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ABSTRACT: This paper represents a set of knowledge and experience that the authors obtained through
becoming acquainted with software package LS-DYNA, as well as with the kinds of problems that can be
successfully be solved in this software. Due to developed algorithms for contact problem solving, LS-DYNA found a
huge practice in the car industry, especially in the crash tests simulating. This paper contains analysis of the
waggon-cistern crash into a still rigid barrier.
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INTRODUCTION

LS-DYNA is multipurpose software for explicit and implicit numerical integration of construction dynamic analyses
and represents one of the most famous and best softwares that solves multiphysical problems.

The first part shortly presents the theoretical basis that the algorithms implemented in the software are based on.
At the beginning, motion equations are presented and then the method of central differences is shortly described,
so in the end we reach the modified method which is used in the software and the criteria to be fulfilled. In the very
end of the theoretical part, there are basis of contact problems theory.

The second part of the paper processes the example of crash analises, waggon-cistern crash into a rigid wall. The

end of the paper is a general impression based on the up-to-date experience as well as some guidelines for the
future work/tasks.

THEORETICAL BASIS

System motion equations

We observe a simple system with one degree of freedom, fig. 1, as well presenting the forces that influence the
mass m.
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Figure 1 System with muffling with one degree of freedom; figure of system and forces that influence it
Equilibrium equation, derived from the use of d Alamber’s principle is [1, 2, 3]:

f,+fo+ 5 =p(t) (1)

where the inertial force f| , muffling fD and rigidness force fS are presented with the equations (2)

2

.. . du . .
f, =md U= e U — acceleration

fo =mu u= 3—? u —velocity @
fs =ku u—displacement k — stiffness

Motion equation for linear problems is presented with equation (3), whereas the equation (4) is for nonlinear case:

mui + cu + ku = p(t) (3)
mu +cu + fg (u) = p(t) (4)

Analitical solution is possible to determine only in linear differential motion equation. Dynamic response of
unmuffled system under the influence of harmonious load is presented with equation:

1

u(t) =uq cos(awt) +u—°sin(a)t) +& (sin(mt) — Bsin(wt)) (5)
® k 2

where Ug, U is the initial displacement and initial velocity, % is static displacement,

5 is a dynamic factor.

In this case, harmonious displacement is defined with the equation

p(t) = Rysin(@t) (6)
. . k w . :
In the equations above circular frequency @ = ./— and load frequency [ =— are figurating.
m [0

Integrations of differential motion equations

The only possible way to solve nonlinear problems is numerical. There are two methods of direct integration of
differential motion equations. They are implicit and explicit methods of integration. The fundamental difference

between these methods is the fact that in the algorithm of implicit integration the equation for time step t,, qis

being solved, while in the case of explicit method the equation for time step t,, is being solved. Besides that, implicit

integration is unconditionally stable, regardless the size of the time step, whereas the explicit methods are
conditionally stable, since it is necessary to choose a very small time step.

In LS-DYNA software the algorithms for numerical integration are developed that are based on explicit methods, or
to say, on the central differences method. Practically, LS-DYNA uses the modified method of central differences.



Central differences

Discretization in method of central differences is presented on fig. 2.
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Figure 2 Discretization by central differences method

According to fig. 2, velocity and acceleration in the moment t,, are in the eqautions:

. 1
Up :_(Un+1 _un—l)

2At
. 1. .
,=—(U ,-u
n At( nat n—l) 0
u —L(u —2U,+U, 1)
n (At)2 n+1 n n-1

Equilibrium eqaution in the matrix form in the moment t,, is:
Mu, +Cu, +Ku, =P, (8)

where M is mass matrix, C is muffling matrix, K is stifness matrix, and P, is vector of outer forces. By
replacing equation (7) in the equilibrium equation (8),we get:

M +%AtC)un+l = At°P, ~ (A°K - 2M)u, —(M —%ATC)“n—l ®)

In the moment t = 0, considering the initial conditions u, and 1y, as well as iy, we get:

2
ll_]_ = llo —Atlio +7ﬁ0 (10)

As it was Iraedy said, method of central differences is conditonally stable, so the size of the time step is restricted.

