SUSTAINABLE DEVELOPMENT OF AUTOMOTIVE INDUSTRY

BOOK OF ABSTRACTS

INTERNATIONAL CONGRESS MOTOR VEHICLES & MOTORS www.mvm.mfkg.kg.ac.yu

11111

111

8th - 10th OCTOBER 2008. KRAGUJEVAC SERBIA

Dept. Of MOTOR VEHICLES AND MOTORS, FME Kragujevac & Journal " Mobility &Vehicles Mechanics "

ZASTAVA R&D Institute

Faculty of Mechanical Engineering

International Congress – Motor Vehicles & Motors 2008 Sustainable Development of Automotive Industry

BOOK OF ABSTRACTS

October 2008. Kragujevac, Serbia

	Publisher:	Faculty of Mechanical Engineering in Kragujevac Serbia, 34000 Kragujevac, Street. Sestre Janjić6
	For Publisher:	Prof. dr Miroslav Babč – Dean
	Editors:	Prof. Dr Dragoljub Radonjč Prof. Dr Aleksandra Janković
	Technical preparation:	M. Sc. Danijela Miloradović, assist. M. Sc Jasna Glišović, assist. Vesna Maksimović, ME
	Print:	INTERAGENT Grafiĉki centar, Kragujevac ISBN 978-86-86663-39-9
	Year of publication: Number of copies printed: CIP - Katalogizacija u pu	
	Narodna biblioteka Srbije	
6	Narodna biblioteka Srbije 29.3(048)	
	Narodna biblioteka Srbije 29.3(048) 21.43(048)	
6 II S V D Z	29.3(048) 21.43(048) ITERNATIONAL Congress- Motor ustainable Development of Automotive ehicles & Motors 2008, [8th-10th] Octo lepartment for MotorVehicles and Motor astava Automobiles; editors Dragoljub	
6 II S V D Z F	29.3(048) 21.43(048) ITERNATIONAL Congress- Motor ustainable Development of Automotive ehicles & Motors 2008, [8th-10th] Octo lepartment for MotorVehicles and Motor astava Automobiles; editors Dragoljub	e, Beograd Vehicles & Motors (2008; Kragujevac) Industry: book of abstracts / International Congress – Motor ber 2008., Kragujevac, Serbia; [congress organizers rs FME, International Journal "Mobility and Vehicle Mechanics", Radonjić, Aleksandra Janković]. – Kragujevac:
6 II S V D Z F T	29.3(048) 21.43(048) NTERNATIONAL Congress- Motor ustainable Development of Automotive ehicles & Motors 2008, [8th-10th] Octol epartment for MotorVehicles and Moto satava Automobiles; editors Dragoljub aculty of Mechanical Engineering, 2008	e, Beograd Vehicles & Motors (2008; Kragujevac) Industry: book of abstracts / International Congress – Motor ber 2008., Kragujevac, Serbia; [congress organizers rs FME, International Journal "Mobility and Vehicle Mechanics", Radonjić, Aleksandra Janković]. – Kragujevac:
6 II S V U D Z Z F F T K 1 1 2 3 3 a	29.3(048) 21.43(048) ITERNATIONAL Congress- Motor ustainable Development of Automotive ehicles & Motors 2008, [8th-10th] Octol epartment for Motor/Vehicles and Motor astava Automobiles; editors Dragoljub aculty of Mechanical Engineering, 2008 iraž 300. — Napomene uz tekst.	e, Beograd Vehicles & Motors (2008; Kragujevac) Industry: book of abstracts / International Congress – Motor ber 2008., Kragujevac, Serbia; [congress organizers rs FME, International Journal "Mobility and Vehicle Mechanics", Radonjić, Aleksandra Janković]. – Kragujevac: 8 (Kragujevac: Interagent). – 82str. : 24 cm ragujevac) otors icle Mechanics (Kragujevac)

Copyright © 2008 Faculty of Mechanical Engineering in Kragujevac

Publishing of this book is supported by:

Ministry of Science and Technological Development, Republic of Serbia

Scientific Board

President:	Prof.Dr Dragoljub Radonți FME Kragujevac
Vice-president:	Prof. Dr Aleksandra Janković, FME Kragujevac
Secretaries:	M. Sc. Danijela Miloradovć, FME Kragujevac M. Sc Jasna Glišovć., FME Kragujevac.
Members:	Prof. Dr G. Belingardi, Italy Prof. Dr F.Časnji, FTS Novi Sad, Serbia Ac. Prof. Dr M. Demič, FME Kragujevac, Serbia Prof. Dr R.Durković, Montenegro Prof. Dr I. Filipović, Federation B&H Prof. Dr K. Golec, Poland Prof. Dr D. Gruden, Germany Prof. Dr D. Gruden, Germany Prof. Dr A. Grujović, FME Krgujevac, Serbia Dr Z. Jovanović, Institute "Vinĉa", Serbia Prof. Dr B. Kegl, Slovenia Dr M. Kokić, "Zastava Vehicles Group", Serbia Prof. Dr B. Kegl, Slovenia Prof. Dr B. Krgujevac, Serbia Prof. Dr B. Krstić, FME Kragujevac, Serbia Prof. Dr J. Lukić, FME Kragujevac, Serbia Dr M. Milovanović, "Zastava automobiles", Serbia Prof. Dr J. Lukić, FME Kragujevac, Serbia Dr M. Milovanović, "Zastava automobiles", Serbia Prof. Dr J. Lukić, Montenegro Prof. Dr R. Nikolić, Montenegro Prof. Dr R. Nikolić, FAE Kragujevac, Serbia Prof. Dr S. Petrović, FME Kragujevac, Serbia Prof. Dr S. Petrović, FME Kragujevac, Serbia Prof. Dr R. Radonjić, FME Kragujevac, Serbia Prof. Dr Z. Samaras, Greece Ac. Prof. Dr D.Simić, FME Kragujevac, Serbia Prof. Dr C. Spentzas, Greece Prof. Dr A. Stefanović, FME Niš, Serbia Ac. Prof. Dr V. E. Tolsky, Russia Prof. Dr V. V. E. Tolsky, Russia Prof. Dr S. Veinović, FME Kragujevac, Serbia

