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Abstract: This study explores the use of machine learning algorithms in predicting material transfer in 
tribological contacts. The results of the analysis indicate that the machine learning models can accurately 
predict the occurrence of material transfer with a high degree of accuracy. The Gradient Boosting Classifier 
algorithm was found to outperform other algorithms in terms of predictive accuracy. The study's practical 
implications suggest that machine learning can be an effective tool for predicting and preventing material 
transfer, leading to increased system reliability and durability. The findings highlight the importance of 
domain-specific expertise in selecting appropriate algorithms and input features. One limitation of the study 
is that it focused only on material transfer and did not consider other important factors such as wear and 
friction. Future research could investigate the use of machine learning algorithms in predicting wear and 
friction in tribological systems. 
 
Keywords: machine learning, data-driven analyses, machine learning hiperparameter optimization, 
Triboinformatics. 
 

 
1. INTRODUCTION  
 

In the last decade, the use of “Big Data” and 
data-driven analysis in many scientific and 
engineering fields has become the prevailing 
trend. Tribology, the science of surface 
interactions, as it has been and continues to be 
one of the most relevant scientific and 
engineering disciplines is not devoid of this trend. 
When it comes to tribology, large amounts of data 
are generated as a result of a large number of 

experiments, with parameters such as friction and 
wear, whose values are constantly measured. 
Furthermore, since friction and wear have a 

complex nature, tribology has remained a highly 
experimental and empirical science, leading to the 
formation of big data on friction, wear, and 
surface properties of different materials, that 
posts an opening to perform data-driven analyses. 
The appearance of contemporary computer 
systems with significant computing power 
enabled the rapid development of new 
approaches to data-driven analysis that 
originated new insights. “Big Data” algorithms 
belonging to Artificial Intelligence (AI) and 

machine learning (ML) are now being used to 
determine new correlations within data-driven 
areas that cannot otherwise be discovered using 
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traditional methods [1]. The application of new 

data-driven approaches paved the way for the 
development of new areas within tribology such 
as "Triboinformatics" and "Intelligent tribology" 
[2]. 

The characteristic that was used to perform 
data-driven analyses in this paper is material 
transfer from different nanocompozite of ZA-27 
alloy matrix reinforced with different volume 
fractions of nanometric "Al2O3", i.e. "1%Al2O3", 
"3%Al2O3", and "5%Al2O3", respectively. These 
materials were used because, as a consequence 

of its higher chemical reactivity, aluminium bonds 
to steel much more quickly during sliding, leading 
to adhesive wear and material transfer [3].  

Although many factors, including surface 
roughness, lubricants, sliding distance, contact 
pressure, and tool coating, are known to influence 
the occurrence of material transfer at low 
temperatures (i.e. room temperature), describing 
the mechanisms behind the initiation of material 
transfer remains a persistent challenge in this field 
[3]. The addition of nanometric Al2O3 particles to 

ZA-27 alloy matrix can improve its tribological 
properties by enhancing wear resistance, 
reducing friction, and minimizing material transfer 
[4]. However, the specific material transfer 
characteristics of the composite depend on the 
specific tribological system and the volume 
fraction of Al2O3 nanoparticles. 

Motivation for the research is to find the 
adequate ML method and optimal values for the 
hyperparameters for the adequate ML method so 
that it can be used effectively with the available 
tribology data. Although the influence of 
hyperparameters in general may be understood, 
their precise effect on a dataset and their 
interactions during learning may not be known [5]. 
As a result, it is critical to fine-tune the method 
hyperparameter values. Typically, 
hyperparameters are tuned using naive 
optimization algorithms such as grid search and 
random search; however, the reason for this 
study is to also use a stochastic optimization hill 
climbing algorithm. 

Research questions arise as to whether it is 
possible to apply ML algorithms that will be able 
to perform a sufficiently precise prediction of the 

values of tribological characteristics and thus 

enable the realization of extensive long-term 
tribological experiments to be reduced. An 
additional research question is whether, after 
selecting the most accurate algorithm from the 
spectrum of ML algorithms, it is possible to apply 
the stochastic optimization algorithm and 
additionally fine-tune the hyperparameter values 
of the selected ML algorithm. 

