]

xnλ−1
≤ 1 and there is δλ > 0 such that

x[t(nλ−1)]

xnλ−1
≤ 1 for each t ∈ [λ, λ+ δλ) $ (λ0, λ

2
0).

So, each t ∈ (λ, λ + δλ) belongs to Ak, hence nt ≥ (nλ − 1) + 1 > k. We
conclude that (λ, λ + δλ) ⊂ Ak whenever λ ∈ Ak. Suppose now that each
set Ak is dense in (λ0, λ

2
0). Then each set Int(Ak) is also dense, hence we

have the sequence (Int(Ak))k∈N of open dense subsets of (λ0, λ
2
0) which is a

Baire second category set. By the Baire category theorem we have that the
set
⋂
k∈N Int(Ak) dense in (λ0, λ

2
0) and so the set

⋂
k∈NAk is nonempty. It is

a contradiction.
Therefore, there k0 ∈ N so that the set Ak0 is not dense in (λ0, λ

2
0). There

is the closed interval [A,B] $ (λ0, λ
2
0) such that [A,B] ⊂ (λ0, λ

2
0) \ Ak0 ==

{λ ∈ (λ0, λ
2
0) : nλ ≤ k0}. Therefore, for each λ ∈ [A,B], nλ ≤ k0. It follows

that for each λ ∈ [A,B] and each k ≥ k0 ≥ kλ,
x[λk]

xk
> 1. Thus for each λ > λ3

0

and each sufficiently large t ≥ t0 ≥ 1 it holds

x[λt]

xt
=
xz[ηt]

x[ηt]
·
x[ηt]

xt
≥ kx(η) > 1.

This means that the function ϕ, ϕ(t) = x[t], t ≥ 1, belongs to the class PI∗f .
(b) ⇒ (a): It is evident.
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de l’Institut Mathématique (Beograd) 22(36) (1977), 5–22.
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