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Abstract Markovianity of the quantum open system processes is a topic
of the considerable current interest. Typically, invertibility is assumed to be
non-essential for Markovianity of the open-quantum-system dynamical maps.
Nevertheless, in this paper we distinguish a class of physically important dy-
namical maps (processes) for which invertibility is a necessary condition for
Markovianity. Since every quantum-state tomography directly provides in-
formation on invertibility of the map, no optimization procedure is necessary
for determining non-Markovianity regarding the considered class of dynam-
ical processes. On this basis we are able to provide a systematic insight
and to distinguish mutual relations of the various approaches to quantum
Markovianity. Notably, for the processes out of the considered class of dy-
namical maps, various relations are allowed between divisibility, invertibility
and Markovianity of the dynamical maps.
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1 Introduction

Realistic quantum systems are open, that is, in unavoidable contact with
their surrounding environments [1, 2]. Under assumption that an open sys-
tem S in contact with its environment E constitutes the unitary whole S+E

that is subject of the unitary dynamics Û(t, t◦), the open system’s dynam-
ics is determined by the time-dependent reduced density matrix ρ̂S(t) =

trE

(

Û(t, t◦)ρ̂SE(t◦)Û
†(t, t◦)

)

with the total S + E system’s state ρ̂SE(t◦)

and the initial time instant t◦. In general, finding the open system’s state
ρ̂S(t) is a highly non-trivial problem which can only be analytically solved in
very special scenarios and models.

As a topic of special interest and a vivid ongoing research appear the so-
called Markovian (as opposite to non-Markovian) dynamical processes (dy-
namical maps). Historically, the origin of interest in Markovian quantum
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dynamics is at least two-fold. On the one hand, the classical Markovian pro-
cesses as a mathematical model are well investigated and extensively used.
On the other hand, the celebrated Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) form of the open quantum system’s master equation [3] is practically
generally considered to be Markovian [1, 2, 5–9]. From the practical point of
view, presence of some kind of memory in the open system’s dynamics may
be dangerous or even fatal for certain purposes and applications, e.g. in
the nascent field of quantum technology, notably in quantum information
processing and quantum computation [10], and quantum metrology [11].

Unfortunately, it is notoriously hard to formulate a proper quantum-
mechanical counterpart of the classical concept of Markovianity of dynamical
maps so much so that relations between the different definitions and the
related witnesses of Markovianity are still subject of vivid debate [5–9].

Possibly the best known criteria for Markovianity that underpin virtually
all the Markovian witnesses in the literature are the so-called CP-divisibility
of dynamical maps (also known as the RHP criterion) [2, 4, 5] and the ”no
information backflow” (NIB) criterion (also known as the BLP criterion)
[1,6,12]. For a dynamical map Φ(t, t◦), CP-divisibility assumes existence of an
intermediate map for non-zero initial instant of time, Φ(t, s), s > t◦, which is
completely positive (CP). The BLP criterion requires absence of information
flow from the environment to the open system of interest. The two criteria
are known not to be mutually equivalent [5, 6]: while CP-divisibility implies
the BLP, the reverse is, in general, not true.

The map divisibility, i.e. existence of Φ(t, s), s > t◦, is typically consid-
ered as a characteristic trait while invertibility is regarded nonessential for
Markovianity. Since existence of Φ(t, s) is well understood for the invertible
maps, i.e. for the maps that admit existence of the inverse, Φ−1(t, t◦), there
is ongoing research devoted to ”going beyond invertibility”, e.g. [13–17]. The
task is to introduce a proper concept of Markovian dynamics for the maps
not admitting the equality Φ(t, s) = Φ(t, t◦)Φ

−1(s, t◦). That is, the task is to
provide Markovianity without resorting divisibility to invertibility of a map.
Numerous dynamical models and scenarios provided basically the model-

dependent relations regarding divisibility, invertibility and time locality of
the dynamical processes. The general analyses of the role of invertibility and
divisibility for existence of time-local master equations [16, 18] are not con-
clusive. In Ref. [16], the authors conjecture ”if it can be guaranteed that the
Hamiltonian does not have such ’artificial’ features, then the time evolution
is, in principle, uniquely determined by a time-local master equation even in
cases when the time evolution is not invertible.”

In this paper we report on a significant role of invertibility for time-
locality and therefore Markovianity of a process. Our considerations provide
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a systematic and rather simple insight into the role of invertibility (and di-
visibility) for the time-locality (and hence of Markovianity) of the process.

Our starting point is a common point of agreement of some important
criteria of Markovianity. Assume that a dynamical process admits a master
equation (differential) form for the open system’s reduced state ρ̂S(t). This
assumption is not really restrictive. As we demonstrate below (cf. Section
3.2), non-differentiable processes can be straightforwardly described. Then
the mentioned common point is the requirement that in order for the process
to be Markov, it must be local in time:

dρ̂S(t)

dt
= Ltρ̂S(t). (1.1)

That is, time-locality of the generator Lt (the so called Liouvillian, which
is a traceless linear operator on the Banach space of density matrices) is a
necessary condition for a process to be regarded Markovian. In other words:
a (time-)differentiable dynamical process not admitting a master equation
of the general form of eq.(1.1) is necessarily non-Markovian. It should be
clearly stated: equation (1.1) applies also to some non-Markovian processes.
That is, time-locality of a master equation is necessary but not sufficient for
Markovianity of the process.

For a physically important class of differentiable processes, denoted C,
we prove that invertibility of a dynamical map is necessary and sufficient

condition for time locality of the related master equation. Consequently,
invertibility of a dynamical map in the class C is a necessary condition for
Markovianity of the process. That is, a dynamical map Φ(t, t◦) in the class
C of dynamical processes that is not invertible, i.e. does not admit existence
of the inverse Φ−1(t, t◦), is necessarily non-Markovian.

Hence noninvertibility is a witness of non-Markovianity of the C-class pro-
cesses: operationally established non-invertibility implies non-Markovianity.
In this sense, for short, we say that invertibility is a witness of Markovianity
of the C-class dynamical maps. Fortunately, invertibility of a dynamical map
is straightforward operationally to test. Concretely, as distinct from most
of the existing Markovianity witnesses in the literature, testing invertibility
does not operationally require any kind of optimization.