The paper practical aim is to present a ML 
model that will enable adequate prediction of the 
occurrence of material transfer, and to aid in 

understanding the mechanisms of friction and 
wear, which will in turn lead to the development 
of better materials and lubricants for improved 
performance and durability of mechanical 
systems. 

The theoretical goal of the paper is to present 
a new methodology based on the selection and 
application of ML models and the hill climbing 
optimization method for determining 
hyperparameters of ML algorithm in order to 
make the accurate predictions of the occurrence 

of material transfer. 
The methodological contributions of ML in 

tribology and material transfer are focused on 
improving the understanding of tribological 
phenomena, developing predictive models, and 
optimizing the design and operation of 
tribological systems. These contributions have the 
potential to improve the reliability and efficiency 
of tribological systems in a wide range of 
applications. 
 
2. LITERATURE REVIEW 
 

The literature review is organized into four 
subsections, each subsection corresponds to an 
overview of current research in the fields 
devoted to the material transfer, ML and 
tribology and ML. The last subsection presents 
identified research gaps. 
 
2.1 Triboinformatics review 
 

Tribology research is primarily concerned 
with studying the friction, wear, and lubrication 
of interacting surfaces. As industrialization 
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continues to expand, tribology research has 
broadened its scope considerably. Over time, 
tribology research methods have evolved from 
empirical science based on observation to 
theoretical science based on models, and finally, 
computational science based on simulations. 
Thanks to advances in information technology, 
more efficient and effective methods for 
generating, collecting, processing, and 
analyzing tribological data have emerged, 
leading to the introduction of the modern 
concept known as "tribo-informatics 
(triboinformatics)." [6]. As information 
technology continues to advance, the range of 
information processing methods has expanded 
beyond traditional methods such as regression, 
fitting, and induction. In particular, the 
emergence of ML and AI technologies has 
significantly enhanced the efficiency of 
information processing methods and opened 
up new areas of application. Thus, the concept 
of tribo-informatics emerged in response to the 
need for more efficient and effective tribology 
research. By establishing tribology standards, 
developing tribology databases, and utilizing 
information technology to collect, organize, 
store, retrieve, analyze, and share tribology 
information, tribo-informatics has enhanced 
the efficiency of the tribology research process 
[7]. 

Tribo-informatics methods currently have a 
wide range of applications, including regression 
and clustering [8]. These methods are primarily 
employed for the purposes of condition 
monitoring, behaviour prediction, and 
optimization of tribological systems [9-11]. The 
establishment of relationships between data 
should be the end objective of all methods used 
in informatics. System behaviour prediction is 
used to determine the relationship between 
tribological quantity and time quantity; system 
state monitoring is used to determine the 
relationship between tribological quantity and 
state quantity; and system optimization is used 
to determine the relationship between the 
system input and output. Because of this, the 
collaborative movement of data and model is 
an essential component of the research 
methodology utilized in tribo-informatics [6]. 

2.2 Tribology and ML Review 
 

Tribo-informatics encompasses every 
technique ever developed for analyzing 
tribological data. It incorporates state-of-the-
art ML techniques in addition to more 
conventional information processing 
techniques like the Gaussian regression 
method, linear regression method, and least 
squares method. ML research has yielded a 
variety of AI techniques [12].  

To achieve full integration of informatics and 
tribology, tribology information processing 
must be founded on fundamental tribological 
models and concepts. Model-driven data 
processing, or MDDP, is a technique used in 
tribo-informatics to guarantee that the 
parameters chosen to characterize a system 
have some sort of physical significance. The 
best values for the defining characteristics can 
then be derived through correlation. Moreover, 
"data-driven model optimization" can be used 
to create novel tribological physical models or 
principles by determining optimum 
characteristic parameters [13]. 

The most popular of these techniques are 
those based on ML algorithms such as artificial 
neural networks (ANNs) [14], support vector 
machines (SVMs) [15], 2021), k-nearest 
neighbors (KNNs), and random forests (RFs). 