Organizational Board

President:	Vladeta Kostić, "Zastava Automobiles Marketing office"
Secretaries:	Milan Stanojević, "Zastava Automobiles - Car development office ", Zoran Petrovč, "Zastava Automobiles - Marketing office"
Members:	
	Prof. Dr Aleksandra Janković, FME Kragujevac
	Milan Popović, "Zastava Automobiles - Car development office "
	M. Sc. Zoran Bogdanović, "Zastava Auto"
	Dr. Branislav Nedeljkovć, " Zastava Automobiles"
	Zoran Stošč, "Zastava AGeM"

M. Sc. Vladimir Vučković, City Hall of Kragujevac M. Sc. Dušan Puta Regional Economic Council Kragujevac

Congress Organizers

□Department for Motor Vehicles and Motors, FME Kragujevac □International Journal "Mobility & Vehicle Mechanics" □"Zastava Automobiles – R & D Institute "

Congress Sponsors

U Government of the Republic of Serbia

Zastava Automobiles "

- City Hall of Kragujevac
- Faculty of Mechanical Engineering

Content

Predgovor	1
Foreword	2

Introductory Lectures

Paper code	Author(s)	Introductory lecture title	Page
MVM2008IL01	Dusan Gruden	AUTOMOBILE DEVELOPMENT FOLLOWED BY PROPHECY OF ECOLOGICAL DISASTERS	[`] 5
MVM2008IL02	Giovanni Belingardi Giorgio Chiandussi	DESIGN OPTIMISATION METHODOLOGIES AND THEIR APPLICATION IN THE STRUCTURAL FIELD	6
MVM2008IL03	Dr. Dobrivoje Ninkovic	LARGE ENGINE TURBOCHARGING SIMULATION: THE ROLE,STATE OF THE ART,AND DEVELOPMENT TRENDS	7

Section

Power Train Technology

Paper code	Author(s)	Lecture title	Page
MVM20080001	Catalin V. Zaharia Adrian C. Clenci Ion Tabacu Georges Descombes Pierre Podevin	A STUDY ON THE EFFECTS OF GEAR CHANGING MOMENTS UPON A VEHICLE'S PERFORMANCES DURING SUDDEN ACCELERATIONS	11
MVM20080002	Breda Kegl	EXPERIMENTAL INVESTIGATION OF INJECTION CHARACTERISTICS USING BIODIESEL FUEL AT LOW TEMPERATURE	12

Paper code	Author(s)	Lecture title	Page
MVM20080004	D. Ostoia V. D. Negrea A. Tokar A. Negoitescu	RESEARCH REGARDING THE WORK CONDITIONS AND THE BEHAVIOUR IN TIME OF THE DIESEL ENGINE PISTONS RINGS	13
MVM20080009	Rodica NICULESCU Viorel NICOLAE Dumitru CRISTEA Adrian-Constantin CLENCI4, Ionel VIERU	CONSIDERATIONS ON THE SPECIALIST'S OPINIONS CONCERNING USE OF BIOFUELS FOR ROAD TRANSPORT	14
MVM20080010	MSc Saša Mitić Dr Branislav Rakičević MSc Goran Vorotović BSc Milan Milic	MODELLING OF CHARACTERISTIC SEGMENTS OF BUS SUPERSTRUCTURE AND ITS BEHAVIOUR ACCORDING TO UN/ECE REGULATION 66/01	15
MVM20080011	Bieniek Andrzej Jantos Jerzy Mamala Jarosław	INFLUENCE OF THRUST FORCE CONTROL ON POLLUTANT EMISSION AND FUEL CONSUPTION IN PASSENGER CAR WITH CVT POWERTRAIN	16
MVM20080017	Boran Pikula Ivan Filipović Dževad Bibić	CONTRIBUTION TO DETERMINATION OF FUEL HYDRODYNAMIC CHARACTERISTICS INSIDE INJECTOR OF DIESEL ENGINE	17
MVM20080019	Borovčanin Dragan Pantić Mladen	TRACK PROPULSION, APPLICATION ON THE AMPHIBIOUS INFANTRY COMBAT VEHICLES	18
MVM20080023	Jarosław Mamala Jerzy Jantos KrzysztoPraŜnowski	SYSTEM OF AN AUTOMATIC GEAR CHANGE FOR THE MANUAL A GEARBOX	19
MVM20080024	Jaroslav Mamala Jerzy Jantos Andrzej Bieniek Sebastian Brol	THE POWERTRAIN MECHANICAL INERTIA OF A PASSENGER CAR IN THE PROCESS OF ACCELERATING	20
MVM20080028	Mladen Pantić Miodrag Milić Slavko Muždeka	GEAR MESH EFFICIENCY ANALYSIS OF PLANETARY GEAR TRAIN	21

Paper code	Author(s)	Lecture title	Page
MVM20080030	Nedka Stancheva Hristo Beloev Dimitar Stanchev	VALIDITY OF THE PARAMETERS OF METRIC SYSTEM FOR WORKING REGIME OF AGRICULTURAL MOBILE MACHINES OVER FUEL CONSUMPTION	22
MVW20080036	Lozica Ivanović Danica Josifović	METHODOLOGY FOR SELECTION OF THE OPTIMAL TROCHOIDAL GEAR TOOTH PROFILE AT THE LUBRICATING PUMPS	23
MVM20080040	L.Savin, R. Nikolic T. Furman, M. Tomic M. Simikic	INFLUENCE OF DIFFERENT FUEL TYPES ON THE CHANGE OF THEIR CONSUMPTION	24
MVM20080041	M. Tomic , T. Furman R. Nikolic, L.Savin M. Simikic	INFLUENCE OF DIFFERENT FUEL TYPES ON THE CHANGE OF EXHAUST GAS EMISSIONS	25
MVM20080046	Dragoljub Radonjić Milan Milovanović Saša Spasojević	ANALYSIS OF GAS FUEL INJECTION SYSTEMS CHARACTERISTICS FOR "ZASTAVA" VEHICLES	26
NVM20080049	Jerzy Dutczak	APPLICATION OF THE TEOM ANALYSER TO SI ENGINE PARTICULATES EMISSIONS MEASUREMENT	27
MVM20080050	N. Miljić	MATHEMATICAL MODEL OF A VARIABLE SPEED GOVERNOR FOR DISTRIBUTOR INJECTION PUMP	28
NVM20080051	Radinko Gligorijević, Jeremija Jevtić, Djuro Borak	SELECTION STRATEGY OF MATERIALS IN ENGINE DESIGN	29
NVM20080053	Zlatomir Živanović Zoran Jovanović Đorđe Diligenski Milan Tasić Srbislav Kaličanin	SOME PROBLEMS IN INSPECTION OF FULFILMENT OF SAFETY REQUIREMENTS OF A VEHICLEPOWERED BY CNG ENGINE	30

