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APPLICATION OF MARKOV CHAIN IN ACTUARIAL MODELLING 

 

 

1. INTRODUCTION  

 

In this research Markov processes are used for modelling a phenomenon in 

insurance, which changes over time of a random variable comprise a sequence 

of values in the future. Each of values depends only on the immediately 

preceding state, not on other past states. A Markov process is completely 

characterized by specifying the finite set S of possible states and the stationary 

probabilities of transition between these states. Random processes are of 

interest for describing the behaviour of a system evolving over period of time, 

hence they were greatly applied in the actuarial mathematics and enabled us to 

deal with very complicated actuarial problems. 

 

Markov processes can be observed in dicreate-time and a continuous time. A 

discrete-time random process involves a system which is in a certain state at 

each step, with the state changing randomly between steps. The Markov 

property states that the conditional probability distribution for the system at the 

next step (and in fact at all future steps) depends only on the current state of the 

system, and not additionally on the state of the system at previous steps. Since 

the system changes randomly, it is generally impossible to predict with certainty 

the state of a Markov chain at a given point in the future. 

 

A continuous-time Markov chain is a mathematical model which takes values in 

some finite or countable set. The time spent in each state takes non-negative 

real values and has an exponential distribution. It is a random process with the 

Markov property which means that future behavior of the model depends only 

on the current state of the model and not on historical behavior. The model is a 

continuous-time version of the Markov chain model, named because the output 

from such a process is a sequence (or chain) of states. 

 

This research illustrates how the mathematics of Markov Processes can be used, 

in the actuarial modelling and calculation. First the possibility of application of 

the Markov chain was shown on the Belgrade Stock Exchange (BSE) in order 

to forecast stock prices and return of stocks, as an important part of the 

investment strategies. Markov chains are a simple non-parametric method with 
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application in the stock market analysis, however, insufficiently researched in 

the area of return modelling. In a review of lot of articles published on this 

subject, it was found that no one provides the possibility to apply it on the BSE. 

Special attention in this research was brought to a bonus-malus system, as it can 

be considered as a special case of Markov processes. The nature of life 

assurance indicates to application of Markov chains. Examples show the 

modelling method for term life assurance as well as for the disability model.  

  

 

2. MARKOV CHAINS 
 

Important role in description of various events in the nature belongs to discrete 

Markov processes with a discrete parameter. They are called Markov chains 

(MC). These are discrete random processes    , 0,1,2,...X t t T  with finite 

number of states, i.e. possible states  1,2,..., .S N  If  X t i  then the 

process in time t and state i. 

 

Definition 1. (Markov property) Future development of the process at time t+1 

depends only on state of the process at time t, and not on past development 

times. For all t=0,1,2,...  and all states 
1 0, ,  ,....,ti j i i S   is 

   1 1 1 0 0 1, , . . . ,  | | .t t t t t tP X j X i X i X i P X j X i           

This process is called a Markov chain. 

Markovian conditional probability of any future event, given any past event and 

the present state X event and depends only upon the present state. 

The conditional probabilities  1  ( } , 1/   t t ijP X j X i p t t     are called 

 transition probabilities from state i at time t to state j at time t+1. 

The conditional probabilities  /( } ,t s t ijP X j X i sp t t     are called 

 transition probabilities from state i at time t to state j at time t+s. 

 

Definition 2. If { [ );  }0;tX t  is a discrete Markov process and if probabilities 

of transition  ,ijp t t s  do not depend on t and t+s, but only on the difference 

s, thus random process is called a homogenous Markov process. 

 

We introduce the following notation: 

  0 (0),iP X i p  initial probability of state i, 

 1 2(0), (0),..., (0) (0),np p p p initial distribution of MC states, 

   ( ),iP X t i p t   absolute probability of state i at time t, 
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 1 2( ), ( ),..., ( ) ( ),np t p t p t p t  absolute distribution of MC states at time t. 

 

Probability of transition after one step,  , 1ijp t t  , can be arranged in the form 

of a n x n matrix known as the Transition Probability Matrix is given by 
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Transition matrix :  ,  ( )ijP p i j S   with pij ≥ 0 for all i, j, is a stochastic 

matrix, meaning that pij ≥ 0 for all i, j∈S and 
1

  1
n

iji
p


  (i.e. each row of P is a 

distribution over S). Transition Probability Matrix provides a precise 

description of the behaviour of a Markov chain. Each element in the matrix 

represents the probability of the transition from a particular state to the next 

state. The transition probabilities are usually determined empirically, that is 

based solely on experiment and observation. 