Physical relevance of our considerations is at least three-fold. First, vir-
tually all the basic physical laws are in the class C. Second, equivalence
of invertibility with time-locality of the C-class dynamical maps provides
a classification of dynamical processes and systematically reproduces rela-
tions between the map invertibility, divisibility and time locality for the pro-
cesses that have been investigated in the literature–even beyond the topic of
(non)Markovianity–while including the time-non-differentiable processes (as
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an example of the non-C-class processes). Third, the use of the witness of
Markovianity for the C-class processes is operationally a straightforward task.
Finally, a corollary of our considerations is a derivation of the well-known
Abel-Jacobi-Liouville identity [19].

In Section 2 we introduce the C class of dynamical maps and prove the
central result of this paper that is presented by Lemma 1 and illustrated by
Figure 1. In Section 3 we place our conclusions in the context of the various
approaches to Markovianity as it can be found in the literature. To this
end, as a support of our arguments, we provide certain technical details in
Supplemental Material. Section 4 is discussion section and we conclude in
Section 5.

2 Invertibility of the C-class dynamical maps

Basic physical laws are typically expected to be linear, continuous and smooth
in time thus providing a differential mathematical form, i.e. a related differ-
ential equation whose solutions sufficiently describe dynamics and behavior
of physical systems. These assumptions are so natural and therefore often
only tacitly assumed. Nevertheless, those assumptions are our starting point
that is formally introduced for the open-systems’ dynamical maps.

Definition 1. A linear and completely positive dynamical map Φ is in the
so-called C class of dynamical maps if and only if the following requirements
are simultaneously fulfilled: (a) the map is time continuous, in the sense it
is defined on a continuous time interval t′ ∈ [t◦, t], (b) the map is a two-
parameter map denoted Φ(t, t◦), t ≥ t◦, (c) the map is smooth enough (ultra-
weak continuity), in the sense that, for positive ǫ, limǫ↓0Φ(t+ǫ, t◦) = Φ(t, t◦),
for t ≥ t◦, is well defined, (d) the map has the whole Banach space of statis-
tical operators (density matrices) in its domain, and (e) the map is differen-
tiable, i.e. that the (ultraweak) limit:

dΦ(t, t◦)

dt
= lim

ǫ↓0

Φ(t+ ǫ, t◦)− Φ(t, t◦)

ǫ
(2.1)

is well defined.
The items (a) and (c) are often assumed to be simultaneously satisfied. How-
ever, we want to emphasize existence of the discrete-time dynamical maps
as well as the time-continuous processes for which the map may not be well
defined for some time instants. The point (b) assumes the one-parameter
families as special case, e.g. when the initial time instant t◦ is fixed or for
the time-homogeneous processes when only the difference t− t◦ is of interest.
Every dynamical map that is not linear or non-completely positive or not
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satisfying at least some of the above conditions (a)-(e) of Definition 1 does
not belong to the C class of dynamical maps.

According to Definition 1, the C class of dynamical maps is a subclass of
the class of differentiable maps as defined solely by eq.(2.1). Differentiability

introduced by eq.(2.1) provides a differential equation, dρ̂(t)
dt

= dΦ(t,t◦)
dt

ρ̂(t◦), for
the open system’s state ρ̂(t), where ρ̂(t◦) is the initial state. Under the phys-
ically fairly general conditions, equation (2.1) allows for a master equation
for the density matrix, ρ̂(t), of an open system to take the form [1, 2]:

dρ̂(t)

dt
= −

ı

~
[Ĥ, ρ̂(t)] +

∫ t

t◦

drK(t, r)ρ̂(r) (2.2)

where Ĥ is the open-system’s self-Hamiltonian, while the linear map K(t, r) is
the ”memory kernel” describing the effects of the environment on the system.

In eq.(2.2), there is explicit dependence on the time instants r < t. How-
ever, Markovian processes are generally assumed not to carry any dependence
on the time instants r < t thus requiring a time-local master equation of the
general form of eq.(1.1).

2.1 A Markovianity witness

The central result of this paper is the following lemma.

Lemma 1. For a dynamical map Φ(t, t◦) from the C class of dynamical
maps, the following characteristics of the map are mutually equivalent: (i)
the map is invertible, (ii) the map is divisible, and (iii) the map admits a
time-local master equation.

We provide a proof of the lemma by establishing the chain of implications:

(i) ⇒ (ii) ⇒ (iii) ⇒ (i). (2.3)

(i) ⇒ (ii): Assuming existence of the inverse map, Φ−1(t, t◦), it easily follows
ρ̂(t) = Φ(t, t◦)ρ̂(t◦) = Φ(t, t◦)Φ

−1(s, t◦)ρ̂(s), t ≥ s ≥ t◦. This expression
presents a state transition, ρ̂(s) → ρ̂(t), and introduces the map Φ(t, s) for
this transition. The requirement that everything regards arbitrary initial
state ρ̂(t◦) implies divisibility of the map: Φ(t, s) = Φ(t, t◦)Φ

−1(s, t◦);
(ii) ⇒ (iii): Assuming divisibility of the map, equation (2.1) leads (ultraweak
continuity) to:

dρ̂(t)

dt
= lim

ǫ↓0

Φ(t + ǫ, t◦)− Φ(t, t◦)

ǫ
ρ̂(t◦) = lim

ǫ↓0

Φ(t+ ǫ, t)− I

ǫ
ρ̂(t) := Ltρ̂(t),

(2.4)
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which is a time-local master equation describing dynamics generated by the
time-local Liouvillian Lt := limǫ↓0

Φ(t+ǫ,t)−I
ǫ

;
(iii) ⇒ (i): The map Φ(t, t◦) for which eq.(2.2) applies can be presented due
to the so-called time-splitting formula [2, 20] in the form:

Φ(t, t◦) = lim
max |t′

j+1
−t′

j
|→0

Π0
j=n−1e

L
t′
j
(t′j+1

−t′j)
, (2.5)

where t = t′n ≥ t′n−1 ≥ · · · ≥ t◦ and Lt is the Liouvillian in eq.(2.2). Then
the inverse is constructed:

Φ−1(t, t◦) = lim
max |t′

j+1
−t′

j
|→0

Πj=n−1
0 e

−L
t′
j
(t′

j+1
−t′

j
)
, (2.6)

as it can be easily seen by inspection.
Not all requirements (a)-(e) in Definition 1 are equally relevant to all impli-
cations in the proof of Lemma 1. Taken together, those implications regard
exactly the C class of dynamical maps. This subtle point will be emphasized
in Section 3.2, where we will recognize the Markovianity conditions that can
be found in the literature for the maps that are outside of the C class of
dynamical maps.