Stability of central differences method

Stability of central differences method is defined by stability of the linear system. We are starting from coupled
system of linear motion equations in modal equations.

u=¢1X1+¢ZX2+....+¢NXN =®Px (11)

Vector of eigen value, @, is normalized regarding the mass matrix and stiffness matrix:



o"M® =1
(12)
KD = »®
With this normalization we get the equation for viscous muffling:
oTco=2:0 (13)
Motion equation for generalised displacements are:
X +25m%+0°Xx =Y, (14)
where
o’p =Y (15)
Equations for generalised velocities and displacements towards central differences are:

. Xni1 —Xn_1 .. Xniq —2Xn + Xp_
Xn — n+1 n-1 Xn — n+1 n n-1 (16)
2At At?

By replacing the equation 16 in motion equation 14, we get

2-w’At?  1-Eoht At?

Xng1 = Xp — Xp_1 + Yn
1+ SwAt 1+ SwAt 1+ SwAt (17)

Xp = Xn

Or to say, in the matrix form we have:
2542 2
Xn11 _ 2-0"At"  1-SoAt X, . At ¥
X, 1+ EwAt 1+ At X1 1+ EwAt |Tn (18)

1 0
X,.1 = AX, +LY,

0

where A is the operator of the motion equation integration. After m time steps and L =0 we get:
%, =A%, (19)

When M — oo, operator of the integration A has to stay restricted. By special decomposition of operator
decomposition A we get:

A" =(pTsp[" =pTI"P (20)

where P is orthonormed vector which contains eigen matrix A , and J is Jordan’s form with eigen matrix values
A on the diagonal. Stability criterium is defined through radius of eigen values spectrum, p(A), as:

lp(A) <1 (21)

This way, criterium for J™ to be restricted is fulfilled.
Eigen matrix values A for unmuffled system are obtained from: za nepriguseni sistem dobijaju se iz:



Det
01

2-w?At? -1 1 0
-1 =0 (22)
0
where A represents eigen matrix value A . Solving the equation 2.2.14 for A, and solving inequation:
A<1 (23)
We get a critical value of the time pace, for a system without muffling,

2
At <

(24)

Omax

For system with muffling, critical time step is

At <

(\/@ —é] (25)

By comparing the equations 24 and 25 it can be concluded that muffling reduces the size of critical time step.
The following is valid for the variable size of time step:

Dmax

At? 34—5;
;i

A (26)
Aty
0<s <1

Time integration is stable if the time step is being reduced. Time step is restricted by the biggest natural frequency
of the system.
Time integration in LS-DYNA software

Discretization in LS-DYNA software is done for actual geometry, instead for the displacement. The principle of
discretization is on the fig. 3.
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Figure 3 Discretization used in LS-DYNA software

Velocity is defined by the equation 27 and it is not a central difference, unlike the acceleration that represents the
central difference 28.



1

X =—-(X —X 27
n+1 Atn+1( n+1 n) (27)
., 1 . ;
X, =—(X —X
n At, ( n% _;) (28)

Motion equation for nonlinear case for the moment t,, is:
Mi, =P, -F™ - Cx,, (29)

where X, is unknown velocity in the moment t,,. As in central differences presented in the previous section, the

matrix A from the equation 2.2.12 . should be analysed here.
From the equation 29 we derive acceleration X, and from equations 28 and 27, X ; and X,,; should be
n+=
2

derived respectively. Considering the initial conditions in the equation 30., we get an equation 31 for the initial
acceleration X and velocity X .

2
Xo = Xp + Ustat
1, . . 30
2 2
5(‘0 =M _1(P0 + Pstat - FO(Ustat) _CVO)
(31)

1
Xl :VO +§At0).(.o
2

In the equations 30 and 31 X is the original geometry, U, is the initial displacement from the static load.