Given the initial distribution p(0), let us treat it as a row vector, and using 

matrix P, we can describe dynamics of the process X(t) 

0 0 1 10 1( (0)  (1) ,... 0), , ( ) ) (
k kk i i i i iP X i X i X k i p p p


     

We denote transition probability from the state i to the state j after s steps 
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and transition probability matrix of the homogeneous Markov chain after s steps 
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        
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1
( ( 2) ( 1) ), ( ( 1) ( ) )

n

k
P X t j X t k P X t k X t i


         

(2) 2

1
.

n

kj ikk
p p P P


     

Similarly, continuing process we get the matrix ( ) .s sP P  

For initial vector  

1
( ) ( ( ) ) ( (0) ) ( ( ) ) (0) )

n

i k
p t P X t i P X k P X t i X k


       

( )

1
(0) (0) (0)

n t t t

k kik
p p p P p P


    

 

In other words, the n-step transition probability of a Markov chain is the 

probability that it goes from state i to state j in n transitions. 

In the literature the terms equilibrium, stationary, and steady state are used to 

mean the same thing. 

In terms of long-term of the chain X(t) it is useful to determine absolute 

probability of states ( )ip t  for large t ( ,)t   then 
( )lim and lim ( ) , ,t

ik k k k
x x

p p t i k S 
 

    and 
1 2, ,..., ,n     

are unique solutions of 
1 1

1.
n n

k j jk jj j
p  

 
      

Now, the stationary probability distribution vector   1, n   , is 
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1 2
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limits are the matrix form as follows 
( )lim lim and lim ( ) lim (0) ,t t t

t t t t
p p p t p P 

   
     

where   is unique solution of  

π = πP, 1.j

j

     (1) 

 

If the initial probability distribution is stationary, ie.  0 ,p   then all absolute 

probability distributions p(t) are stationary, the chain is in the statistic 

equilibrium. Remarks that can be made are that a homogeneous Markov chain 

is characterized by the fact that the transition probabilities and therefore also the 

transition matrices only depend on the size of the time increment and that for 
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homogeneous Markov chain one can simplify the Chapman – Kolmogorov 

equations to the semi group property 

 

     .P s t P s P t    

 

The forces of transition and the transition probability functions are related by 

Kolmogorov equations. 

 

Forward differential equations are  

 

1

( , ) ( , ) ( , )
k

ij il lj

l

p s t p s t s t
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


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
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Backward differential equations 

1

( , ) ( ) ( , )
k

ij lj il

l

p s t s p s t
s





 


  

where lj  represents the force of transition from state l to state j. 

 

Let’s present now in the matrix the force of transition and transition probability. 

Let 
k kQ 

 be the matrix with  ,i j  entry ij  and ( )k kP t 
 matrix with  ,i j  

entry ( ),ijp t  therefore, Kolmogorov equations can be writen as: 

 

'( ) ( ) i '( ) ( ).P t P t Q P t QP t   

 

However, application is limited because series may converge slowly. Cox and 

Miller (1965) reduced the problem of finding transition probability functions to 

the problem of determining the eigenvalues and eigenvectors of the force of 

transition matrix Q.  If Q has distinct eigenvalues , 
1,...., kd d  then  ,Q ADC  

where C is inverse matrix of the matrix A, and D is a diagonal matrix 

1,.. , .( .. )kD dia dg d   

Futhermore, 
1( ) ( ,..., ) .l kld d

P t Adiag e e C     (2) 

 

For an ergodic Markov chain with finite state-space, we have the mean first 

return times all finite. The next theorem shows us how to compute the mean 

first return times in terms of the stationary probability distribution for P. 
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Theorem 1. For an ergodic Markov chain, the expected first return time mx for 

state x satisfies mx = 1/x, where  = [1, . . . , r] is the stationary probability 

vector for P. 

 

3. APPLICATION OF MARKOV CHAIN TO STOCK MARKET 

ANALYSIS 
 

The application of Markov chain to stock market analysis is the subject of 

numerous researches. Doubleday and Esunge (2011), in their research 

determine the relationship between a diverse portfolio of stocks and the market 

as a whole using Markov process. Svoboda and Lukáš (2012) were trying to 

predict the stock index trend of Prague stock exchange PX using Markov chain 

analysis. The overall objective of Otieno et al. (2015) study was to apply 

Markov Chain to model and forecast trend of one company shares trading in 

Nairobi Securities Exchange. In the Rajakumar and Shanthi work (2014), 

Markov process model is applied for forecasting the subsequent quarter EPS for 

companies in IT sector. They introduced two models with two states and 

extended state interval model with time independent transition probability 

matrices to predict the EPS for subsequent quarter for 4 securities. 