It is worth stressing, that: (A) the product in equation (2.5) (as well as
in equation (2.6)) assumes the time-ordering thus providing the solution to

equation (2.4) in the standard exponential form, Φ(t, t◦) = T exp
(

∫ t

t◦
L(s)ds

)

,

which is formally often used even for the continuous-variable systems [1, 2],
(B) the proof of Lemma 1 is exact, i.e. it may not apply for certain approxima-
tion methods (e.g. perturbative approximation of Liouvillian) or short-time
behavior (while bearing in mind that for sufficiently short time-intervals,
all dynamical maps are (approximately) invertible) [1, 2], and (C) Lemma 1
implies the so-called Abel-Jacobi-Liouville identity [19] as demonstrated in
Appendix A.

Lemma 1 establishes invertibility as a witness of Markovianity: as distin-
guished above, non-invertibility, equivalently, non-divisibility, implies time
non-locality and therefore non-Markovian character for the C-class dynami-
cal maps. Nevertheless, just like equation (1.1), Lemma 1 does not establish
a sufficient condition for Markovianity of the C-class dynamical maps. This
conclusion directly applies to concatenation of dynamical maps, Φ(t, t◦) =
V(t, tn) ◦ · · · ◦ V(t2, t1) ◦ V(t1, t◦). Invertibility of every concatenated map
V(tj , ti) in the class C is a necessary, but in general not sufficient condition
for the total map Φ(t, t◦) to be Markovian.

For the C-class processes, complete state tomography [10] suffices for de-
termination of non-Markovian character of the process. That is, determining
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the final ρ̂(t) state for the given initial ρ̂(0) state gives rise to the so-called
”process matrix”, A, defined (in a matrix representation) via ρ(t) = Aρ(0).
Invertibility of the process is isomorphic with invertibility of the process
matrix. Non-invertibility of the process matrix guarantees non-Markovian
character of the C class dynamical maps. Hence, in principle, no optimiza-
tion procedure is required. To this end, as an illustration of the general

procedure, in Supplemental Material S1, we consider the well known one-
qubit amplitude damping process [10]. For the processes not belonging to
the C class, Lemma 1 does not provide a proper procedure for determining
non-Markovian character of the process.

2.2 Comments

As repeatedly emphasized, virtually all the basic physical laws are in the
C class of dynamical maps, notably Newton’s second law, the Hamilton’s
and Lagrange’s equations of classical mechanics, the Maxwell equations of
classical electrodynamics as well as the time-dependent Schrödinger equation.
That is, the basic physical laws are expected to be continuous in time as well
as differentiable while free of any singularities for every finite time instant t′ ∈
[t◦, t]. In this context, the dynamical models dealing with the discrete time
instants should be regarded as approximations or the time-coarse-grained
versions of the generic physical processes.

Lemma 1 tells that the dynamical maps that are non-invertible but local
in time fall out of the C class of dynamical maps. There is a sharp line
dividing the C-class, and the non-C-class dynamical processes. Of all the
invertible processes in the C class, only some of them may be Markovian.
Those statements are illustrated by Figure 1.

Invertibility as a witness of Markovianity of the C-class of dynamical maps
is easy operationally to use. The point is that no optimization is needed.
In order to reduce the unavoidable error in the quantum state tomography
procedure, it may be useful to repeat the procedure or to combine it with the
quantum process tomography [10, 11]. Again, no optimization is required.

3 Quantum Markovianity in context

Figure 1 gives a general framework for classification of the dynamical maps.
The part ”NM” in Figure 1 regards the C-class invertible (and therefore time
local) processes that are not Markovian. The ”NI” part distinguishes the
C-class noninvertible processes for which time-locality, i.e. eq.(1.1), does not
apply and therefore (according to eq.(1.1)) such processes a priori are non-
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Figure 1: A schematic presentation of the dynamical maps with the inter-
nal circle containing all the C-class dynamical maps sharply divided from the
non-C-class dynamical maps (that are out of the internal circle). The vertical
solid line sharply divides invertible (the left part) from non-invertible (time-
nonlocal, i.e. indivisible, the right part) C-class processes. The dashed hori-
zontal line sharply divides Markovian (upper part) from the non-Markovian–
invertible C-class–processes. Position of the dashed line is not yet uniquely
determined–it depends on the adopted definition (criterion) of Markovianity.
The used abbreviations are as follows: ”Non-C class” stands for the non-C-
class processes; ”NI” stands for ”noninvertible” C-class processes; ”M” is for
”Markovian” while ”NM” is for ”non-Markovian” (invertible) C-class pro-
cesses.

Markovian. The ”Non-C class” of dynamical maps contains all the processes
that are out of the C-class processes. Consequently, inapplicability of Lema
1 allows, in principle, various relations between time-locality, divisibility,
invertibility and Markovianity of the maps. This class of dynamical maps
encompasses all the processes to which even eq.(2.2) may not apply.

For the time local processes presented by eq.(1.1), canonical form of the
(time local) Liouvillian Lt is known [18]:

Ltρ̂(t) = −
ı

~
[Ĥ, ρ̂(t)] +

∑

k

γk(t)

(

L̂k(t)ρ̂(t)L̂
†
k(t)−

1

2
{L̂†

k(t)L̂k(t), ρ̂(t)}

)

,

(3.1)
with Hermitian Ĥ and possibly time-independent damping factors γk and
the so-called Lindblad operators L̂k that constitute an orthonormal set of
traceless operators; the curly bracket stands for the ”anticommutator”.