Paper code	Author(s)	Lecture title	Page
MVM20080054	Angel Dimitrov	PERSPECTIVES AND POSSIBILITIES FOR NATURAL GAS USAGE AS ICE FUEL	31
MVM20080055	Rosen Hristov Angel Dimitrov Krasimir Bogdanov	INDICATOR PARAMETERS OF DIESEL ENGINE D3900 CONVERTED FOR WORKING WITH CNG	32
MVM20080056	Krassimir Bogdanov	STUDY OF VARIATION IN COMBUSTION ON HIGH-SPEED DIESEL ENGINE WITH DI "ROVER MAESTRO 2.0D" WHEN ADDED CNG	33
MVM20080057	Krzysztof Sliwinski	PREPARATION OF INVESTIGATION OF SPARK IGNITION ENGINE FED WITH OXYGEN ENRICHED AIR-FUEL MIXTURE	34
MVM20080059	Svetlana Vukas Branka Grozdanić Velimir Petrović	TEST OF TRANSMISSION OILS	35
MVM20080061	Radivoje Pešić Snežana Petković Golec Kazimierz Emil Hnatko Stevan Veinović	ADVANCE IN INTERNAL COMBUSTION ENGINES, BIOFUELS AND DELUSIONS OF THE "KYOTO PROTOCOL"	36
MVM20080065	Dautović Jovo Đurković Vlado	MEASUREMENT OF REVOLVING MOMENT IN SHAFT BY NONCONTACT WAY	37
MVM20080070	Radomir Pavlović Radivoje Pešić	MODELING OF TWO-PHASE DROPLET OF CUMMINS SPRAY PUMP-INJECTOR DEVELOPMENT	38

Section

Vehicle Design and

Manufacturing

aper code	Author(s)	Lecture title	Page
MVM20080007	Pandelica lonut Pandelica Amalia Niculescu Rodica	THE RELATIONSHIP BETWEEN HRM AND ORGANIZATIONAL PERFORMANCE - AN ANALYSIS METHOD FROM AUTOMOTIVE INDUSTRY PERSPECTIVE	41
MVM20080014	Neacsu Catalin Vieru Ionel Mujea Gelu Niculescu Rodica Nicolae Viorel	NON-LINEAR STATIC ANALYZE OF THE STEERING KNUCKLE ARM	42
MVM20080016	Miljko Kokić Milosav Djordjević Snežana Vrekić	BENEFITS OF VEHICLES WEIGHT REDUCTION WITH OF ALUMINIUM	43
MVM20080018	Boran Pikula Elmedin Mešić Mirzet Hodžlć	DETERMATION OF AIR DRAG COEFFICIENT OF VEHICLE MODELS	44
MVM20080020	Borovčanin Dragan Pantić Mladen	HULL DESIGNING FOR AMPHIBIOUS INFANTRY COMBAT VEHICLES	45
MVM20080021	Pantić Mladen Tajević Milenko Janković Goran	IDEA AND REALIZATION OF COMBAT VEHICLES CONVERSION WITH POSSIBILITY OF APPLYING ON CIVILIAN VEHICLES FOR SPECIAL NEEDS	46
MVM20080029	Dr Milosav Djordjevic Dr Miljko Kokic DiplIng. Neda Djordjevic	SOME METHODS FOR MATERIALS AND ENERGY RECOVERY FROM AUTOMOTIVE SHREDDER RESIDUE	47
MVM20080032	Dobrescu Ion	ASPECTS CONCERNING THE COLD PLASTIC FORMING BY INTERMITTENT STRIKE	48

.

aper code	Author(s)	Lecture title	Page
MVM20080035	Giovanni Belingardi Jovan Obradović	ANALYSIS OF CAR BODY JOINTS SUBJECTED TO DIFFERENT LOADING CONDITIONS	49
MVM20080038	Elena Neagu	PRIORITY INTERSECTIONS, GAP AND LAG ACCEPTANCE	50
MVM20080052	Naim H. Afgan Nickolay Hovanov Paul M. Andre	SUSTAINABLE MANAGEMENT ORGANIZATION WITH EXAMPLE OF PASSENGER CAR SUSTAINABILITY ASSESSMENT	51
MVM20080062	Milić Živorad Raičević Mile	CLASSIFICATION AND TENDENCIES IN DEVELOPMENT OF THE SPECIAL AND SUPERSTRUCTURED COMMERCIAL VEHICLES	52
MVM20080069	Rade Đukić Aleksandra Janković Milan Milovanović	THE ANALYSIS OF VERTICAL FORCES AND DISLOCATIONS AT DYNAMIC TESTS OF VEHICLE CAR BODIES IN THE LABARATORY	53
MVM20080072	Dragan Čukanović Miroslav Živković Snežana Vulović Aleksandar Dišić	STATIC AND FATIGUE STRENGTH ASSESSMENT OF A HOB ON THE TRUCK'S LEFT WHEEL	54
MVM20080073	Nenad Đorđević Vladimir Milovanović Miroslav Živković	EXPLICIT DYNAMICS ANALYSIS IN WAGGON CRASH APPLICATION	55
MVM20080074	Milan Blagojević Dragan Rakić Miroslav Živković Zoran Bogdanović	DIGITIZING AND OPTICAL MEASURING IN AUTOMOTIVE INDUSTRY	56
MVM20080075	Jasna Glišović Danijela Miloradović	VIRTUAL REALITY FOR EFFICIENT VEHICLE LIFECYCLE MANAGEMENT	57