 

The present research aims at trying to predict stock market asset prices on the 

Belgrade Stock Exchange,  i.e. return of assets expounding Markov chain 

model. Specific features of the BSE were taken into account for modelling. 

Model includes five discrete state-spaces. The results of the short-term trend 

prediction using Markov Chain Analyses are shown for various stocks. The 

Markov prediction model consists of selecting input variable, data processing, 

classification of states, construction of state process, state probability, state 

transition probability matrix and forecasting the subsequent state probability of 

return.  

 

Research was based on historical data on stock prices on the BSE. Stock prices 

at the closing of the BSE were observed in a period of one year, i.e. 252 trading 

days. We chose for our analysis stocks from various sectors of the economy. 

Stocks from all lists of the Stock Exchange were represented (Prime listing, 

Standard Listing, Open Market and MTP). 

 

Based on stock prices, returns for every trading day were calculated by using a 

logarithmic approximation: 

,

,

, 1

i t

i t

i tP
r ln

P 

 
   

 
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where Pi,t, Pi,t-1 are stock prices at the closing, respectively, on day t, t-1,… in 

period T. 

 

On each trading day, return  ,i tr  was compared to the return of the stock from 

previuos day  1,i tr  , and then all returns were classified in categories, i.e. 

intervals. 

We shall mark states in the observed period with Si and the state-space with 

 1, ., .nS S S    

Probability of the state is a possibility of occurrence of various states of the 

system. Each state of the return was allocated with the initial probability vector 

by calculating relative frequencies of return in each of the stated states.   

Then, the state vector is: 

  1 2( ), , .,   for  1,2, . , ni p p p ip n     

where pj are probabilities of the state xj, j=1,2,…,n.  

For the observed period T, initial state vector will be 

   

   1 20  / ,  /  ,  ,  /nx T x T x Tp    

 

Matrices of transition states are created on the basis of the previuos state of the 

system and probabilities of the next state are defined depending on the current 

state of the system.   

Creation of vectors and matrices of transition states can enable further forecast 

of probabilities of the state of return in future, especially for each trading day 

(date).   

Vectors of current states and transition matrices are created in MS-Excel, while 

calculation of transition matrices is done in the software package Matlab.  

 

Model is characterised by 5 states of the system: 

S1 – return is less than -0,5%  

S2 – return is in interval  [-0,5;0), 

S3- return is 0 or unchanged, 

S4- return is in interval (0;0,5%] 

S5- return is higher than 0,5% 

 

The initial analysis, which included 16 companies, eliminated stocks that were 

not traded for over 126 days in the previous period. Such stocks have the 

greatest number of returns in interval describing the state X3. This state is 

characterised with no significant changes in return, but also with no changes in 

the stock price compared to the previous trading day. Investors are not 
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interested in such stocks. Further, stocks with less than 126 of trading days will 

not be considered as potential stocks in the portfoilo.  

 

We will consider it through an example of trends of stock prices of the company 

Bambi. Figure 1 shows stock trading (marked as BMBI) in the observed period 

according to data from the BSE. 

 

Figure 1. Historical data on trends of stocks of BMBI 

 
Source: http://www.belex.rs 
 

The graph with stock price trends of BMBI, in the observed period, shows that 

these stocks were not traded for several days, i.e. 214 days.  

The initial vector is  

 

   0.051587 0.015873 0.892857 0.011905 0.02 70 77 8p   

 

that is interpreted as follows: probability that return from stocks of BMBI was 

less than -0.5% was 0.05159, that they were in interval [-0.5%, 0.5%] was 

0.01587, probability with unchanged return or without return was 0.892857, 

then probability of return in interval [0, 0.5%] with the probability 0.01190 and 

finally probability of return higer than 0.5% was 0.02778. Initial distribution 

vectors were analogously calculated for other observed stocks. Calculation of a 

probability is analogous and interpreted in similar manner. Probabilities 

matrices were then calculated for each stock. Each element was calculated also 

as a relative frequency, where element pij is calculated as a ratio of number of 

transitions from i to j state and the number of returns in i state. The stated 

example shows that relative frequencies with the highest probability are in the 

state S3, and very low probability of state S4 and S5, so stocks of BMBI are not 

accepted into portfolio. Similarly we choose other stocks. 
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Stocks of SJPT fulfil the stated conditions so we will illustrate the process of 

calculating the transition matrix and the steady-state vector with these stocks. 