Bearing in mind Figure 1, it is now easy to recognize the characteristics of
some of the time-local dynamical maps presented by eq.(3.1). For example,
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if γk(t) ≥ 0, ∀k and for every finite time instant t′ ∈ [t◦, t], the map is said to
be Markovian due to the RHP criterion [2, 4, 5]; in the special case of time
independent γs and time independent Lindblad operators, eq.(3.1) describes
the celebrated semigroup of dynamical maps [3]–the part ”M” in Figure 1. If
the condition γk(t) ≥ 0 is not fulfilled for at least one index k and one time
instant t′, the map is regarded non-Markovian due to the RHP criterion,
thus belonging to the ”NM” part in Figure 1. If for some finite time instant
t∗ ∈ [t◦, t] at least one damping factor γk exhibits singularity (divergence),
the map is out of the C class and necessarily non-invertible [16]–and should
be placed in the part ”Non-C class” in Figure 1.

Hence we can say that all the dynamical maps presented in the litera-
ture can be easily recognized in Figure 1. To this end, the only remaining
question is the criterion of Markovianity, i.e. the ”position” of the dashed
line in Figure 1–above, we used the RHP criterion, which is only one out
of a numerous set of such criteria [5–9]. Therefore, bearing in mind that
Lemma 1 provides a necessary, but not a sufficient condition for Markovian-
ity of dynamical maps–due to the criterion eq.(1.1), we know for sure what
is not Markovian–we proceed by analyzing the known results in the light
of the sharp line (internal circle in Figure 1) dividing the C-class from the
non-C-class dynamical maps.

There is a large number of possibilities for breaking the assumptions of
Definition 1 and hence the statement of Lemma 1. It is practically impossible
to present all of them in a single paper. For this reason we proceed by placing
some prominent theoretical models and results in the context of Lemma 1. In
Section 3.1 we consider the role of the C-class processes for the CP-divisibility
and BLP conditions of quantum Markovianity. In Section 3.2 we focus on
determining which assumptions of Definition 1 are not fulfilled for certain
processes that are regarded Markovian–that includes the continuous but non-
invertible processes describable by a time-local master equation. Thence a
clear role of the particular assumptions of Definition 1 in the proof of Lemma
1.

3.1 The C-class processes

Lemma 1 establishes divisibility as a necessary condition for Markovianity of
a C-class dynamical map. Since the RHP criterion (CP-divisibility) requires
the map divisibility, it naturally appears as a proper criterion for Markovian-
ity of the C-class processes. Then a Markovian map Φ(t, t◦) is defined by the
requirement of complete positivity of the intermediate map Φ(t, s), s > t◦,
thus necessarily being representable by eq.(3.1) with the non-negative damp-
ing factors γk(t

′) for every instant of time t′ ∈ [t, t◦] [2,4,21]. In Supplemental
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Material S1 we provide an illustration of the general procedure for determin-
ing CP-divisibility for the case of the one-qubit amplitude-damping process.

Divisibility as a necessary condition for Markovianity places some restric-
tions on usefulness of the BLP criterion of Markovianity for the C class of
dynamical processes. Actually, necessity of divisibility of a map effectively
reduces the BLP to the RHP criterion of Markovianity. This is, the only
remaining distinction between the BLP and the RHP criteria is the possibil-
ity that the intermediate map (which always exists for the C-class processes)
may not be completely positive; then (as emphasized above) at least some
of the damping factors take negative values for certain time instants (or in-
tervals) [2,4,16,21]. However, this possibility does not seem in keeping with
intuition for Markovian processes [2,9,22–26] (especially in analogy with the
classical concept of Markovianity [5, 9, 22, 24]), and certainly cannot lead to
equation (3.1). Example processes from the C class are known [18, 22], for
which the BLP criterion fails to detect Markovianity established by equation
(3.1).

In the more general context, some divisible but non-CP-divisible maps
may carry some (possibly weak) memory [1,2,5–9,22–25,27] of the previous
history thus presenting non-Markovian processes. This kind of memory dis-
appears for the time-homogeneous Markovian processes (time-independent
terms in equation (3.1)), which is thus recognized as a stronger concept of
memorylesness [22] than CP-divisibility [2, 4, 5].

Invertibility as a necessary condition for Markovianity is, in a sense, at
variance with some information-theoretic considerations of Markovianity [14].
In this context it is argued [14] [our emphasis]: ”As such, it is clear that the
assumption of bijectivity [i.e. map invertibility] eludes a purely information
theoretic or operational description and must be put ’by hand’ on top of the
dynamical evolution.” According to Lemma 1, for the C class of dynamical
maps this is not the case. Furthermore, for the C-class processes, opera-
tional test of non-Markovianity reduces to the standard state-tomography
procedures (Section 2). Therefore it seems that a search for Markovianity
beyond invertibility (e.g. for certain information-processing tasks) should re-
gard processes out of the C class of dynamical maps. Thence it is no surprise
that going beyond invertibility often targets the time-discrete processes (cf.
Section 3.2), in which context the BLP criterion obtains a natural generaliza-
tion [14], thus possibly suggesting that the BLP criterion for Markovianity
is well suited for certain processes out of the C class of dynamical maps.
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3.2 Beyond the C-class processes

There are not any universal relations between time locality, divisibility and
invertibility for the processes out of the C class of dynamical maps. Ex-
pectedly, there is not a general definition or the operational procedures (wit-
nesses) for determining Markovianity.

In order to demonstrate this statement, we separately analyse non-validity
of the items (a)-(e) in Definition 1, thus going beyond the C class of dynamical
maps. In support of the general notes (distinguished by ”(GN)”) made below,
we consider only a small portion of the relevant literature while providing
some technical details in Supplemental Material.

