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Abstract. This paper presents the integration of constitutive relations for Matsuoka-Nakai
non-associative constitutive model using incremental plasticity method. The basic idea of
this method is the calculation of plastic matrix thus, the calculation of the stress increment
needs only total strain increment. Presented constitutive model consists of a yield surface
similar to Mohr-Coulomb yield surface, but completely smooth, avoiding corners which can
be problematic in numerical calculations. The yield surface divides stress 3D space into the
pure elastic region and pure plastic region. In addition to the basic equations for stress
integration, the paper presents the development of elastic-plastic constitutive matrix and
algorithm for the implementation in the program for finite elements. Presented procedure is
implemented in the PAK software. Verification is performed using examples from the
literature and compared with the results obtained using Mohr-Coulomb constitutive model.

1. Introduction

Stress integration represents calculation of stress change during an incremental step,
corresponding to strain increments in the step. It is in essence the incremental integration of
inelastic constitutive relations to trace the history of material deformation. The stress
integration is an important ingredient in the overall finite element inelastic analysis of
structures. It is important that the integration algorithm accurately reproduces the material
behavior since the mechanical response of the entire structure is directly dependent on this
accuracy. The algorithm should be also computationally efficient because the stress
integration is performed at all integration points. For general applications, this
computational procedure should be robust, providing reliable results under all possible
loading conditions. In this paper we present a formulation of the computational algorithm
for the Matsuoka-Nakai (MN) constitutive model [1] using an incremental plasticity
approach (IPM). The solutions were compared with the results obtained using Mohr-
Coulomb (MC) model [2], as well as with the results obtained using concrete constitutive
model.

In the next section we present formulation the MN constitutive model, followed by the
derivation of the elastic-plastic constitutive matrix in general associated plasticity. Then,
the general relations are implemented in MN constitutive model.
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2. Matsuoka-Nakai constitutive model formulation

Matsuoka-Nakai constitutive model is based on experimental results of soil material
research. Failure surface of this constitutive model is described using stress invariants in the
following form:

2
cos” ¢
=, +———11,=0 1)
S=4 9—sin’¢ '’
where [, I, and I, are first, second and third stress invariants, respectively [3]. Parameter
¢ represents the angle of material internal friction. Failure surface of this constitutive

model in deviatoric plane is presented in Figure 1.
O3

Figure 1 Mohr-Coulomb and Matsuoka-Nakai failure surface in deviatoric plane

As seen in Figure 1, for axisymmetric stress state, failure surface of Matsuoka-Nakai model
matches the failure surface of Mohr-Coulomb model. However, unlike the failure surface of
Mohr-Coulomb model, failure surface of Matsuoka-Nakai model is completely smooth,
which is more suitable from the aspect of numerical solving.

In the case of non-associative yield condition, failure surface and the plastic potential
surface of this model are different. In that case, plastic potential surface is presented by the
following equation:

2
cos
g=l+—>Y 11,0 @)
9—sin”
where  represents dilatation angle of material.

In the case of cohesive materials, failure surface (1) and plastic potential surface (2) are
formulated using modified stress tensor [4] as:

0, =0, =0y, ®)

where o, represents effective stress tensor, o, is Kronecker delta symbol, whereas o, is
defined as:

o,=cctg ¢ 4)

where ¢ is material cohesion and ¢ is previously mentioned internal fraction angle.
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3. Elastic-plastic constitutive matrix using IPM

Elastic-plastic constititutive models are described through elastic-plastic constitutive
relations. In incremental plasticity theory, stress is directly proportional to strain up to
reaching yield stress. After reaching yield stress, strain increment can be divided into elastic
and plastic part [5]:

{de} = {deE}+{deP} (5)

Only elastic part of strain causes the stress change thus the stress increment can be
formulated as:

{do}=[C" |{de"} (6)

where [C E] is elastic constitutive matrix. Substituting (5) in (6) the following is obtained:

{do}=[C*({de}~{de"}) )

In the case of using elastic-plastic constitutive models, yield function is the stress state
function, therefore the increment of its change can be formulated as:

of - {%} {do} =0 ®)

In incremental plasticity theory it is necessary that the failure function is in every time step
less or equal to zero (neutral loading condition).