Figure 2 shows a graph of trends of stocks prices of SJPT in the observed 

period.  

 

Figure 2.  Historical data on on trends of stocks of SJPT 

 

 
Source: http://www.belex.rs 
 

Based on collected data on trends of return for each day individually in the 

observed period and on classification of returns in five states, the initial vector 

for stocks of SJPT was created  

 

   0.22619 0.076397 0.392857 0.0873 0.218 40 .25p   

 

Then, transition probabilities were calculated by observing the number of 

transitions from the current state to some of the 5 states during 252 trading 

days, and transition states matrices were created 

 

0.15789 0.087719 0.368421 0.280702

0.42105 0.411765 0 0.315789

0.21212 0.080808 0.444444 0.

0.10526

0.157895

0.045455 0.590909 0.04545

0.3090

11111 0.151515

0.09091 0.227273

0.036364 0.345455 0.099 0.218182091

SJPTP

 






 








 

 

Probability distribution vectors were calculated for the next 4 days (Table 1) 

based on the initial vector and the matrix of PSJPT. Calculation was done by 

using Matlab, applying formula 1. Distribution equilibrium shows that steady 

state is achieved very fast, which points to stability of these stocks in the 
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observed period. Upon observing distribution vectors, it can be expected that 

returns from these stocks will on the following day be in the state S3.  

 

Table 1. Output results for distribution vectors of stocks of SJPT 

1 2 3  4 Steady state Mean return time 

0.22619 0.22532 0.2254 0.22539 0.225390 4,44 

0.07540 0.07543 0.07543 0.07544 0.075440 13,25 

0.39286 0.39383 0.39385 0.39386 0.393860 2,54 

0.09127 0.09109 0.0911 0.09110 0.091102 10,98 

0.21429 0.21432 0.2142 0.21421 0.214208 4,67 

 

 

Table 2. Output results for steady-state vectors 

State/ stock  
1 2 3 4 5 

ALFA  0.123016 0.06746 0.531746 0.059524 0.218254 

 

m 8.13 1.48 1.88 16.8 4.58 

FITO  0.159168 0.039695 0.522506 0.051818 0.226813 

 

m 6.28 25.19 1.91 19.30 4.41 

AERO  0.321429 0.178571 0.039683 0.134921 0.325397 

 

m 3.11 5.60 25.20 7.41 3.07 

MTLC  0.130952 0.071429 0.579365 0.083333 0.134921 

 

m 7.64 14.00 1.73 12.00 7.41 

JESV  0.107143 0.055556 0.646826 0.071429 0.119048 

 

m 9.33 18.00 1.55 14.00 8.40 

SJPT  0.22539 0.07544 0.39386 0.091102 0.214208 

 

m 4.44 13.26 2.54 10.98 4.67 

 

Transition matrices of all selected stocks based on the stated criteria were 

calculated in the same manner. We observe stocks with increased return, i.e. 

greater probability that states S4 and S5 will occur. Based on this criterion we 

selected a portfolio with stocks shown in Table 2 and illustrated the steady-state 

vector for each stock. 

 

Since methodology of Markov chains assumes that Markov matrix remains 

unchanged in time, which on capital markets is not a real assumption, it can be 

concluded that observing a long period by using this methodology is not 

recommended. Therefore, analysis is focused on the short-term forecast, i.e. 

next several days, and thus timing for investments or trading of stocks on 
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exchange market is selected. In comparison with other methodologies, results 

are realised in simpler manner and the forecast is simpler. 

 

 

4. NO CLAIM DISCOUNT MODELS  
 

In a competitive environment it is important that insurers, as much as they can, 

find the real price of a risk for each individual insured by grouping them in 

narrow sub-groups. A priori variables are, for example: having in mind a priori 

variables (for example: age, car, or the township of residence, premium 

payment method, etc). A posteriori rating is a very efficient way of classifying 

policyholders into specific categories according to their risk and who pay 

premiums relative to their claims experience. However, the best forecast is 

based on past claims behaviour. Insureds mostly choose ranking according to 

merits, such as bonus and malus system. In practice, insurers have different 

bonus-malus systems. An insured without any claims is rewarded with a bonus, 

and an insured with claims is sanctioned with a malus. 

 

An NCD can significantly reduce the cost of car insurance cover. This principle 

is meant to reward policy holders for not making claims during a year; that is, to 

grant a bonus to a careful driver. A bonus principle effects the policy holder’s 

decision whether or not to claim in a particular instance. No claims discounts 

allow the driver to be more responsible about their vehicle and when driving. If 

no claims are made, each year the premium reduces. The discount is calculated 

as a straightforward percentage of the total cost of the insurance premium and 

will be discounted each year a claim is not made. An NCD system discourages 

small claims. 