Section

Vehicle Dynamics and Intelligent Control Systems

Paper code	Author(s)	Lecture title	Page
MVM20080003	Mile S. Šiljak	AEROMECHANICS BASES TO PASSENGER CARS	61
MVM20080006	Rajko Radonjic	IDENTIFICATION OF TIRE – ROAD INTERACTION	62
MVM20080012	Aleksandar Kostic Mlan Kosevski Darko Danev Igor Gjurkov	ANALYSES OF THE DYNAMICAL BEHAVIOR OF VEHICLE SPRUNGED AND UNSPRUNGED MASS THROUGH VIRTUAL SIMULATION AND EXPERIMENTS	63
MVM2008022	Vieru Ionel Neacsu Catalin Niculescu Ioan Adrian Mujea Gelu Nicolae Viorel	CONSIDERATIONS OVER CALCULATION OF THE STEERING COLUMN USING FEM	64
MVM20080034	Olgica Lazarevic Milan Krsmanovic Sreten Peric	ANALYSIS OF DYNAMIC BEHAVIOR GENERATORS OF HYDRAULIC EXCAVATOR	65
MVM20080037	Dr Eng. Adrian-Ioan NICULESCU Dr Eng. Dan DUMITRIU Dr Mat. Tudor SIRETEANU Dr Eng. Ionel VIERU	PITCH AND ROLL STABILITY INCREASING WITH SUSPENSION "VZN" SHOCK ABSORBER	66
MVM20080063	Mile Raicevic Živorad Milic Predrag Milenkovic Adrian Cipleu	CORRELATIONS IN DIFFERENT BRAKE SYSTEM CONFIGURATIONS DURING STRAIGHT-LINE BRAKING PERFORMED BY AN ABS EQUIPED VEHICLE	67

Paper code	Author(s)	Lecture title	Page
MVM20080066	C. Velkov	SPECIFIC FEATURES OF TRIBOLOGICAL CONDITION OF THE BRAKE SYSTEM'S FRICTION GROUPS	68
MVM20080068	L. Kunchev G. Yanachkov	INVESTIGATION THE CAR DYNAMIC BEHAVIOR WITH ARM SUSPENSION	69

Section D

Driver/Vehicle Interface, Information and Assistence Systems

Paper code	Author(s)	Lecture title	Page
MVM20080039	Saša Jovanović Dragan Taranović Andrija Savčić Milan Đorđević Zoran Marković	CAN-BUS IN AUTOMOTIVE APPLICATION	73
MVM20080058	Dragan Ružić	CFD IN AUTOMOTIVE INTERIOR APPLICATION - NUMERICAL SIMULATION OF WINDSHIELD DEFROSTER AIRFLOW	74

Section

Transport Challenges in Emerging Economies

Paper code	Author(s)	Lecture title	Pag
MVM20080008	Pandelica Amalia Pandelica Ionut Niculescu Rodica	MARKET ORIENTATION CONCEPT APPLIED IN AUTOMOTIVE INDUSTRY – A FRAMEWORK MODEL OF IMPLEMENTATION FROM VALUE CHAIN PERSPECTIVE	77
MVM20080026	Jelena Eric Obucina Stanimir Cajetinac	SERVICE OF HYDRAULIC SERVO STEERING GEAR	78
MVM20080033	Vas ko Dobrev Sve tlin Stoyanov Antoane ta Dobreva Ivan Spasov	TRANSMISSION ELEMENTS FOR TRANSPORT MACHINES	79
MVM20080060	Perić Sreten Vuruna Mladen Krsmanović Milan	LUBRICANTS MONITORING	80
MVM20080064	Živanić Dragoslav Đurković Vlado	ANALYSIS OF LAUNCHING DEVICE AT VEHICLE RESPONSES TO RANDOM STIMULATIONS METHODS	81
MVM20080067	Assoc. prof. Dr. Stoilova Svetla	METHOD FOR OPTIMIZATION OF THE INTERACTION BETWEEN THE TRANSPORT VEHICLES IN THE TRANSPORT CENTERS	82

FOREWORD

Traditional organizing of international "MVM" Symposium became the brand Faculty of Mechanical Engineering and the University from Kragujevac. This ye also, a considerable number of papers from the country and from abroad were i omitted, as same as the traditional support from Ministry of Science, the city Kragujevac, our friends and contributors in manufacturing or servicing activit correlated to automobiles.

This time also, the papers from many scientists and researchers in the field motor vehicles gave a specific impression to this meeting, though the presence increased number of papers from similar branches is also noticeable. Mo vehicles from their origin had a considerable attention both from the mechanic engineers and the business people, and in the process of vehicles development a implemented scientific achievements from various scientific fields. Motor vehicle have a wide user population, and they, with their own demands, impose nuclasses and new car categories. According to technical and technological tre development, same as with different needs of the customers, a focus of a manufacturers is displaced towards to specific car types or car classes, but the a in general, as the actuality, a challenge and the need is still at the "stage".

It is quite clear that the car as the multidisciplinary object of progress and resear from one side and as the object of need or prestige from the other one, is actua the target for development and investment. Besides, car is the means th connecting distant destinations more and more faster, and at the same time it h improved mobile performances within the city driving, and therefore as the object traffic planning and traffic regulation take, without any doubt, the most signific place. Therefore there is the tendency of spreading of the participated par outlines, namely, except of vehicles mechanics and the processes within the engi itself, a certain area is dedicated to fields such are management, recyclir regulations, auto-electronic, economy, traffic.