3.2.1 Continuity

(GN) Dynamical maps which are not time-continuous do not allow for in-
troducing the time derivative eq.(1.1) and therefore the master equation for-
malism does not apply. Consequently, eq.(2.4) does not apply and therefore
the implications (ii)⇒(iii) and (iii)⇒(i) in the proof of Lemma 1 fail. Below
we distinguish some scenarios for non-continuous dynamical evolutions.
Continuity 1. The maps obtained by combining continuous ”quantum chan-
nels” from the C class can fall outside of the C class of dynamical maps and
therefore the Lindblad-kind of Markovianity (i.e. CP-divisibility) for the
mixed channels is lost. In general, this applies to both the convex mixing of
channels as well as to the subsequent operations of the channels. For exam-
ple, mixing the CP-divisible Pauli channels (one-qubit channels) gives rise to
a CP-indivisible channel [28–30]. In Supplemenatl Material S2 we provide a
single-qubit model that illustrates this argument.
Continuity 2. Every discrete map as well as certain concatenations of (possi-
bly continuous) dynamical maps break the assumption of the time-continuous
dynamics. Those include the possibility of external (e.g. due to experi-
menters actions) interruptions by resetting the open system’s states, or by
performing quantum measurement in the course of the system’s evolution as
well as endowing the continuous dynamics by occasional classical stochastic
events (often termed ”quantum jumps”), which effects in a non-deterministic
time evolution. Then the quantum-maps Markovianity should be investi-
gated independently of Lemma 1. In Ref. [14], the authors identify divisibil-
ity with ”information-theoretic Markovianity” without invoking invertibility
of the considered dynamical maps. Nevertheless, as long as a continuous-
time approximation is allowed for the considered discrete dynamical maps,
this kind of Markovianity should be taken with caution: the continuous-time
limit may be subject of Lemma 1. That is, albeit divisibility is regarded
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a key feature of Markovianity, in the continuous-time limit it may become
equivalent with invertibility and therefore (cf. Section 3.1) resorting to CP-
divisibility as a formal definition of Markovianity. On the other hand, in
the operational approach that introduces Markovianity as a statement about
multitime correlations (thus introducing multi-time dynamical maps) [31–33],
certain interventions on the open system are allowed. Those external inter-
ventions on the open system not involving any time-continuous dynamics
extends the standard framework (Section 3.1), from which perspective it
is found that CP-divisibility does not necessarily guarantee the absence of
memory [33]. Exclusion of continuous dynamics makes this approach and the
concept of Markovianity complementary to the one distinguished by Lemma
1.

3.2.2 Two-parameter family

(GN) Introducing additional parameters for a dynamical map gives rise to
introducing a whole family of families (of subfamilies) of the two-parameter
maps. Additional parameter (or parameters), denoted α, that can be time de-
pendent, imposes the task of analyzing applicability of Lemma 1 to every such
subfamily, Φα(t, t◦), separately. In general, different values of the parameter
α may lead to different characteristics of the two-parameter (sub)families
regarding invertibility, divisibility and time-locality of the related master
equations (if such exist). That is, validity of the implications in the proof
of Lemma 1 should be separately investigated for every subfamily. In effect,
in this regard, the total family {Φα(t, t◦)} of dynamical maps may not be
described by the definite statements.

This is characteristic e.g. of the so-called ”tensor power” of dynamical
maps [34] as well as for ”time deformations” of master equations [35], where
an additional parameter α counts the evolution families Φα(t, 0). Those
maps (subfamilies of the two-parameter maps) taken separately are subject
of Lemma 1 and can exhibit either CP or non-CP, depending on α. Taken to-
gether, those maps cannot be uniquely determined as CP or non-CP, or time-
local or time-non-local. Hence Markovianity of the maps cannot be decided
either. Analogous findings apply for the three-parameter maps introduced
and investigated in [28, 29]. In Supplemental Material S2 we distinguish an
example of a three-parameter family of dynamical maps.

3.2.3 Smoothness

(GN) If, for some time instants, or intervals, the map is not sufficiently
smooth, the derivative eq.(1.1) is not well defined. Consequently, eq.(2.4)
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does not apply in the vicinity of such time instants/intervals thus implying
inapplicability of the implication (ii)⇒(iii) in the proof of Lemma 1. The
presence of singularities implies the map is noninvertible [16]. However, in
general, it is not implied that a time-local generator cannot be defined for
such processes. It is only implied that such generators (Liouvillians) must,if
they exist, carry singularity. For such cases, existence of a time-local master
equation and the map non-invertibility is not a priori excluded. In this regard
it is a paradigmatic example of a two-level system (e.g. an atom) decay in
the finite time intervals. Intuitively, the physical picture is appealing: up
to some finite time instant t∗, the time-continuous dynamics is regular and
fulfills all the assumptions of Definition 1, i.e. Lemma 1 applies. For the
time instants t ≥ t∗, the system does not evolve in time as it is already in the
ground state and the map is simply the identity map. In effect, the map is
neither everywhere differentiable nor invertible, but is (obviously) divisible.
To this end, illustrative examples can be found in Supplemental Material S3.

The models of time-local master equation with a singularity-carrying Li-
ovillians are known [1, 13, 15, 17]. Validity of eq.(2.1) opens in principle the
door for Markovianity of certain such processes. In Ref. [15], the authors re-
gard extension of CP-divisibility for the non-smooth dynamical maps. They
find that giving up the condition of invertibility may provide validity of
equation (3.1) for the price of non-positivity of some damping factors γi
in equation (3.1), at least for some time instants/intervals. Analogous re-
sults, yet starting from investigating invertibility of the map, can be found
in Ref. [16]. At this instance, the two criteria for Markovianity, RHP [2, 5]
and the BLP [6, 12] criterion, are recognized mutually equivalent [15] for
non-invertible dynamical maps, which are outside of the C class of dynamical
maps.

3.2.4 The map domain

(GN) If a map is with restricted domain in the Banach space of statistical
operators, the implication (i)⇒(ii) of the proof of Lemma 1 does not ap-
ply. Thence invertibility is not necessarily equivalent with divisibility of the
map. For such dynamical maps, even the condition of complete positivity
(i.e. existence of the Kraus integral form of the process), which is a basic
requirement for Markovianity [1, 2], may be at stake.

Reducing the map domain from the whole Banach space to a subspace
is closely linked with the role of the initial tensor-product state for equation
(3.1) to follow in the microscopic derivations [1,2]. This subtle topic [36,37]
reveals close connection of the initial correlations in the ”system+environment”
isolated system with complete positivity of the open S-system’s dynamics.
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For restricted domain of certain dynamical maps, even the presence of initial
correlations may lead to completely positive dynamics with the map non-CP
for the states out of the map’s domain. If restriction to the reduced domain
may be allowed then Figure 1 can be directly applied.