 

Bonus-malus systems using Markov chains 

 

Bonus-malus system (BMS) presents a system of discounts granted to an 

insured and loadings paid by an insured depending on previous experience with 

claims. Bonus and malus are most often calculated at the beginning of insurance 

period by applying corresponding corrective factors to the basic premium. 

Application of bonus-malus system characterises those insurance lines with 

which risk occurrence greatly depends on behaviour and characteristics of an 

insured, as in motor third-party liability insurance. Bonus-malus systems can be 

considered as special cases of Markov processes. Actuarial literature studies 

bonus-malus systems since the early sixties, when it was introduced in Europe. 

Among the first papers was the paper written by Loimaranta (1972) who 

developed formulas for some asymptotic properties of bonus systems, where 

bonus systems are understood as Markov chains. There are a lot of works of 
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Lamaire where he studies the Markov chain theory for the design, evaluation, 

and comparison the BMSs of different countries.  

 

Regarding an interruptible random variable, which in this case is the number of 

reported claims arising from the motor third-party liability insurance, we can 

say that it has the Poisson distribution, since the following conditions are 

fulfiled:  

1. probability of number of occurred loss events is relatively small  5%p  ,  

2. sample is big  20n  ,  

3. number of occurrence of loss events independent of time nuits, i.e. space,   

4. probability of occurrence of loss events is proportional to the time or space 

uit, as well as    

5. probability of simultaneous occurrence of two or more claims is insignificant 

 

Probability that the average number of loss events per insured is x, under 

assumption that claims from motor third-party liability insurance have the 

Poisson distribution. Formula for calculation of a loading to the basic premium 

can be derived by using the Poisson distribution in order to ensure required 

funds for approval of the bonus to careful insureds. Modified bonus-malus 

system is used in motor third-party liability insurance, which classifies insureds 

into corresponding premium class. The following criteria serve as basis for 

classification of insureds into corresponding premium class: 

– number of claims reported in previuos insurance period of one year for 

which the insured’s liability is confirmed, and  

– number of years without any claims,   

and additional criteria, level of claims and technical result from previous period. 

 

According to this bonus-malus system it is common that each premium class 

has a corresponding premium that presents a certain number of monetary units 

of the basic premium and can be calculated as a product of the basic premium 

and a corresponding corrective bonus-malus factor.  

 

In Serbia, an insurance company is obliged to include and apply in its premium 

system, i.e. premium tariffs, the bonus-malus system. The basic criteria, data for 

application of the system and the maximum bonus is determined by the 

National Bank of Serbia. An insurance company can define additional criteria 

that are not contrary to these criteria.1 The system consists of 12 premium 

classes with the bonus up to 15% and malus up to 250% of the basic premium 

from the 4th premium class that is determined according to the premium tariffs. 

                                                      
1 Decision on the Basic Criteria of the Bonus-Malus System, Official Gazette of the Republic of 

Serbia, No. 24/2010 and 60/2011. 
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Table 3. Serbian bonus-malus system for motor third-party liability 
 

% premium 85 90 95 100 115 130 150 170 190 210 230 250 

class 1 2 3 4 5 6 7 8 9 10 11 12 

1 0     1     2     3   4+ 

2   0     1     2     3 4+ 

3     0     1     2     3+ 

4       x     1     2   3+ 

5         0     1     2 3+ 

6           0     1     2+ 

7             0     1   2+ 

8               0     1 2+ 

9                 0     1+ 

10                   0   1+ 

11                     0 1+ 

12                       1+ 

Source: Adapted from National Bank of Serbia. (2010). Decision on the Basic Criteria 

of the Bonus-Malus System. Belgrade: National Bank of Serbia, p. 7. 

 

If an insurance lasted at least one year, and in that period no claim was reported, 

i.e. if insurance termination did not last longer than three years, and from the 

beginning until the expiry of the previous insurance policy there were no 

reported claims, the insured is granted for the next insurance period one lower 

premium class, and maximum up to the first premium class. 

If claims were reported in the previous period, regardless of the insurance 

duration under which claims had been reported, according to each reported 

claim in that period the insured is moved by three premium classes higher, and 

maximum up to the 12th premium class. 