In Kragujevac, October 8th-10th, 2008

Scientific and Organizational Board MVM 2008

2

International Congress Motor Vehicles & Motors 2008

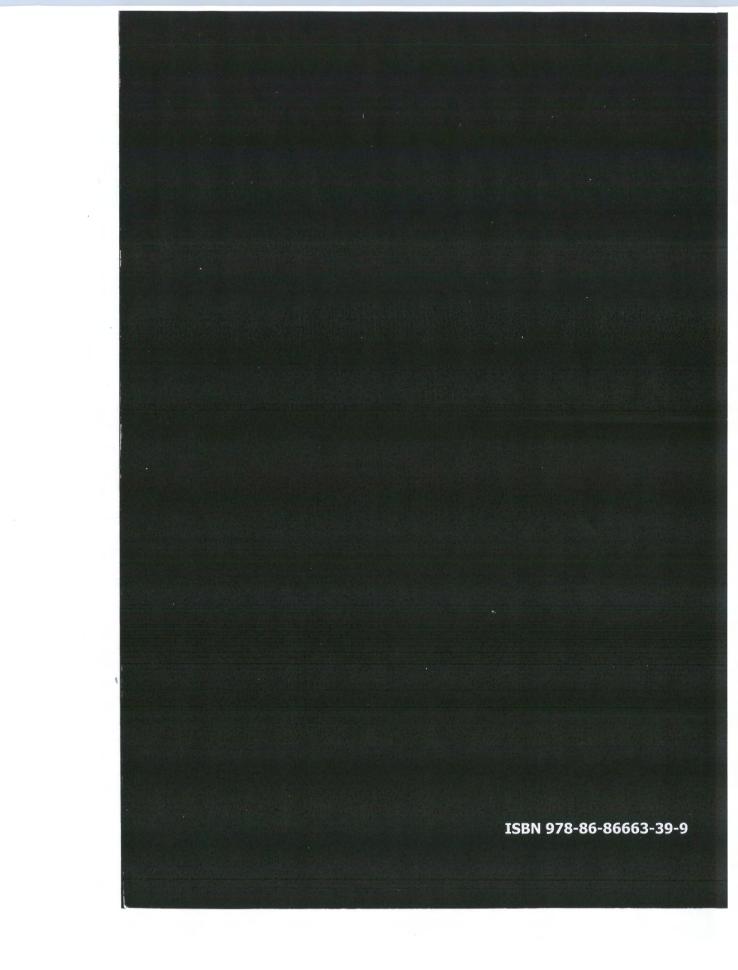
Kragujevac, October 8th-10th, 2008

MVM20080073

Nenad Đorđević ¹ Vladimir Milovanović ² Miroslav Živković ³

EXPLICIT DYNAMICS ANALYSIS IN WAGGON CRASH APPLICATION

ABSTRACT: This paper represents a set of knowledge and experience that the authors obtained through becoming acquainted with software package LS-DYNA, as well as with the kinds of problems that can be successfully be solved in this software. Due to developed algorithms for contact problem solving, LS-DYNA found a huge practice in the car industry, especially in the crash tests simulating. This paper contains analysis of the waggon-cistern crash into a still rigid barrier.


KEYWORDS: explicit dynamic, crash analysis, FEM

55

¹ Nenad Đorđević, School of Engineering Cranfield University, Cranfield Bedfordshire MK43 0AL England, UK, n.djordjevic@Cranfield.ac.uk

² Vladimir Milovanović, Faculty of Mechanical Engineering, Sestre Janjić 6, 34000 Kragujevac, vladicka@kg.ac.yu

³ Miroslav Živković, PhD, Faculty of Mechanical Engineering, Sestre Janjić 6, 34000 Kragujevac, zile@kg.ac.yu

International Congress Motor Vehicles & Motors 2008

Kragujevac, October 8th-10th, 2008

MVM20080073

Nenad Đorđević¹ Vladimir Milovanović² Miroslav Živković³

EXPLICIT DYNAMICS ANALYSIS IN WAGGON CRASH **APPLICATION**

ABSTRACT: This paper represents a set of knowledge and experience that the authors obtained through becoming acquainted with software package LS-DYNA, as well as with the kinds of problems that can be successfully be solved in this software. Due to developed algorithms for contact problem solving, LS-DYNA found a huge practice in the car industry, especially in the crash tests simulating. This paper contains analysis of the waggon-cistern crash into a still rigid barrier.

KEYWORDS: explicit dynamic, crash analysis, FEM

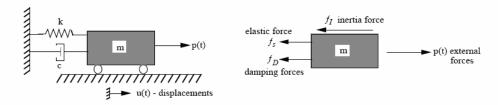
INTRODUCTION

LS-DYNA is multipurpose software for explicit and implicit numerical integration of construction dynamic analyses and represents one of the most famous and best softwares that solves multiphysical problems.

The first part shortly presents the theoretical basis that the algorithms implemented in the software are based on. At the beginning, motion equations are presented and then the method of central differences is shortly described, so in the end we reach the modified method which is used in the software and the criteria to be fulfilled. In the very end of the theoretical part, there are basis of contact problems theory.

The second part of the paper processes the example of crash analises, waggon-cistern crash into a rigid wall. The end of the paper is a general impression based on the up-to-date experience as well as some guidelines for the future work/tasks.

THEORETICAL BASIS


System motion equations

We observe a simple system with one degree of freedom, fig. 1, as well presenting the forces that influence the mass m.

¹ Nenad Đorđević, School of Engineering Cranfield University, Cranfield Bedfordshire MK43 0AL England, UK, n.djordjevic@Cranfield.ac.uk

² Vladimir Milovanović, Faculty of Mechanical Engineering, Sestre Janjić 6, 34000 Kragujevac, vladicka@kg.ac.yu

³ Miroslav Živković, PhD, Faculty of Mechanical Engineering, Sestre Janjić 6, 34000 Kragujevac, zile@kg.ac.yu

Figure 1 System with muffling with one degree of freedom; figure of system and forces that influence it Equilibrium equation, derived from the use of d Alamber's principle is [1, 2, 3]:

$$f_I + f_D + f_S = p(t) \tag{1}$$

where the inertial force f_I , muffling f_D and rigidness force f_S are presented with the equations (2)

$$f_{I} = m\ddot{u} \qquad \ddot{u} = \frac{d^{2}u}{dt^{2}} \quad \ddot{u} - acceleration$$

$$f_{D} = m\dot{u} \qquad \dot{u} = \frac{du}{dt} \quad \dot{u} - velocity$$

$$f_{S} = ku \quad u - displacement \quad k - stiffness$$
(2)

Motion equation for linear problems is presented with equation (3), whereas the equation (4) is for nonlinear case:

$$m\ddot{u} + c\dot{u} + ku = p(t) \tag{3}$$

$$m\ddot{u} + c\dot{u} + f_S(u) = p(t) \tag{4}$$

Analitical solution is possible to determine only in linear differential motion equation. Dynamic response of unmuffled system under the influence of harmonious load is presented with equation:

$$u(t) = u_0 \cos(\omega t) + \frac{\dot{u}_0}{\omega} \sin(\omega t) + \frac{p_0}{k} \frac{1}{1 - \beta^2} (\sin(\overline{\omega} t) - \beta \sin(\omega t))$$
(5)

where u_0, \dot{u}_0 is the initial displacement and initial velocity, $\frac{p_0}{k}$ is static displacement, $\frac{1}{1-\beta^2}$ is a dynamic factor.

In this case, harmonious displacement is defined with the equation

$$p(t) = P_0 \sin(\overline{\omega}t) \tag{6}$$

In the equations above circular frequency $\omega = \sqrt{\frac{k}{m}}$ and load frequency $\beta = \frac{\overline{\omega}}{\omega}$ are figurating.