3.2.5 Differentiability

(GN) Nonexistence of the map derivative introduced by eq.(2.1) implies in-
applicability of eq.(2.4) and hence of the implications (ii)⇒(iii) and (iii)⇒(i)
in the proof of Lemma 1. Inapplicability of eq.(2.4) may imply nonexistence
of the map inverse as well as nonexistence of a proper master equation for
the process–as already emphasized by the above item ”1” (”continuity”). As
a particularly interesting case that applies for the continuous and smooth dy-
namical evolution, we emphasize the maps for which the necessary condition
for differentiability, Φ(t◦, t◦) 6= I, is not fulfilled.

For a specific kind of non-differentiable and noninvertible but divisible
maps [38, 39] for which Φ(t◦, t◦) 6= I, the standard CP-divisibility can be
dynamically established without invoking the condition of invertibility. This
comes at the price of impossibility to introduce a differential form, i.e. a mas-
ter equation, for the map, despite the fact that it is a unital map preserving
the identity operator. Dynamical emergence of CP-divisibility regards the
long time intervals, in contrast to the standard CP-divisibility of Section
3.1. Therefore Markovianity understood as CP-divisibility is an emergent
and conditional characteristic of the open system dynamics.

4 Discussion

Equation (1.1) is a broad criterion for Markovianity for all differentiable
processes. That is, for the differentiable processes we know for sure which
dynamical maps are non-Markovian.

The following additions to the general debate on quantum Markovianity
are presented in this paper: (a) the class of dynamical processes for which
Markovianity requires invertibility of the process (Section 2), (b) questioning
usefulness of the BLP criterion for Markovianity regarding the C class dynam-
ical maps (Section 3.1), and (c) a fresh view on the concept of Markovianity
beyond invertibility (i.e. beyond the C class of dynamical maps, Section 3.2).

The standard (non)Markovianity witnesses typically assume optimiza-
tion procedures over the set of states or measurement-operators where the
quantum state tomography is often the first step [5–9]. The witness of non-
Markovianity introduced in this paper reduces to the state tomography with-
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out any further steps or procedures, including the optimization. To this end,
it suffices to know in advance that the process is in the C class of dynamical
evolution and to obtain non-invertibility in order to detect non-Markovianity
of the process; as repeatedly emphasized in this paper, observation of invert-
ibility does not guarantee Markovianity of the process. Operationally, man-
aging the errors inherent in the state tomography procedures as well as in
the counting statistics can be performed in the same vein as in the standard
witnesses of non-Markovianity, e.g. as in the experiments [5, 6] employing
the ”trace distance” (the BLP criterion) to witness non-Markovianity.

It is essential to re-emphasize: Lemma 1 is exact. That is, certain approx-
imations of the map itself, or of the Liouville superoperator, or considerations
of short (or not-very-short) time intervals may, in principle, vary the conclu-
sions that follow from the exact treatment (some perturbation methods are
known to may jeopardize complete positivity of the map [1, 2]). On the one
hand, an approximation may not capture certain relevant characteristics of
the exact map. On the other hand, different approximation techniques are
used to arrive at ”Markovian” master equations, and most of them are im-
plicit to Section 3.2: everything depends on the adopted meaning of ”Marko-
vian dynamics” [8]. While more detailed analysis of alternative definitions
of Markovianity on the basis of Lemma 1 is certainly interesting, extension
of the basic remarks made in Section 3 is far beyond the present paper and
certainly cannot be properly presented in a single paper. For this reason
we do not discuss the Markovianity witnesses that are widely used in the
literature.

Finally, we want to stress, that the class C of dynamical maps as simply
and clearly defined by Definition 1 may appear a rather subtle concept in
applications: it need not be obvious if a map is in the C class. On the
one hand, [as emphasized in Section 3.2], some discrete maps admitting the
continuous-time limit may fall within this class. On the other hand, mixing
of the dynamical maps outside of the C class can give a map effectively
in the class C [30, 40]. Interestingly, it is known [40] that mixing of some
singularity-carrying continuous dynamical maps may wipe the singularities
out and generate a map falling within the C class of dynamical maps. It is
out of doubt that those examples are not exceptional and some other kinds of
effectively C-class dynamical maps may be expected to be found or recognized
in the near future. All of them will be subject of Lemma 1 as long as the
possibly additional assumptions or constraints on the map are in accord with
Definition 1.
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5 Conclusion

Mutual relations of divisibility, invertibility, time-locality and Markovianity
of the quantum dynamical maps cannot be presented in simple terms. Nev-
ertheless, we present a systematic approach by introducing and analyzing a
physically relevant class of dynamical maps for which invertibility is a neces-
sary condition for Markovianity. Operationally, in principle, no optimization
is required for determining non-Markovian character of the distinguished-
class of quantum processes. On this basis it is now possible to more closely
analyze the origin of the existing criteria and formal definitions of quantum
Markovianity, as they can be found in the literature.
Acknowledgements The present work was supported by The Ministry of
Education, Science and Technological Development of the Republic of Serbia
(451-03-68/2022-14/ 200122) and in part for MD by the ICTP-SEENET-
MTP project NT-03 Cosmology–Classical and Quantum Challenges.

A A derivation of the Abel-Jacobi-Liouville

identity

Lemma 1 implies for a dynamical map Φ(t, t◦) = Φ(t, s)Φ(s, t◦), where Φ(t, s) =

Φ(t, t◦)Φ
−1(s, t◦), while Φ(t, t◦) = T e

∫ t

t◦
L(u)du. Then, with the use of the stan-

dard relations for the matrix determinants, an isomorphic matrix represen-
tation of the dynamical maps gives: det Φ(t, t◦) = det Φ(t, t◦) detΦ

−1(s, t◦)
det Φ(s, t◦). On the use of the time-splitting formula and the equality det eA =
etrA easily follows:

det Φ(t, t◦) = det Φ(s, t◦)e
∫ t

s
trL(u)du, (A.1)

which is the Abel-Jacobi-Liouville identity (often presented for t◦ = 0) [19].
The inverse does not, in general, hold. That is, equation (A.1) admits

both, Φ(t, t◦) = Φ(t, s)Φ(s, t◦) and Φ(t, t◦) = Φ(s, t◦)Φ(t, s) that, in general,
is not correct–it is correct e.g. for the semigroup dynamical maps. Similarly,
from equation (A.1) it may seem allowed to write Φ(t, s) = T e