There are no precisely defined stability conditions for integration in nonlinear problems. LS-DYNA uses standard
method of central differences for boundary size approximation of the time step. Thus, LS-DYNA uses the size of
the time step as:

At =0.9Atitical (32)
Here Atgitical is the time step determined according to the equation 26, or:

ﬁ

a)i2

A (33)
At

0<6 <1

2
Atcrit <

For different types of elements time step is determined according to the equation form 34, where | is the element
length, and C is the sound velocity. Equations for the specific types of elements can be found in [3]

At =1 (34)
C



CONTACT IN LS-DYNA SOFTWARE

As it was mentioned in the introduction, LS-DYNA is world-known software used for nonlinear dynamic problem
solving. A big group of nonlinear problems represent as well contact problems. Contact analysis is the integral part
of many problems in the field of big deformations. Precise modeling of the contact pair between the bodies is a key
point considering the simulation possibilities using the finite element method.

There is a large number of contact types that are implemented or developed in LS-DYNA software. Certain types
are developed and are used in specific problems, such as airbag contacts, edge contacts, and other, but also the
types used in the general cases.

In LS-DYNA software, contact is defined by location identifying of sSlave segments that potentially penetrate into

master segment. Identification is done through the parts, segments, sets of segments, sets of nodes, etc. Check
of the penetration by using one of many algorithms is being done in each time step. In the case of penalty-based
contact, when it comes to penetration, resistance force is given that is proprtional to the penetration depth and
finally eliminates the penetration. If it is not emphasized differently, we are talking here about penalty-based contact
and besides it. there is the constrained-based contact as well. With this kind of contact a rigid body can be used,
but it is recommended for the density of the rigid body not to be the same as of a deformable body, so that the
force could be distributed realisticly.

In crash analyses, deformations can be very big and the assumptions about where or how the contact will happen

are difficult to make, sometimes even impossible. Thus, the automatic contact is recommended as a contact
where the orientation is not defined, or to say, where the penetration can be detected at both sides of shell
elements. Contact algorithm used in the case of automatic contact is better than the old type contact for working
with separated nets.

AN EXAMPLE OF WAGGON CRASH TEST

This part presents an example of waggon-cistern crash into the still rigid wall. We are starting from a ready-made
model, or in other words, from the finite element net that is made in FEMAP v9.0 software. Waggon crash is
simulated with the 80km/h velocity, into still rigid wall. Waggon model is presented on figs. 4 and 5.

Figure 4 Waggon-cistern. Finite element mesh. Diametric view.



Figure 5 Waggon-cistern. Finite element mesh. ZX view

Waggon and the wall are modeled by elements of the shell. The whole model has 54324 elements, or 53578
nodes. Cistern model consists of 39 parts, or in other words, properties, which are defined by elements of different
thickness shell, or by material that has the same ID as the property. The part determined by a property or material
with ID= 40 is rigid wall model.

The analyses is done in LS-DYNA software, and then the achieved results are imported into FEMAP. Results of the
analyses, or the field of effective stress in the last step of the analyses, are showed in figs. 6 — 8.
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Figure 6 Crash test waggon-cistern; Effective Stress Field — Dimetric



Output Set: Step 92 Time 0.0900001, Deformed(1282.): Total Translation, Contour: Plate Top VonMises Stress
Figure 7 Crash test waggon-cistern; Effective Stress Field — ZX view
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Quiput Set: Step 92 Time 0.0200001, Deformed(1282.): Total Translation, Contour: Plate Top VonMises Stress
Figure 8 Crash test waggon-cistern; Effective Stress Field — ZX detail

CONCLUSIONS

The main goal of this paper was the synthesis of knowledge and data, that will help new users to become familiar
with the functions and possibilities of LS-DYNA software, as one of the most developed and most frequently used
in the world.

Within the theoretical basis the important facts are presented conserning solution stability as well as the
mechanisms for determining the time step that will fulfill defined criteria. According to the analysed examples, the
conclusion is that the time step is extremely small in solving problems by using explicit method of integration. For
example, in the case of waggon-cistern crash into the still rigid barrier, time step was 10 seconds.

Further work on this topic would be expanding the field of use, primairly in the field of contact problems, but in the
other fields of LS-DYNA software usage as well. In the field of contact problem solving, capacity of the software is



extraordinary, so the parameters should be well adjusted to obtain reliable results. Besides that, the software also
supports solving of the multiphysical coupled problems, so that is the direction to follow.
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