Integrations of differential motion equations

The only possible way to solve nonlinear problems is numerical. There are two methods of direct integration of differential motion equations. They are implicit and explicit methods of integration. The fundamental difference between these methods is the fact that in the algorithm of implicit integration the equation for time step t_{n+1} is being solved, while in the case of explicit method the equation for time step t_n is being solved. Besides that, implicit integration of the analysis are the equation of the solve of the solv

integration is unconditionally stable, regardless the size of the time step, whereas the explicit methods are conditionally stable, since it is necessary to choose a very small time step.

In LS-DYNA software the algorithms for numerical integration are developed that are based on explicit methods, or to say, on the central differences method. Practically, LS-DYNA uses the modified method of central differences.

Central differences

Discretization in method of central differences is presented on fig. 2.

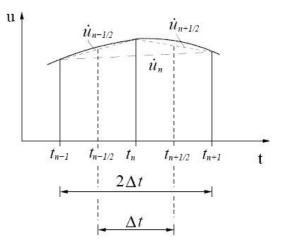


Figure 2 Discretization by central differences method

According to fig. 2, velocity and acceleration in the moment t_n are in the eqautions:

$$\dot{u}_{n} = \frac{1}{2\Delta t} (u_{n+1} - u_{n-1})$$

$$\ddot{u}_{n} = \frac{1}{\Delta t} (\dot{u}_{n+\frac{1}{2}} - \dot{u}_{n-\frac{1}{2}})$$

$$\ddot{u}_{n} = \frac{1}{(\Delta t)^{2}} (u_{n+1} - 2u_{n} + u_{n-1})$$
(7)

Equilibrium eqaution in the matrix form in the moment t_n is:

$$\mathbf{M}\ddot{\mathbf{u}}_{\mathbf{n}} + \mathbf{C}\dot{\mathbf{u}}_{\mathbf{n}} + \mathbf{K}\mathbf{u}_{\mathbf{n}} = \mathbf{P}_{\mathbf{n}} \tag{8}$$

where M is mass matrix, C is muffling matrix, K is stifness matrix, and P_n is vector of outer forces. By replacing equation (7) in the equilibrium equation (8),we get:

$$(\mathbf{M} + \frac{1}{2}\Delta t\mathbf{C})\mathbf{u}_{\mathbf{n}+1} = \Delta t^2 \mathbf{P}_{\mathbf{n}} - (\Delta t^2 \mathbf{K} - 2\mathbf{M})\mathbf{u}_{\mathbf{n}} - (\mathbf{M} - \frac{1}{2}\Delta t\mathbf{C})\mathbf{u}_{\mathbf{n}-1}$$
(9)

In the moment t = 0, considering the initial conditions \mathbf{u}_0 and $\dot{\mathbf{u}}_0$, as well as $\ddot{\mathbf{u}}_0$, we get:

$$\mathbf{u}_{-1} = \mathbf{u}_0 - \Delta t \dot{\mathbf{u}}_0 + \frac{\Delta t^2}{2} \ddot{\mathbf{u}}_0 \tag{10}$$

As it was lraedy said, method of central differences is conditonally stable, so the size of the time step is restricted.

Stability of central differences method

Stability of central differences method is defined by stability of the linear system. We are starting from coupled system of linear motion equations in modal equations.

$$\mathbf{u} = \phi_1 x_1 + \phi_2 x_2 + \dots + \phi_N x_N = \mathbf{\Phi} \mathbf{x}$$
(11)

Vector of eigen value, $\mathbf{\Phi}$, is normalized regarding the mass matrix and stiffness matrix:

$$\Phi^{T} \mathbf{M} \Phi = \mathbf{I}$$

$$\Phi^{T} \mathbf{K} \Phi = \omega^{2}$$
(12)

With this normalization we get the equation for viscous muffling:

$$\mathbf{\Phi}^{\mathrm{T}}\mathbf{C}\mathbf{\Phi} = 2\xi\omega \tag{13}$$

Motion equation for generalised displacements are:

$$\ddot{x} + 2\xi_i \omega_i \dot{x} + \omega^2 x = Y_i \tag{14}$$

where

$$\mathbf{\Phi}^{\mathrm{T}}\mathbf{p} = \mathbf{Y} \tag{15}$$

Equations for generalised velocities and displacements towards central differences are:

$$\dot{x}_n = \frac{x_{n+1} - x_{n-1}}{2\Delta t} \quad \ddot{x}_n = \frac{x_{n+1} - 2x_n + x_{n-1}}{\Delta t^2} \tag{16}$$

By replacing the equation 16 in motion equation 14, we get

$$x_{n+1} = \frac{2 - \omega^2 \Delta t^2}{1 + \xi \omega \Delta t} x_n - \frac{1 - \xi \omega \Delta t}{1 + \xi \omega \Delta t} x_{n-1} + \frac{\Delta t^2}{1 + \xi \omega \Delta t} Y_n$$

$$x_n = x_n$$
(17)

Or to say, in the matrix form we have:

$$\begin{bmatrix} x_{n+1} \\ x_n \end{bmatrix} = \begin{bmatrix} \frac{2 - \omega^2 \Delta t^2}{1 + \xi \omega \Delta t} & -\frac{1 - \xi \omega \Delta t}{1 + \xi \omega \Delta t} \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_n \\ x_{n-1} \end{bmatrix} + \begin{bmatrix} \frac{\Delta t^2}{1 + \xi \omega \Delta t} \\ 0 \end{bmatrix} Y_n$$

$$\hat{\mathbf{x}}_{n+1} = \mathbf{A} \hat{\mathbf{x}}_n + \mathbf{L} \mathbf{Y}_n$$
(18)

where A is the operator of the motion equation integration. After m time steps and L = 0 we get:

$$\hat{\mathbf{x}}_m = \mathbf{A}^m \hat{\mathbf{x}}_0 \tag{19}$$

When $m \to \infty$, operator of the integration **A** has to stay restricted. By special decomposition of operator decomposition **A** we get:

$$\mathbf{A}^{m} = \left(\mathbf{P}^{T} \mathbf{J} \mathbf{P}\right)^{m} = \mathbf{P}^{T} \mathbf{J}^{m} \mathbf{P}$$
(20)

where **P** is orthonormed vector which contains eigen matrix **A**, and **J** is Jordan's form with eigen matrix values **A** on the diagonal. Stability criterium is defined through radius of eigen values spectrum, $\rho(A)$, as:

$$\left|\rho(A)\right| \le 1 \tag{21}$$

This way, criterium for \mathbf{J}^m to be restricted is fulfilled.