∫ t

s
L(u)du, which

also, in general, is not correct. Therefore equation (A.1) does not imply
Lemma 1.
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[4] Á Rivas, S F Huelga and M B Plenio, Phys. Rev. Lett. 105, 050403 (2010).
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Figure captions A schematic presentation of the dynamical maps with
the internal circle containing all the C-class dynamical maps sharply divided
from the non-C-class dynamical maps (that are out of the internal circle).
The vertical solid line sharply divides invertible (the left part) from non-
invertible (time-nonlocal, i.e. indivisible, the right part) C-class processes.
The dashed horizontal line sharply divides Markovian (upper part) from the
non-Markovian–invertible C-class–processes. Position of the dashed line is
not yet uniquely determined–it depends on the adopted definition (crite-
rion) of Markovianity. The used abbreviations are as follows: ”Non-C class”
stands for the non-C-class processes; ”NI” stands for ”noninvertible” C-class
processes; ”M” is for ”Markovian” while ”NM” is for ”non-Markovian” (in-
vertible) C-class processes.
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1 One-qubit amplitude damping process

Consider the amplitude damping process, which is in the class C of dynamical
maps for a single qubit defined by the following Kraus operators [1]:

E◦ =

(

1 0
0 e−γt

)

, E1 =

(

0
√
1− e−2γt

0 0

)

, (S1.1)

that are given in the Pauli z-representation, Z =

(

−1 0
0 1

)

.

For the arbitrary initial qubit state given in the same representation,

ρ(0) = 1
2

(

1− nz n+

n− 1 + nz

)

, the final state in an instant of time t reads:

ρ(t) = E◦ρ(0)E◦ + E1ρ(0)E
†
1 =

1

2

(

2− (1 + nz)e
−2γt n+e

−γt

n−e
−γt (1 + nz)e

−2γt

)

Isomorphically presented as the matrix-columns, the initial and the final
state give rise to the process matrix A, defined as Aρ(0) = ρ(t), that can be
easy found to read:

A =









1 0 0 1− e−2γt

0 e−γt 0 0
0 0 e−γt 0
0 0 0 e−2γt









(S1.2)

Eigenvalues of the matrix A, 1, e−γt, e−2γt, are all nonzero (except in the
asymptotic limit of t → ∞). Therefore the matrix is non-singular, i.e. the
process represented by the matrix A is invertible.
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Complete positivity of the process requires positivity of the related, so-
called, dynamical matrix B. The general recipe for obtaining the dynamical
matrix from the process matrix, A → B, reads [2]:

A =









p1 p2 p3 p4
P1 P2 P3 P4

q1 q2 q3 q4
Q1 Q2 Q3 Q4









→ B =









p1 p2 P1 P2

p3 p4 P3 P4

q1 q2 Q1 Q2

q3 q4 Q3 Q4









(S1.3)

Applying equation (S1.3) to (S1.2) gives the dynamical matrix:

B =









1 0 0 e−γt

0 1− e−2γt 0 0
0 0 0 0

e−γt 0 0 e−2γt









(S1.4)

whose eigenvalues, 0, 1 ± e−2γt, are non-negative. Therefore the matrix B
is positive and hence the process is CP–as we already know from the very
existence of the Kraus form for the process.

From equation (S1.2) follows the inverse matrix:

A−1 =









1 0 0 1− e2γt

0 eγt 0 0
0 0 eγt 0
0 0 0 e2γt









(S1.5)

that now gives rise to the matrix representation of the process for a nonzero
initial instant of time s:

A(t, s) = A(t)A−1(s) =









1 0 0 1− e−2γ(t−s)

0 e−γ(t−s) 0 0
0 0 e−γ(t−s) 0
0 0 0 e−2γ(t−s)









,

which defines the dynamical matrix:

B(t, s) =









1 0 0 e−γ(t−s)

0 1− e−2γ(t−s) 0 0
0 0 0 0

e−γ(t−s) 0 0 e−2γ(t−s)









(S1.6)

whose eigenvalues, 0, 1±e−2γ(t−s), are all non-negative thus establishing com-
plete positivity for the process starting in a non-zero instant of time s. Exis-
tence of A(t, s) and the fact that it’s CP means that the amplitude damping
process is CP-divisible.
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2 A convex combination of the C-class dy-

namical maps

Consider a convex combination of the C class processes for one qubit [3],
Φi(t)[ρ̂(0)] ≡ Φi(t, 0)[ρ̂(0)] := (1− p(t))ρ̂(0) + p(t)σ̂iρ̂(0)σ̂i, i = y, z:

Φ(t, 0) = aΦz(t, 0) + (1− a)Φy(t, 0), (S2.1)

where p(t) = (1 − e−rt)/2 ∈ [0, 1/2) and σ̂i, i = y, z represent the Pauli
sigma-operators and the probability 0 < a < 1.

Then the total process reads:

Φ(t, 0)[ρ̂(0)] = (1− p(t))ρ̂(0) + ap(t)σ̂z ρ̂(0)σ̂z + (1− a)p(t)σ̂y ρ̂(0)σ̂y.

On the use of the procedure described in Section 1 follows the process
matrix:

A(t, 0) =









1− (1− a)p 0 0 (1− a)p
0 1− (1 + a)p (a− 1)p 0
0 (a− 1)p 1− (1 + a)p 0

(1− a)p 0 0 1− (1− a)p









(S2.2)
whose eigenvalues are nonzero: 1, 1 − 2p, 1 − 2ap, 1 − 2p + 2ap. Therefore
the process is invertible. The easy obtained dynamical map for equation
(S2.2) has the following, non-negative eigenvalues: 0, 2(1− p), 2ap, 2p(1− a).
Therefore the process (as it is known in advance) is CP.

