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Abstract. Theoretical basics formulation of the implicit Newmark-method and the explicit
central difference method for numerical integration of dynamic motion equations is
presented in this paper. According to theoretical assumptions, algorithms for the integration
of dynamic motion equation are developed. Algorithms are implemented into the software
package PAK. Verification of the developed algorithms has been done for elementary
examples which have analytical solutions. At the end of the comparative result analysis
obtained by applying both methods of numerical integration, dynamic behavior analysis of
buildings on the surface soil due to impact of the wagon wheels in motion on underground
railway tracks.

1. Introduction

In practice, forces applied on constructions change during the time so displacement of some
spots depends on time. Construction motion is affected by inertial characteristics which
have to be considered during motion calculation. Therefore, instead of static equilibrium
conditions differential motion equations have to be set, whose integration leads to
displacement, velocity and acceleration of specific construction spots.

Such as in static analysis, finite element method has a significant implementation in the
field of construction dynamics. Specific dynamic problems in practice are solved by using
approximate explicit and implicit numerical integration method of dynamic motion
equations.

This paper presents theoretical bases of implicit Newmark method and explicit central
difference method, a then according to presented theoretical bases, algorithms for
integration of dynamic motion equations are developed and implemented in PAK program
package [1]. Section 4 of the paper shows comparable analysis of obtained results by using
both numerical integration methods on the example of dynamic buildings behavior analysis
on the surface due to the wagon wheels crash during motion in subway. In the end, the
conclusion shows some observations obtained by comparable analysis of implicit and
explicit numerical integration method while dynamic problem solving.



2. Differential motion equations

Using the virtual work principle A, = JA, differential motion equations of continuum
divided into finite elements [2] are given in equation (1), Figure 1:

Iak]ﬁe,g.dV = ijaujdVJr j F'Su,dS+ . F;éul (1)
V 14 R i
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Figure 1. Forces applied on elementary finite element mass dm

Left side of the equation (1) represents virtual work of the inside forces:

SA, = ja,g.aekjdV . )
14

Right side of the equation (1) represents virtual work of the outside forces:

o, = [Frouav+ [ Fouds+ 3 Fiou,, ©
vV

O i

In dynamic analysis inertial forces are added to volume forces F” in the equation of finite
element equilibrium. Elementary volume inertial force dF” which corresponds to
elementary mass dm is:

dF" = —iidm = —iipdV . 4)
Substituting inertial force equation in relation (1) we get
j se'cdV = j su’ (F" - pii)aV + j SulF*dS . (5)
Vv Vv N
Differentiating with respect to time of relation for displacement

u=HU, (©6)



we get velocity and acceleration for arbitrary material point

u=HU (7
i = HU ®)
Substituting equation (6) for ou , in equation (5) follows
suU” ( j H’ pHdVJ U+ 5UTj(BTCBdV) U=06UF )
4 v
wherefrom:
MU+KU=F(¢). (10)

where M is finite element mass matrix, defined by the equation

M:ijTHdV. (11
Vv

Vector F(r) represents outside forces applied on the finite element nodes, and comprises
surface, volume, and concentrated forces depending on time.

In real materials appear damping forces proportional to point velocity. Elementary damping
force dF‘ which corresponds to elementary volume dV is

dF’ = —badV (12)

where b is dumping coefficient. Replacing equations for dumping force (12) in (5), as
complementary volume force, by using (7), finite element equation of motion is obtained:

MU +BU+KU =F(¢) (13)
where B is dumping matrix,

B= ijTHdV : (14)
4

Damping matrix B and mass matrix M have the same dimensions as element stiffness
matrix K, so the same procedure for matrix members organizing is used during forming
mass matrix and dumping matrix of the construction.

Equations (11) and (14) define consistent mass matrix and consistent damping matrix.

In order to save computer operating time, it is convenient to use lumped mass matrix, which
contains members only on the main diagonal, instead of consistent mass matrix in the
construction calculation with large number of degree of freedom. These members represent
equivalent "concentrated masses". Construction mass matrix is in this case also diagonal so
it is stored in the memory as vector of length equal to numbers of degrees of freedom.

3. Numerical integration methods of differential motion equations

Numerical methods of direct differential equation system integration have a wide usage in
FEM and instead of analytical results for any moment of time 7; they give results in



discrete moments of time 0,Az,2A¢t,...,nAt. Namely, we consider that the total period of
time 7 is divided into n intervals Az=T/n, within which we are interested in result of

differential equation system. The procedure is based on searching the result in the moment
t+ At at the end of the step according to the known result in moment ¢ at the beginning of
the interval A7 . Thereat, assumptions for change of displacement, velocity and acceleration
within the interval Az are introduced. These methods are often called step by step methods
in the literature.