Eigen matrix values A for unmuffled system are obtained from: za neprigušeni sistem dobijaju se iz:

$$Det\left(\begin{vmatrix} 2-\omega^2 \Delta t^2 & -1\\ 1 & 0 \end{vmatrix} - \lambda \begin{vmatrix} 1 & 0\\ 0 & 1 \end{vmatrix}\right) = 0$$
(22)

where λ represents eigen matrix value **A**. Solving the equation 2.2.14 for λ , and solving inequation:

$$\lambda \le 1$$
 (23)

We get a critical value of the time pace, for a system without muffling,

$$\Delta t \le \frac{2}{\omega_{\max}} \tag{24}$$

For system with muffling, critical time step is

$$\Delta t \le \frac{2}{\omega_{\max}} \left(\sqrt{1 + \xi^2} - \xi \right) \tag{25}$$

By comparing the equations 24 and 25 it can be concluded that muffling reduces the size of critical time step. The following is valid for the variable size of time step:

$$\Delta t^{2} \leq \frac{4\delta_{i}}{\omega_{i}^{2}}$$

$$\delta_{i} = \frac{\Delta t_{i}}{\Delta t_{i-1}}$$

$$0 \leq \delta_{i} \leq 1$$
(26)

Time integration is stable if the time step is being reduced. Time step is restricted by the biggest natural frequency of the system.

Time integration in LS-DYNA software

Discretization in LS-DYNA software is done for actual geometry, instead for the displacement. The principle of discretization is on the fig. 3.

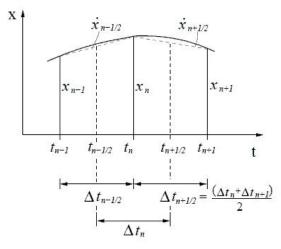


Figure 3 Discretization used in LS-DYNA software

Velocity is defined by the equation 27 and it is not a central difference, unlike the acceleration that represents the central difference 28.

$$\dot{x}_{n+1} = \frac{1}{\Delta t_{n+1}} (x_{n+1} - x_n)$$
(27)

$$\ddot{x}_n = \frac{1}{\Delta t_n} (\dot{x}_{n+\frac{1}{2}} - \dot{x}_{n-\frac{1}{2}})$$
(28)

Motion equation for nonlinear case for the moment t_n is:

$$\mathbf{M}\ddot{\mathbf{x}}_{n} = \mathbf{P}_{n} - \mathbf{F}_{n}^{\text{int}} - \mathbf{C}\dot{\mathbf{x}}_{n}$$
(29)

where $\dot{\mathbf{x}}_n$ is unknown velocity in the moment t_n . As in central differences presented in the previous section, the matrix **A** from the equation 2.2.12 . should be analysed here.

From the equation 29 we derive acceleration \ddot{x}_n , and from equations 28 and 27, $\dot{x}_{n+\frac{1}{2}}$ and x_{n+1} should be derived respectively. Considering the initial conditions in the equation 30., we get an equation 31 for the initial acceleration \ddot{x}_0 and velocity \dot{x}_1 .

$$x_{0} = \overline{x}_{0} + u_{stat}$$

$$v_{0} = \frac{1}{2} (\dot{x}_{-\frac{1}{2}} + \dot{x}_{\frac{1}{2}})$$
(30)

$$\ddot{x}_{0} = M^{-1}(P_{0} + P_{stat} - F_{0}(u_{stat}) - Cv_{0})$$

$$\dot{x}_{\frac{1}{2}} = v_{0} + \frac{1}{2}\Delta t_{0}\ddot{x}_{0}$$
(31)

In the equations 30 and 31 \bar{x}_0 is the original geometry, u_{stat} is the initial displacement from the static load.

There are no precisely defined stability conditions for integration in nonlinear problems. LS-DYNA uses standard method of central differences for boundary size approximation of the time step. Thus, LS-DYNA uses the size of the time step as:

$$\Delta t = 0.9 \Delta t_{critical} \tag{32}$$

Here $\Delta t_{critical}$ is the time step determined according to the equation 26, or:

$$\Delta t_{crit}^2 \leq \frac{4\delta_i}{\omega_i^2}$$

$$\delta_i = \frac{\Delta t_i}{\Delta t_{i-1}}$$

$$0 \leq \delta_i \leq 1$$
(33)

For different types of elements time step is determined according to the equation form 34, where l is the element length, and c is the sound velocity. Equations for the specific types of elements can be found in [3]

$$\Delta t = \frac{l}{c} \tag{34}$$

CONTACT IN LS-DYNA SOFTWARE

As it was mentioned in the introduction, LS-DYNA is world-known software used for nonlinear dynamic problem solving. A big group of nonlinear problems represent as well contact problems. Contact analysis is the integral part of many problems in the field of big deformations. Precise modeling of the contact pair between the bodies is a key point considering the simulation possibilities using the finite element method.

There is a large number of contact types that are implemented or developed in LS-DYNA software. Certain types are developed and are used in specific problems, such as airbag contacts, edge contacts, and other, but also the types used in the general cases.

In LS-DYNA software, contact is defined by location identifying of slave segments that potentially penetrate into

master segment. Identification is done through the parts, segments, sets of segments, sets of nodes, etc. Check of the penetration by using one of many algorithms is being done in each time step. In the case of penalty-based contact, when it comes to penetration, resistance force is given that is proprtional to the penetration depth and finally eliminates the penetration. If it is not emphasized differently, we are talking here about penalty-based contact and besides it. there is the constrained-based contact as well. With this kind of contact a rigid body can be used, but it is recommended for the density of the rigid body not to be the same as of a deformable body, so that the force could be distributed realisticly.

In crash analyses, deformations can be very big and the assumptions about where or how the contact will happen are difficult to make, sometimes even impossible. Thus, the **automatic** contact is recommended as a contact where the orientation is not defined, or to say, where the penetration can be detected at both sides of shell elements. Contact algorithm used in the case of automatic contact is better than the old type contact for working with separated nets.

AN EXAMPLE OF WAGGON CRASH TEST

This part presents an example of waggon-cistern crash into the still rigid wall. We are starting from a ready-made model, or in other words, from the finite element net that is made in FEMAP v9.0 software. Waggon crash is simulated with the 80km/h velocity, into still rigid wall. Waggon model is presented on figs. 4 and 5.