For the process starting in a non-zero instant of time s, the matrix A(t, s)
can be straightforwardly obtained while giving rise to the dynamical matrix
of the process:

B(t, s) =
1

2









1 + α 0 0 β + γ
0 1− α β − γ 0
0 β − γ 1− α 0

β + γ 0 0 1 + α









(S2.3)

where: α = (2ap − 2p + 1)/(2aq − 2q + 1), β = (1 − 2p)/(1 − 2q), γ =
(1− 2ap)/(1− 2aq), while p = 1− e−rt > q = 1− e−rs for t > s.

From equation (S2.2) it is obvious, that the map Φ is a three-parameter
process (for the initial zero instant of time), Φr,a(t), thus not belonging to the
C class of dynamical maps. For the dynamical matrix B(t, s) the following
eigenvaules can be obtained: b1 = 1 + α − β − γ, b2 = 1 − α + β − γ, b3 =
1−α−β+γ and b4 = 1+α+β+γ. Thence the condition of positivity of the
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matrix B(t, s), i.e. of the complete positivity of the process reads: |1± α| ≥
|β±γ|. For the parameter values not fulfilling the constraint, the matrix B is
non-positive and hence the A(t, s) is non-CP. Therefore this three-parameter
process is neither CP-divisible nor non-CP-divisible. In accordance with
Lemma 1, for the fixed values of the parameter a, the map becomes a two-
parameter process and therefore exhibits either CP-divisibility, or non-CP-
divisibility–depending on the choice of values of the parameters.

3 Examples of time non-smooth processes

Example 1. Consider the process defined by the matrix elements of a one-
qubit statistical operator ρ̂(t) [4]:

ρ00(t) = ρ00(0)x◦(t) + ρ11(0)(1− x1(t))

ρ11(t) = ρ00(0)(1− x◦(t)) + ρ11(0)x1(t)

ρ01(t) = ρ01(0)γ(t)

(S3.1)

Performing the procedure described in Section 1 follows the process ma-
trix A as well as the related dynamical matrix B (for simplicity, we place:
xi ≡ xi(t)):

A =









x◦ 0 0 1− x1

0 γ 0 0
0 0 γ∗ 0

1− x◦ 0 0 x1









, B =









x◦ 0 0 γ
0 1− x1 0 0
0 0 1− x◦ 0
γ∗ 0 0 x1









. (S3.2)

Eigenvalues of the B matrix read: 1−xi, i = 0, 1 and (x◦+x1±
√

4γ2 + (x◦ − x1)2)/2.
In order the process be completely positive, non-negative eigenvalues of B
appear under the conditions: xi ∈ [0, 1], i = 0, 1, and |γ|2 ≤ x◦x1. On the
other hand, eigenvalues of the process matrix: 1, γ, x◦+x1−1. Therefore, for
the time instants for which γ = 0 and/or x◦+x1 = 1, the process matrix A is
singular and hence the process is non-invertible. This conclusion also follows
from the form of the Liouvillian (we use the original notation of Ref. [4]):

L[ρ̂] = −ı
Ω

2
[σ̂z, ρ̂] +

∑

k=+,−

akLk[ρ̂] +
Γ

2
Lz[ρ̂], (S3.3)

where appear the Pauli sigma-operators, σ̂i, as formally the Lindblad oper-
ators for the ”Liuouvillians” Li, i = +,−, z, and

Γ := −a◦ + a1
2

−Re
γ̇

γ
, Ω := Im

γ̇

γ

a◦ :=
ẋ◦(1− x1) + ẋ1x◦

1− x◦ − x1
, a1 :=

ẋ1(1− x◦) + ẋ◦x1

1− x◦ − x1

(S3.4)
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That is, for the time instants for which the Amatrix is singular, the functions
Γ(t) and Ω(t) diverge thus implying singularities for the Liouvillian, i.e. non-
smooth dynamics in the vicinity of those time instants. Needless to say, if
the functions x◦ and x1 are such that γ(t) 6= 0 6= 1 − x◦(t) − x1(t), ∀t, the
process is invertible and the master equation well defined by the Liouvillian
equation (S3.3) of the Lindblad form (i.e. of the Markovian, CP-divisible,
form of equation eq.(3.1))–in accordance with Lemma 1.
Example 2. Consider the map defined by the following matrix representation
of the one-qubit state [5, 6]:

ρ(t) =

(

|G(t)|2ρ11(0) G(t)ρ12(0)
G∗(t)ρ21(0) (1− |G(t)|2)ρ11(0) + ρ22(0)

)

(S3.5)

The process matrix A and the dynamical matrix B read (we put G ≡
G(t)):

A =









|G|2 0 0 0
0 G 0 0
0 0 G∗ 0

1− |G(t)|2 0 0 1









, B =









|G|2 0 0 G
0 0 0 0
0 0 1− |G(t)|2 0
G∗ 0 0 1









.

(S3.6)
Eigenvalues of the dynamical matrix read: 0, 1±|G|2. Therefore we conclude
that the process will be completely positive if and only if 0 ≤ |G(t)|2 ≤ 1, ∀t.
The eigenvalues of the process matrix, 1, G,G∗, |G|2, can be nonzero, and
the process invertible, only if G(t) 6= 0, ∀t. Supposing [6] that there exists
a finite time instant t∗ such that G(t) 6= 0, t < t∗, while G(t) = 0, t ≥ t∗,
the process matrix is singular and hence the (total) process is non-invertible.
In analogy with the previous example, the Lindblad-form Liouvillian for the
process carries singularity for t = t∗ [6]:

L[ρ̂] = −ı
s(t)

2
[σ̂+σ̂−, ρ̂] + γ(t)

(

σ̂−ρ̂σ̂+ − 1

2
{σ̂+σ̂−, ρ̂}

)

, (S3.7)

where: s(t) = −2Im Ġ
G
and γ(t) = −2Re Ġ

G
. Interestingly, the process (S3.5),

albeit non-invertible, is divisible: Φ(t, 0) = Φ(t, t∗)Φ(t∗ − ǫ, 0) for ǫ → 0+,
where Φ(t, t∗) = I, t ≥ t∗. Needless to say, for G(t) 6= 0, ∀t, the map is
invertible, Ġ(t) ≤ 0 and the Liouvillian equation (S3.7) is well defined for the
completely positive process whose master equation is of the form of equation
(1.1)–in accordance with Lemma 1.
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