 

Application of the bonus-malus system essentially has a multiple significance 

and an objective2: 

1. to improve differentiation of insureds regarding the insurance premium 

level, 

2. to stimulate and interest insureds in safer driving, 

3. to stimulite insureds not to have claims so as not to lose bonus, 

4. to discourage insureds from insurance frauds and  

                                                      
2 Cerović, M. (2013). Bonus-malus motor liability insurance in comparative law and in 

Serbia. In: Serbian insurance law in transition to EU insurance law, Insurance Law 

Association of Serbia, p. 333. 
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5. to reduce claims through the self-retention that are at the expense of 

insurers. 

 

In continuation we will demonstrate various schemas of the bonus-malus 

systems and average annual premium calculation using Markov chan. 
 

Model 1. We will assume that an insurance company uses three categories of 

insurance: 

I   basic - 0,  

II  bonus 30%,  

III bonus 50%.  

 

Let X(t) be a random process which indicates the insurance category in the 

period t. The insured person is added to the appropriate category depending on 

the number of insurance events reported in the previous period. A new insured 

is in the first category, i.e. the state 0. If an insured did not have any claims in 

the first period, he is entitled to the bonus from category II. If an insured reports 

a claim in the next period, we classify him in the lower category. If an insured 

reports several claims, we classify him in the lowest category. Suppose that the 

number of claims in the insurance period t is a random variable  

,    1,  2,  . . .,Yt t   we can express previous as3 

 

 

  
  

min 1;2 , 0

1 min 1;0 , 1

0, 1.

t

t

t

X t Y

X t X t Y

Y

  


   




 

We assume that Yt are independent random variables with the same Poisson 

distribution with parameter λ. Then X(t) is the homogeneous Markov chain, S = 

{0, 1, 2}. It has initial probability distribution p(0) = (1, 0, 0) and the transition 

probability matrix 

 

1 1 0

1 0

1

e e

e e

e e

P

e e

 

 

    

 

 

   

 
 

  
 




 







 

 

Transition matrix has in the first column non-negative elements, so there is a 

stationary distribution  lim . 
t

p t


  Further, we deal with the equation system.  

                                                      
3 Neubauer, J. (2014). Markov Models for Risk Assessment - Reliability and Risk 

Analysis, ESF, p.15. 
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For easier calculation we will introduce marks 0a e   and 1 ,a e    then we 

have 

     0 0 0 1 0 2 0 11 1 1 ,a a a a            

1 0 0 2 1,a a      

2 1 0 2 0 ,a a      

0 1 2 1.       
2

0 0 1
0 2

0 1

1 1
 

1  1

a a a e e

a a e

 








 



   
 

 
 ,  

   0 0

1 2

0 1

1  1
 

1 1

e ea a

a a e

 






 




 

 
  

2 2

0
2 2

0 1

  .
1 1

a e

a a e











 

 
  

 

Model 2. Let’s consider now the following system Razmotrimo sada sledeći 

sistem: all its states are ergodic (it is possible to go from every state to every 

other state) and the chain is not cyclic. BMS has six levels of discount 0%, 

20%, 25%, 35%, 45%, 50%. At the end of each policy year, policyholders 

change levels according to the following rules:  

1. if no claim(s) during a policy year policyholder moves to the next higher 

discount level or remain at 50% if already at the highest level.  

2. if at least one claim during a policy year, policyholder drops back to zero 

percent level. 

We will mark with p0 the probability of no claim and (1-p0) probability of at 

least one claim. Then we have, 

5 5( ) ,ijP P    

0 01 ,iP p   where 0,1, ,5i    

, 1 0 ,i iP p   where 0,1, ,4i   

and  

55 0.P p   

General solution of Transition probability matrix is 

 0 01 ,p     1 0 01 ,p p    2

2 0 01 ,p p    

 3

3 0 01 ,p p    4

4 0 01 ,p p   5

5 0 .p   

Now, average yearly premium is 
5

1

i

i

d


  
5

2 3 4 0
0 0 0 0 0

0

1 100 80 75 65 55 50
100 1

p
p p p p p

p

 
       

 
  

where  
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 - yearly amount of premium 

 d - levels different at discount of percentage 

 

Model 3. Markov chains can be applied in classifying of drivers according to 

the risk, i.e. number of claims in one year. Category of good drivers with low 

risk are drivers without any claims in one year, medium risk drivers with 1 

claim, and high risk drivers with 2 and more claims. For illustration purposes, 

we present the Markov system with 3 states with an initial vector 

 0.53125 0.260417 0.20(0) 8333p   

 

Criterion for classification into a specific state is the number of claims per 

insured. In the observed period, majority of drivers are in the category of low-

risk drivers who had no claims, with the probability of 0.5312, then there is the 

category of medium-risk drivers with the probability of 0.2604 that includes 

drivers with one claim. Category of high-risk drivers includes insureds with 2 

and more claims and their probability is 0.2083. Further, transitions of drivers 

from one state to the other state were observed according to number of claims 

and the Transition Probability Matrix is created. 

