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Swmmary: Theoretical basics formulation of the implicit Newmark-method for numerical integration of dynamic motion
equations s presented in the first part of this paper. According to theoretical assumptions, algorithms for the integration of
dynamic motion equation are developed. Algorithms are implemented into the software package PAK. The second part of the
paper shows the process of modeling the motor carrier, as well as the results of the analysis. Based on the results, the
analysis and assessment of fatigue strength in the prescribed conditions of exploitation was carried out. Dynamic analysis of
the motor carrier in the steady-state oscillation mode showed that the motor carrier has an unlimited working life.
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1. INTRODUCTION

In practice, forces applied on constructions change during the time so displacement of material points depends
on time. Construction motion is affected by inertial characteristics which have to be considered during motion
calculation. Therefore, instead of static equilibrium conditions differential motion equations have to be set,
whose integration leads to displacement, velocity and acceleration of specific construction spots. Such as in
static analysis, finite element method has a significant implementation in the field of construction dynamics.
Specific dynamic problems in practice are solved by using approximate implicit numerical integration method of
dynamic motion equations.

This paper presents theoretical basics of implicit Newmark method. Then according to presented theoretical
basics, algorithm for integration of dynamic motion equations is developed and implemented in PAK program
package [1]. Section 3 of the paper shows the fatigue strength analysis of vibration transporter’s motor carrier in
prescribed conditions of exploitation. Detailed description of the problem is presented as well as the carrier
modeling procedure and analysis results obtained by using presented theory which is implemented into PAK
program package. Dynamic motor carrier analysis in the stable oscillation regime shows the carrier has an
unlimited working life.

2. THEORETICAL BASICS
2.1. Differential motion equations

Using the virtual work principle JA, = dA_, differential motion equations of continuum divided into finite
elements [2] are given in equation (1), Figure 1:

Jakjée,ng = Jﬂ"étljdV+ I}?‘5ude+ZFféz:§ @)
¥ ¥ v i
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Figure 1: Forces applied on elementary finite element mass
dm

Left side of the equation (1) represents virtual work of the internal forces:

A, = [o,de,av . @
I's

Right side of the equation (1) represents virtual work of the external forces:
OA, = [Fou,dv + [FioudS+Y Fidul, )]
v 5° i
In dynamic analysis inertial forces are added to volume forces ¥ in the equation of finite element equilibrium,
Elementary volume inertial force JF” which corresponds to elementary mass dm is:
dE™ = —iidm = —iipdV . @
Substituting inertial force equation in relation (1) we get

[6e70dy = [6u” (F" - pii)dV + [sulFds. ®
v [ 4 s

Differentiating with respect to time of relation for displacement
u=HU, ©
we get velocity and acceleration for arbitrary material point

a=HU )
i=HU. )

Substituting equation (6) for du , in equation (3) follows

.. o
su” ( JHTpHdVJ U+0U" [(B"CBdV )U=6U"F )
[ 4 14
wherefrom:
MU+KU=F(t). a0y

where M is finite element mass matrix, defined by the equation
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M= [pH"HAYV . an
14

Vector F(t) represents external forces applied on the finite element nodes, and comprises surface, volume, and

concentrated forces depending on time.
In real materials appear damping forces proportional to material point velocity. Elementary damping force
d¥? which corresponds to elementary volume d¥ is

d¥? =—budV , (12)

where b is dumping coefficient. Replacing equations for dumping force (12) in (5), as complementary volume
force, by using (7), finite element equation of motion is obtained:

MU +BU+KU=F(t), (13)
where B is dumping matrix,

B= J’bHTHdV ) a4
v

Damping matrix B and mass matrix M have the same dimensions as element stiffness matrix K, so the same
procedure for matrix members organizing is used during forming mass matrix and dumping matrix of the
construction.

Equations (11) and (14) define consistent mass matrix and consistent damping matrix. In order to save computer
operating time, it is convenient to use lumped mass matrix, which contains members only on the main diagonal,
instead of consistent mass matrix in the construction calculation with large number of degree of freedom. These
members represent equivalent "concentrated masses". Construction mass matrix is in this case also diagonal so it
is stored in the memory as vector of length equal to numbers of degrees of freedom.