3.1. The Newmark method

Implicit methods mean fulfillment of differential motion equations at the moment? + Az , so
according to the known results at the moment ¢, unknown results are obtained at the
moment ¢+ At and thus their fulfillment is certain and accurate. Choice of time step Af¢ in
implicit methods is related to the desirable result accuracy and less to stability, since these
methods can reach unconditional stability.

Implementation of Newmark method of direct system equation integration (10) or (13) is
based on the assumption that generalized accelerations are constant in the time interval Af,
and that they can be written in the following way:

U(r)=(1-6)'U+s5""U, (15)

where U(r) is acceleration at the moment ¢ < 7 <¢+ A¢, further denoted as U, 0<5<1

is parameter, ‘U and "““U are accelerations at the moment u ¢ and ¢+ Ar. Here left
superscript shows time moment that presented value it related to.
Integrating equation (15) in the interval A¢, we get:

MU= U+[(1-0) U+s™™U | At (16)

”A’Uz‘U+’I’JAH%[(l—&)'Um”Nﬂ] AP (17)

In order to achieve better stability and result accuracy, instead of obtained equation (17)
for U, the following equation is used:

”A’U:’U+’UAt+K%—aj’U+a”A’U} AP, (18)

where o is coefficient.
2
52%; azi(%+5j (19)

In calculation, the most widely used

s=L - (20)

1
2 4



Figure 2 shows approximation for speed U that corresponds to the assumptions above. So,
acceleration is constant in the interval Az, corresponding to (15) and it is expressed through
acceleration value at the beginning and end of time step. It is noticed that for

=0 U="U,for 6=1 U="~U, and for §=0.5 I"J=(’U+t+Atﬁ)/2.SpeedUis

linear function and generalized displacement U is square function in the interval Af.
Newmark method is implicit so equation (13) is written for the moment 7+ Az ,

Mt+At["J+Br+Atﬁ+Kt+AtU — t+AtF (21)

U A

approximation

actual function

-
t t+At t
Figure 2. Approximation of generalized speed for the time step

Further procedure is based on expressing the vector ““*U through ‘U, U, U and“*U
according to equation (18)

Ay = 1 2|:t+AtU_tU—tUAt—(l—aj(At)z tU:| (22)
a(Atr) 2

Then, U is expressed, substituting equation (16) in (20), in the form:

r+AtU:i(HAtU_tU)_[é_l)tU_[i_l]Attﬁ (23)
alt a 2a

Finally , replacing final equations for “**U and “U in equation (21), we obtain system
of algebraic equations with respect to unknown generalized displacements,

KHA[U — t+AtF’\ (24)

which can be solved with respect to unknown displacements **U . Matrix K and right

side vector F are:

K=K+aM+aB (25)

“MF=""F+M(aq,'U+a,' U+a,'U)+B(a,'U+a, ' U+a,'TU)  (26)

where a,,a,,...a, are coefficients



1 o 1

ao—

a =— =

B a(m)z ’ aht’ ° aAt
(27)
a3:2L—1, a4=é—1, asz(;—ljm
a a a

It is noticed that in case of linear problem (system matrixes are constant) and during the
same integration step, it is possible to factorize matrix K only once, and then for each time
step to determine right side vector “ME - as well as to efficiently get results using backward

algorithm. Since factorization of matrix K takes most time, this way computer operating
time is saved. Time step choice affects result accuracy and stability, especially while
solving nonlinear problems. In practice, time step is most often determined to be at least 20
smaller than period that correspond to first eigen value, which means that analysis of eigen
values should always be done first, and then, according to the obtained results take the time
step.

3.1. The Central Difference Method

Explicit methods are based on fulfillment of differential motion equations at the moment ¢
in order to determine values at the moment?+ Af, whereas all the values and their
derivatives are used at the moment? . These methods demand considerably less integration
step At in order to get stable results and fulfilling accuracy. Stability means that the initial
condition change cannot lead to result divergention (displacement increase that does not
correspond to system motion).

Central difference method is one of the most frequently used explicit methods for numerical
integration. It is developed according to central difference equations for velocity and
acceleration. According to Figure 3, velocity in the moment ¢ is given in equation (28) and
(29) and acceleration in the equation (30) [3],[4]

! uy +HAL
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Figure 3. Discretization by central difference method

o 1 e Lo
U= - (28)



Yy _L + =
U= 2At(r Ay ArU) (29)
tﬁ=$(”AtU—2tU+t—AtU) (30)

Central difference method is explicit, so the equation (13) is written for moment? ,
M'U+B'U+K'U='F (31)

Replacing relations for'U and U from (29) and (30) respectively, in the equation (31) we
have

1 1 2 1 1
—M+—B |"U="F-|K-—M' [U-| —M-—B |"™"U, 32)
At 2At At At 2At

Or the algebraic equation system with respect to unknown generalized displacements,

Kt+AtU: tﬁw (33)

which can be solved with respect to unknown displacements “ U . Matrix K and right side
vector F are:

K= a,M+aB (34)
‘F="F—(K+a,M)'U-(q,M-qB)" U (35)
where q,,4,,a,,a, are coefficients

1 1 1
GO=F, 01=E, a2=2a0, a3=z. (36)

At the moment ¢ = 0, considering the initial conditions "U, "U, U we get:

MU="U-At'U+4a,°U. (37)

An important thing while using central difference method is choice of integration time step
At , which has to be smaller than critical value At For different types of elements,

critical *

time step is determined according to the equation (38),

ar<ar =L (38)
C

critical —

Where / is minimal element length, and ¢ is sound velocity through a corresponding
material

c= |E (39)
o

E - Young-elasticity module, p - material density.



4. Example

4.1. Model Description

3D model is taken from [5] and it is shown in Figure 4. There are three buildings on the
surface of the ground and underground tunel. Dynamic loading arise when the train passes
through the tunel.

3D isoparametric finite elements with 8 nodes are used for the model [6], and there are two
materials — material of ground and material of buildings. Material data are given in Table 1.

Figure 4. 3D Model

Table 1. Material data

Material ID Young's Modulus Poisson's ratio Density
ground 3.5107 0.3 1900
buildings 3210 0.3 81

Bottom and side surfaces of ground are constrained in all degree of freedom (all
translations are constrained).

4.2. Dynamic loading

Dynamic load is applied as combination of impulse forces which are applied in 10 pairs of
nodes. Force is applied in vertical direction. There are 20 elements along the tunnel, i.e.
there are 21 nodes on the length. Load is applied as impulse forces in every second pair of
nodes along the tunnel. Time function of impulse force for the first pair of nodes, on the
beginning of tunnel, is shown in Figure. 5. The same time function is used for defining
other nine pairs of forces, which sequently delays for 1=0.4 s for every pair. Time function
and delay directly depend of velocity of train.



Force [kN]
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Figure 5. Time function of impulse force in the nodes 1070 1 1169.

Node number and correspond time delay t are given in Table 2.

Table 2. Pairs of nodes and correspond delays

NODE ID Delay 1 [s]
1070 1169 0
1072 1171 0.4
1074 1173 0.8
1076 1175 1.2
1078 1177 1.6
1080 1179 2.0
1082 1181 2.4
1084 1183 2.8
1086 1185 3.2
1088 1187 3.6

4.3. Dynamic Analysis and Results

The objective is to obtain response of model under dynamic loading using implicit
Newmark and explicit central difference numerical time integration method. Time for train
passes trough the tunnel is 4.8 s. Dynamic analysis is performed in software package PAK.
Using implicit Newmark numerical time integration method, problem is solved using 600
equal time steps of length Ar=8-10"s. The first integration parameter is 0.5, and the
second is 0.25. In this calculation case we use lumped mass matrix.

Using explicit central difference numerical time integration method, problem is solved
using 48000 time steps of length Az =1-10"*s , according equations (39) and (38).

Figures 6, 7, and 8, show comparative analysis of numerical results obtained for node 576
displacement in X, Y, Z direction, respectively, by using both numerical integration
methods. Node 576 is the middle node on the top of the first building, from left to right,
Figure 4.
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Figure 8. Node 576 displacement in Z direction
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A very good matching of the results obtained by using both numerical integration methods
for the specific dynamic problem is verified.

Figures 9. and 10. show comparative analysis of numerical results obtained for X
displacement of nodes 1146 and 1716, respectively, by using implicit and explicit
integration methods. Node 1146 is the middle node on the top of the middle building,
whereas node 1716 is the middle node on the top of the third building (Figure 4).
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Figure 9. Node 1146 displacement in X direction
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Figure 10. Node 1716 displacement in X direction

Such as from previous figure, a good matching of the results obtained by using both
numerical integration methods for the specific dynamic problem is recognized.

The good matching of the results obtained by Newmark implicit method and central
difference explicit method proves reliability of used numerical integration methods.
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5. Conclusions

This aim of this paper was to compare two already known numerical integration methods
used in solving of dynamic motion equations. The paper presents comparative analysis of
Newmark implicit and central difference explicit method. According to the theory,
algorithms implemented in software package PAK are developed. Dynamical analysis of
3D model in software package PAK, shown in section 4, comparative results obtained by
using these two numerical methods are shown. The results and their good matching prove
reliability of both methods and that they can be used for dynamic problem analysis.
However, it should be noticed that calculation amount of time for the shown dynamic
problem is considerably smaller 132 times when Newmark implicit method is used, because
central difference explicit method requires a very small time step.

Acknowledgement. Theoretical basis of explicit analysis, with the emphasis on central
difference method in section 3, was being developed within the project of Ministry of
Science and Technological Development - Development of software for explicit nonlinear
dynamic analysis TR12005.
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