 

Transition Probability Matrix is given by 

 

0.313725 0.078431

0.352941 0

0.60784

0.54902

0.56863 0.392157 0.039216

.098039P

 
 

  
 
 

 

 

In this manner we can calculate the probability that a randomly selected driver 

will be next year, let’s say, in the low-risk category. The Table 2 shows results 

of our system. Later states will change very little, if at all. Analysing the results 

after five states, we see that the percentage of low-risk drivers has increased to 

58.5%. This means that in the long run, the number of low-risk drivers will be 

0.5850, 0.3332 in mid and high-risk will be 0.081759.  

 

Table 4. Output Results 

  Steady Mean return 

State  state time 

1 0.585037 1.71 

2 0.333205 3 

3 0.081759 12.23 
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Now, we will explain with a simple example the method for calculation of 

insurance premium for drivers in relation to whether they experience an 

accident or not in previous period.  

 

Model 4. We know data on claims from previous period based on which we 

concluded that if a client had an accident in period t-1, the probability for an 

accident in period t would be 0,1. If in the period t-1 there were no accidents, 

the probability for an accident to happen in period t is 0,3. An insurance 

company charges customers annual premiums based on their accident history as 

follows: 

- if no accident in last 2 years, annual premium is 200  

- if accidents in each of last 2 years, annual premium is 700 and   

- if accident in only 1 of last 2 years, annual premium is 360.  

0.97 0.03 0 0

0 0 0.9 0.1

0.97 0.03 0 0

0 0 0.9 0.1

P

 
 
 
 
 
 

  

and the steady state is 

 0.93871 0.02903 0.02903 0.00323    

Then, the long-run average annual premium is 
4

1

0.93871 200 0.029032 360 0.029032 360

0.003226 700 210.903.

i i

i




      

  

   

 

IBNR reserving  

Actuarial literature has proposed and developed numerous claims reserving 

models to estimate outstanding claims. The best known claims reserving models 

in actuarial literature are the Chain Ladder, Loss Cost, Cape Code and its 

variations. Chain Ladder model is probably the most widely used and its basic 

classification according to the exploitation data regarding the changes of the 

amount of claims in the past and projections about the frequency and intensity 

of claims. The method allows different data grouping, by the occurrence period, 

by the reporting period of claims and by the insurance contract year. Also, the 

data that we observe can be settled or settled claims and reported claims 

reserve. The projections may include incremental or cumulative amounts of 

claims.  
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Let ,i jX represent the incremental claim amounts for accident year i and 

development year j; this is also known as the incremental payments of the 

change of reported claims. Let R represent the total outstanding claims liability. 

The claims that are incurred or the sum of all reported claims is termed as the 

cumulative claims amounts and denoted by , .i jC  Mathematically, the 

cumulative claim amounts for accident year i up to the development year j are 

given by 

, ,1 ,2 ,3 , ,

1

j

i j i i i i j i k

k

C X X X X X


       

Assumptions from Wutrich, Buhlmann and Furrer (2007) 

–  , ,: , : ,k i j i jX i j I j k C i j I j k        B   

kB  is  -field, in upper triangle in time I (year for last received 

premium). 

– The filtration Tt  is generated with  , :i jC i j t   

– payments ,i jX  in different accident years are independent 

–  ,
0

i j
j

C


is a Markov chain with 

   2
0 0 0 1 1j jf and f j and j    such that 1i I i j    

, , 1 1 , 1,i j i j j i jE C C f C  
   
 

             

  2
, , 1 , 11

.i j i j i jj
Var C C C 

   

Factor jf  is chain-ladder factor, development factor or age-to-age 

factor. Then we can define individual development factor: 

, 1
,

,

i j
i j

i j

C
F

C


 , with conditional   2

, ,/i j j j i jVar F B C            

Under assumptions we have for all 0, , 1i j J k    

, , , 1,i J i j i j j JE C C C f f 
      
 

            

 , , , 2 1 1i j k i j i j j j k j kE X C C f f f    
        
 

 

and Tt = JB  for t=I 

 
,

t
t k t i j Jt+k

i j t k

E E X E X

  

      T B  



19 

 , 2 1 1i j j j k j k

i j t

C f f f   

 

        

To estimate development factors we introduce folowing marks (J=I=t), 

   * *  and  ,i j I j j i J i    where 
 * ,i j j

X  and 
 *,i j i

X are payments 

for last accounting year. 