2.2. Numerical integration methods of differential motion equations

Numerical methods of direct differential equation system integration have a wide usage in FEM and instead of
analytical results for any moment of time #; they give results in discrete moments of time 0,Ar,2A¢,...,nAt.
Namely, we consider that the total period of time 7 is divided into » intervals A¢=T/a, within which we are
interested in result of differential equation system. The procedure is based on searching the result in the moment
t+ At at the end of the step according to the known result in moment ¢ at the beginning of the interval As.
Thereat, assumptions for change of displacement, velocity and acceleration within the interval Ar are
introduced. These methods are often called step by step methods in the literature.

2.3. The Newmark method

Implicit methods mean fulfillment of differential motion equations at the moment#+ Ar | so according to the
known results at the moment ¢, unknown results are obtained at the moment ¢+ A¢ and thus their fulfillment is
certain and accurate. Choice of time step Ar in implicit methods is related to the desirable result accuracy and
less to stability, since these methods can reach unconditional stability.

Implementation of Newmark method of direct system equation integration (10) or (13) is based on the
assumption that generalized accelerations are constant in the time interval A, and that they can be written in the
following way:

U(r)=(1-8) T+5""0, (15)

where U(t) is acceleration at the moment ¢ < 7 <¢+ Ar, further denoted as ﬁ, 0< 6 <1 is parameter, U and

"4 are accelerations at the moment ¢ and ¢+ At . Here left superscript shows time moment that presented
value it related to.
Integrating equation (15) in the interval A¢, we get:
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“H = U] (1-6) T+ Ar, 16)
i VS ‘U+‘ﬁAt+%[(l—5)‘ﬂ+é“*“i}] Ar*. an

In order to achieve better stability and result accuracy, instead of obtained equation (17) for ***U , the following
equation is used:

quU:;U+tﬁAz_*_[(%_a):ﬁ_'_a:mﬁ]Atz’ (18)
where a is coefficient.

2 19
s>1, azl(l-e-é], a9
o2 412

In calculation, the most widely used
5o 1 o 1 an
2 4

Figure 2 shows approximation for speed U that corresponds to the assumptions above. So, acceleration is
constant in the interval Ar, corresponding to (15) and it is expressed through acceleration value at the beginning

and end of time step. It is noticed that for =0 U='U, for =1 U="*U, and for
§=05 U= ('fI+ s U) / 2. Speed U is linear function and generalized displacement U is square function in

the interval Ar.
Newmark method is implicit so equation (13) is written for the moment £+ Az,

Mf+mﬁ+Br+A:['I+Kl+A¢U — e+A:F (21)

u; 4

approximation

af:tuat function

W (Wheat

¥t

t teat t
Figure 2: Approximation of generalized velocity for the time
step

Further procedure is based on expressing the vector “*U through 'U,'U,'U and**U according to equation

(18)

.. . .. 22
AT 1 2[:”A‘U-"U'—fUAZ-(l—Q')(AE)Z ’U:l 22
a{at) 2

Then , “**U is expressed, substituting equation (16) in (20), in the form:
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. . . 23
t+AxU=_‘i_(1+AtU_:U)_(é_l)lu_(i_lJAﬂU 23)
aist @ 2a

Finally , replacing final equations for “**U and “*“U in equation (21), we obtain system of algebraic equations
with respect to unknown generalized displacements,

I’\(HNU = 1+A1F"a (24)
which can be solved with respect to unknown displacements**U . Matrix K and right side vector ¥ are:

K=K+aM+aB 25)
wf = "M+ M(a,'U+a, U+a,"U)+B(a,'U+a, U+a,'T) 26)

where a,,4q,,...a, are coefficients

1 S 1 @7
gy =——>r, G=——, a=—
a(Ar) alt aAt
1 ] )
a3=g-l, a, =;—‘1, as=(£—1]A[

It is noticed that in case of linear problem (system matrixes are constant) and during the same integration step, it
is possible to factorize matrix K only once, and then for each time step to determine nght side vector “YF as

well as to efficiently get results using backward algorithm. Since factorization of matrix K takes most time, this
way computer operating time is saved. Time step choice affects result accuracy and stability, especially while .
solving nonlinear problems. In practice, time step is most often determined to be at least 20 times smaller than
period that correspond to first eigen value, which means that analysis of eigen values should always be done
first, and then, according to the obtained results take the time step.