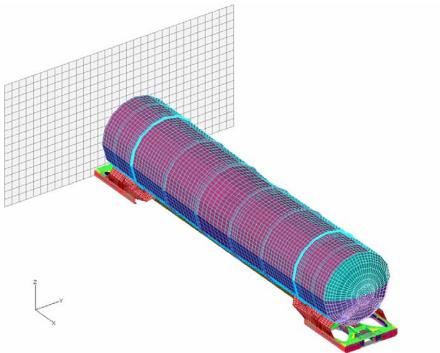
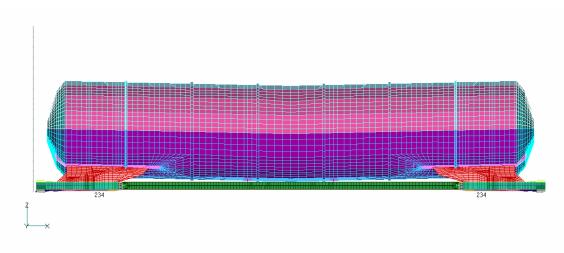



Figure 4 Waggon-cistern. Finite element mesh. Diametric view.

Waggon and the wall are modeled by elements of the shell. The whole model has 54324 elements, or 53578 nodes. Cistern model consists of 39 parts, or in other words, properties, which are defined by elements of different thickness shell, or by material that has the same ID as the property. The part determined by a property or material with ID= 40 is rigid wall model.

The analyses is done in LS-DYNA software, and then the achieved results are imported into FEMAP. Results of the analyses, or the field of effective stress in the last step of the analyses, are showed in figs. 6 - 8.

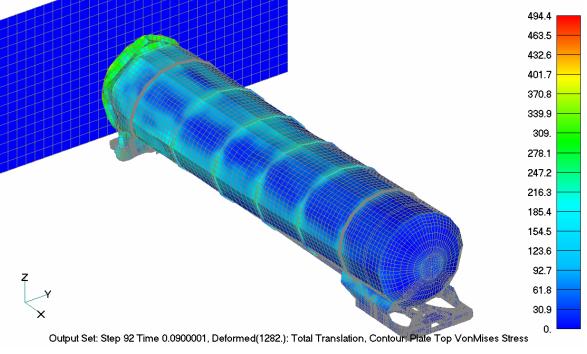
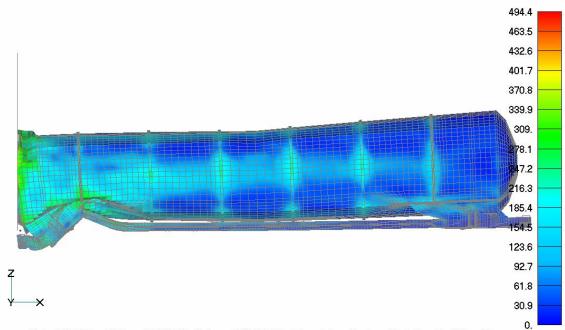
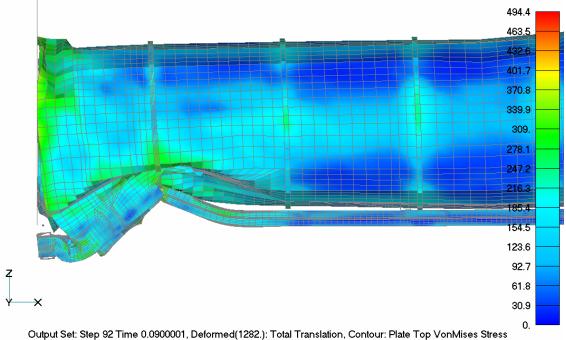




Figure 6 Crash test waggon-cistern; Effective Stress Field – Dimetric

Output Set: Step 92 Time 0.0900001, Deformed(1282.): Total Translation, Contour: Plate Top VonMises Stress **Figure 7** Crash test waggon-cistern; Effective Stress Field – ZX view

Figure 8 Crash test waggon-cistern; Effective Stress Field – ZX detail

CONCLUSIONS

The main goal of this paper was the synthesis of knowledge and data, that will help new users to become familiar with the functions and possibilities of LS-DYNA software, as one of the most developed and most frequently used in the world.

Within the theoretical basis the important facts are presented conserning solution stability as well as the mechanisms for determining the time step that will fulfill defined criteria. According to the analysed examples, the conclusion is that the time step is extremely small in solving problems by using explicit method of integration. For example, in the case of waggon-cistern crash into the still rigid barrier, time step was 10⁻⁷ seconds.

Further work on this topic would be expanding the field of use, primairly in the field of contact problems, but in the other fields of LS-DYNA software usage as well. In the field of contact problem solving, capacity of the software is

extraordinary, so the parameters should be well adjusted to obtain reliable results. Besides that, the software also supports solving of the multiphysical coupled problems, so that is the direction to follow.

REFERENCES

- [1] Kojić M., Slavković R., Živković M., Grujović N., Metod konačnih elemenata I, Linearna analiza, Kragujevac, 1998.
- [2] Hallquist, J., LS-DYNA Theoretical Manual, Livermore CA, USA, 1998,
- [3] dynaspport.com/Support/tutorial/users.guide,
- [4] LS-DYNA Keyword User's Manual, Volume I, Livermore CA, USA, 2001,
- [5] LS-DYNA Keyword User's Manual, Volume II, Livermore CA, USA, 2001,
- [6] arasvo.com/crash
 [7] FEMB User's Manual, A pre-procesor for use with LS-DYNA, Livermore CA, USA, 1999,
- [8] Eta/PostGL POST TUTORIAL, A post-processor compatible with LS-DYNA/PC, Livermore CA, USA, 1999,
- [9] Eta/PostGL GRAPH TUTORIAL, A post-processor compatible with LS-DYNA/PC, Livermore CA, USA, 1999,
- [10] LSPOST A New Post Processor for Use LSDYNA, Livermore CA, USA, 1999,
- [11] FEMB Training Manual, A pre-procesor for use with LS-DYNA, Livermore CA, USA, 1999,
- [12] lstc.com,
- [13] dyna-portal,
- [14] dynamax-inc.com,
- [15] ncac.gwn.edu.