Then 
2,j jf   are: 

 

   

 

 

 

* *

* *

*

1 1
, 1 ,0

,
1 1

0, ,0 0

21
, 12

,*
,0

ˆ

1 ˆˆ
1

i j i j
i j i ji

j i j
i j i j

ii j i ji i

i j
i j

j i j j
i ji

C C
f F

C C

C
C f

Ci j


 


 


 






  

 
   
   




 



          

 

If development factor is equal to 1 in the last year and the end of development is 

in year I-1, then 
2

1
ˆ 0I   . Otherwise, extrapolating exponential descending 

serie 1 2 3 2
ˆ ˆ ˆ ˆ, , , ,I I     , Mack (1993) proposed the following formula 

  2 4 2 2 2
1 2 3 3 2

ˆ ˆ ˆ ˆ ˆmin / ,min ,
I I I I I

    
    

  

Lema 1. ˆ
jf is the 1jB measurable unbiased estimator which has minimal 

conditional variance among all linear combination of unbiased estimators of 

, , 1 ,/i j i j i jF C C .  

To solve numerical examples we also need next equality 

  

 
 *

2
2 2 2

1
,0

ˆ ˆ .k
k k k k k k

i k
i ki

E f Var f f f

C







     
  


B B  

Further, we create known triangles. 

 

 

5. MARKOV CHAINS IN LIFE INSURANCE 

 

In life assurance, every transition of an insured from one state to the other can 

have a certain financial effect that needs to be quantified. Regarding term life 
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assurance we have a simple system with two states, alive or dead. Then we have 

1 12 ,d    
2 0d   and corresponding eigenvectors are  1,0 '  and  1,1 '.   

By using a formula (2) we get 

 

12 12 121 1 1 10 1
( ) .

0 1 0 10 1 0 1

t t te e e
P t

          
       
      

 

 

and still have probabilities 

 12 12

11 12 22 21( ) , ( ) 1 , ( ) 1, ( ) 0.
t t

p t e p t e p t p t
  

       

 

Regarding whole insurance, premium is paid while an insured is in the state 1, a 

death beneft is paid at the time of transition to state 3. Insured can make a 

transition from the state 1 to the state 2, but also vice versa. Also, it is possible 

to make a transition from the state of the disabled to dead. To illustrate the 

procedure described above, we use the three-state model shown in Figure 3 to 

describe select mortality. 

 

Figure 3. Markov chain model for disabilities, recoveries, and death. 

 
 

First, for attending age x, we calculated forces of mortality from the mortality 

rates. In the case of this model, we have 

 

12 13 12 13

21 21 23 23

( )

( )

0 0 0

Q

   

   

  
 

   
 
 
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We can apply the Kolmogorov forward differential equations, for person who is 

active at time s:4 

00 01 21 00 13 12( , ) ( , ) ( ) ( , )( ( ) ( )),p s t p s t t p s t t t
t

  


  


 

01 00 12 01 23 21( , ) ( , ) ( ) ( , )( ( ) ( )),p s t p s t t p s t t t
t

  


  


 

Initial conditions become 

   00 01, 1 and , 0.p s s p s s   

For person who is disabled at time s, equations are: 

10 11 21 10 13 12( , ) ( , ) ( ) ( , )( ( ) ( )),p s t p s t t p s t t t
t

  


  


 

11 10 12 11 23 21( , ) ( , ) ( ) ( , )( ( ) ( )),p s t p s t t p s t t t
t

  


  


 

Initial conditions become 

   00 11, 0 and , 1.p s s p s s   

 

Many other problems can be described by the same schematic. For instance, in 

connection with a pension insurance with additional benefits to the spouse, 

states 0 and 1 would be single and married, and in connection with 

unemployment insurance they would be employed and unemployed.  

Further, 4-stage model can be introduced for the health insurance. We will have 

3 health states: healthy, sick and infected state. The fourth state, death, can 

occur as a result of the infection or death could also occur from causes not 

related with the disease infection. By variation of state space and intensities, the 

Markov model ie. its set-up is able to represent an extremely complex 

phenomena. For future research authors indicated the possibility of applying 

Markov chain model on actuarial equivalence principle, expected present 

values, reserves etc. 

 

 

 

 

 

 

 

                                                      
4 Norberg, R. (2002). Basic Life Insurance Mathematics, London: London School of 

Economics, p. 76. 