3. EXAMPLE

3.1. Problem description

The aim of analysis is to check if the motor carrier satisfies fatigue strength in prescribed exploitation conditions.
3.2. Model description

Figure 3 shows the model discretized by 3D finite elements [3]. Construction half is modeled. The model is
discretized with 17902 nodes and 10812 elements.

Figure 3: FE model — 3D finite elements
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3.3. Boundary conditions

Boundary conditions include model symmetry, i.e. consider that half of the model is modeled. Symmetry plane
is XZ so in all the nodes, marked on Figure 4, displacements in Y-direction are restricted.

Figure 4: Boundary conditions of the model’s symmetry

Boundary conditions due to connection of the modeled part with another part of construction are shown on
Figure 5. Nodes matching the screw position restrict displacements in X-axis and Z-axis direction.

Boundary conditions

Figure 5: FE model — connection boundary conditions
3.4. Loads
Eigen mass of motor carrier is applied in the Z-axis direction. Motor mass, 3894.57N, is given in Z-axis
direction through concentrated forces. Work moment, 1962 Nm, is given through couple forces. Variable
centrifugal force with amplitude
F=105323 N (28)

is given through the functions:

F.=F-cos(wt) i F. = F-sin(wt) 29)
where:
30
©=102672 ¢
Ky
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3.5, Determining dynamic analysis parameters

In order fo determine value of the critical time step the eigen frequency analysis is done. The lowest eigen
frequency is:

£, = 228Kz (31)

Time step is determined as:

32
At =0.0001 < ¢2)
10-f,

3.6. Result review

Dynamic behavior of motor carrier is observed in the time step of 10.5s. Results are shown when motor carrier
enters the stable working regime.

Figure 6 shows the field of total displacements at the moment 10.4312s, whereas figure 7 shows the diagram of
total displacements in time step from 10.25 s to 10.5 s, i.e. in the stable working regime. Field of total
displacement is shown for the node 13797, which represents the location of the maximum stress value.

N 13797

Figure 6: Total displacements in [mm], at the moment
10.4312s

23

time 10.4312s

Dlsphagmnont [mm}

£os = -
028 jA 1039 wma 1046 S
Tane (o)

Figure 7: Total displacements in the node 13797

Figure 8 shows the equivalent stress field at the moment 10.4312s, whereas Figure 9 shows equivalent stress

diagram at the time interval from 10.25 s to 10.5 s, i.e. in the stable working regime. Maximal stress value is in
the clement 8847.
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Figure 8: Equivalent stress at the moment 10.4312s

time10.4312s —
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Figure 9: Equivalent stress in the element 8847

Figure 10 shows siress diagram o, at the time interval from 10.25 s to 10.5 s, i.e. in the stable working regime.

Stryuy o, [MPa]

Tirve {s]

Figure 10: Stress o, in the element 8847

3.7 Analysis of obtained results and estimation of long-term dynamic strength

Assessment of fatigue strength is done by applying the European standard — prEN 1993-1-9:2003 [4], according
to table 8.1 (case 1) and chapter 7.1 of this standard, limit value of fatigue strength can be calculated Ao, :

Ao, =160MPa (33)
Ao, =0.737A0, 39

671



Ao, =0.549A6, = 64.7MPa £5))

Analyzing the diagram from Figure 10, it can be observed that maximal difference between stress amplitudes
(point A and B) is Ao, = 60.3 MPa, which is less than fatigue strength value, 64.7MPa.

According to the analysis and in accordance with this standard, it can be concluded that motor carrier has an
unlimited working life.

4. CONCLUSION

The aim of this paper is to solve specific dynamic problem using finite element method and implicit numerical
methods of dynamic motion equation integration.

According to dynamic analysis of vibration transporter motor carrier in the stable oscillation regime and
assessment of fatigue strength, in accordance with European standard — prEN 1993-1-9:2003, it is concluded that
motor carrier has an unlimited working life.
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