Implicit stress integration implies the increment of plastic strain in the normal direction on
the plastic potential surface, which can be formulated as:

{deP} =dA {G_g} 9)

oo

where dA is positive scalar which is to be calculated and plastic potential function g is

the stress state function. Substituting the plastic strain increment (9) in(7) and using (8), it is
obtained:

df = {%}T [[cfj{de} —dl[cE]{g—i}j =0 (10)

Plastic parameter dA can be calculated from equation (10) as:

1= {g;'}r [CEJ{de} (11)

(L 1e) ]

Finally, using parameter dA from (11) stress increment {d G} is obtained using (7) and (9)

in the function of total strain increment:
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{do}=[C"™ ]{de} (12)

where term [CEP J represents elastic-plastic constitutive matrix.

4. Stress integration of Matsuoka-Nakai model

The derivative of the MN failure function (1) with respect to stresses can be calculated
using the chain rule:

(ol -l 2t -l 03
oo ol, (oo ol, (0o ol, | 0o
The derivative of plastic potential function (2) can be calculated likewise:
{(lg} ag{al} +6g{6]} +ag{al} (14)
oo ol, (0o ol, (0o ol, | 0o

Certain derivatives of the failure function from (13) are:

2 2
AR YN S 1)
o[, 9-—sin"¢ o[, 9-sin"¢ ol

whereas derivatives of plastic potential function from (14) are:

G _cos'y o sy ig

- , = , =1 16
ol, 9-sin’y 7 8, 9-sin’y '’ dl, (16)

Using equations (13) to (16) elastic-plastic constitutive matrix can be calculated and then
the stress increment (12) as well. According to this theory, algorithm for stress integration
can be formed using incremental plasticity theory as given in Table 1.

Table 1 Stress integration algorithm using IPM
A.  Known: {”Ne}, {’e}, {‘o-}, {’e”}

{ao}=[c" Jlae"}=[Cc"J({"e}={'e}) » {0} ={'o}+{ac}
B.  Check the solution /F (F <0) elastic solution (GOTO E)
IF (F 20) elastic — plastic solution (CONT]NUE)

{1}, {a—g} using (13) and (14) and dA using (11)
oo oo

C. Local iterations:
dA correction

calculation {dep} =dA {g—i} , {deE} = {de} —{deP} , {do‘} = I:CE:I{deE}
calculation f (0'!.].) using (1)
D. Check: IF (ABS(f) >toll) returnto C
{HA/eP} :{leP}+{deP}

E. End: {1+Az }{I+A[ep}
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5. Verification examples

Verification of developed algorithm of MN constitutive model is performed on the example
of one-axis model compression. Model consists of single element loaded towards (Figure

2a). Model was loaded using prescribed displacement on one element face, using the

function in Figure 2b. Boundary conditions of analyzed model are presented in Figure 2a.
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Figure 2 Model and model load function

The results are compared with the results obtained in analysis of the same example using
Mohr-Coulomb constitutive model (Figure 3).
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Analyzing results in Figure 3 can be noticed a relatively small deviation of results obtained
using MN model compared with the results obtained using MC model. Also, the MN model
is more stable in numerical terms, because the yield surface smooth, unlike the MC model.

Second example represents using of MN constitutive model in the analysis of reinforced
concrete beam failure [6]. Model geometry, boundary conditions and load are presented in
Figure 4. Eight-node brick finite elements for concrete beam modeling are used, whereas

beam elements of appropriate dimensions are used for reinforcement. Model was loaded
using prescribed displacement.

P
51 mm 305 mm

€
1525 mm !, 51 mmr
= m
£
-1

1-1 2-2

S =2
T 1 [e o] 1
[ dia. 3-2 mm | g E
2 dia. 6 mm g &
L E o oj||e :L
z ; T =

Cross-sections.
Figure 4 Load scheme, boundary condition and geometry of concrete beam
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Comparison of results obtained using MN constitutive model with the results obtained
using concrete constitutive model are presented in Figure 5.
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Figure 5 Force-displacement result

Analyzing results in the Figure 5, we can notice good matching of the solutions obtained
using MN model with the solutions obtained using concrete constitutive model. It can be
concluded that the MN model can be used to simulate the mechanical behavior of concrete
structures. Mechanical characteristics of MN model for simulating the concrete behavior
can be obtained by fitting the failure surfaces of these two models.

6. Conclusion

The results of the presented constitutive model are compared with the results obtained by
Mohr-Coulomb constitutive model and as it can be seen, these two models provide very
similar results. Results of MN model are also compared with the results obtained using
concrete constitutive model. Analyzing the results a good matching is noticed. The
advantage of the presented computational procedure is a general formulation, which can be
applied to various yield functions, with yield function expressed in terms of stress
invariants. Also, this procedure can be implemented in an explicit integration scheme (no
yield condition check D in Table 1).
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