The complex processes in tribological 
systems can be investigated and their behavior 
can be classified or quantified using state-of-
the-art ML or AI techniques in an effective or 
even real-time manner [10]. As a result, their 
potential extends well beyond the realm of 
academia and into practical, commercial 
settings. When it comes to dealing with high-
dimensional problems and data sets and 
adapting to changing conditions with 
acceptable effort and cost, ML and AI methods 
stand out as particularly promising and 
advantageous [16]. They allow for the discovery 
of important connections, and further growth 
of understanding and using previously collected 
information. However, the potential of ML and 
AI techniques for tribological issues remains 
surprisingly underexplored in comparison to 
other fields or domains. The reason for this may 
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be derived from the fact that tribology 
characteristics are not representative of fixed 
data but rather irreversible loss quantities that 
vary with time and test circumstances [9]. 
Furthermore, there are few or no studies that 
deal with the use of ML algorithms to predict 
the frequency of material transfer. Thus, the 
authors of this paper represent the possibility 
of using ML algorithms to identify the 
tribological characteristics values that will not 
contribute to material transfer occurrence 
prediction. 
 
3. MATERIALS AND METHODS 
 

ML algorithms were formulated to predict 
the tribological behavior of ZA-27 alloy matrix 
reinforced with different volume fractions of 
nanometric "Al2O3", i.e. "1%Al2O3", 
"3%Al2O3", and "5%Al2O3" under dry 
conditions. In this section, data collection, data 
preprocessing, parameter optimization, and 
performance-enhancing techniques used for 
the ML algorithms will be discussed. 
 
3.1 Data collection 
 

The acquisition of data is essential to the 
development of an effective data-driven ML 
algorithm. When a large, pertinent dataset is 
used to train an ML algorithm, the performance 
of the algorithm's predictive capabilities 
improves. The process of conducting 
tribological experiments in order to generate 
sufficient data for an ML analysis is a process 
that is both time-consuming and expensive. In 
addition, experimental data from a particular 
experimental setup may transmit undesirable 
trends and biases during the training of a ML 
model. This can severely impair the predictive 
performance of the ML model when applied to 
new datasets from other sources. Having in 
mind these issues, authors of this paper have 
collected normal load, length and width of the 
wear track, wear rate, and material transfer 
occurrence data of ZA-27 alloy matrix 
reinforced with different volume fractions of 
nanometric "Al2O3", i.e. "1%Al2O3", 
"3%Al2O3", and "5%Al2O3" under dry 

condition against a steel counterpart. For 
fources, length and width of the wear track, 
wear rate and material transfer occurrence 
prediction, tribological data set with 192 
sample points was applied. 

 
3.2 Input and output parameters 

 
Variables aluminium carbide content, sliding 

speed, length of the wear track, width of the 
wear track and normal load were the input 
parameters for the ML algorithms. Among the 
input parameters, aluminium carbide content 
were defined as categorical data for the ML 
algorithms while the rest of them were 
numerical. Material transfer occurrence was 
the target or output parameter. 

 
3.3 Machine leanrning algorithms 

 
For this study, we have trained eleven ML 

algorithms: Logistic Regression (LR), Linear 
Discriminant Analysis (LDA), K-Neighbors 
Classifier (KNC), Decision Tree Classifier (DTC), 
Gaussian Naive Bayes (GNB), C Support Vector 
Classification (CSVC), Extreme Gradient 
Boosting (EGB), Ada Boost Classifier (ABC), 
Gradient Boosting Classifier (GBC), Random 
Forest Classifier (RFC), and Extra Trees Classifier 
(ETC) with tribological data of alloy matrix 
reinforced with different volume fractions of 
nanometric "Al2O3" to find correlations 
between the input and output parameters and 
predict the tribological behaviour. The ML 
analyses were performed using Python and its 
built-in “scikitlearn” and “xgboost” toolkits. A 
brief description of the ML algorithms used in 
this study is presented below.  

LR is a model that is used to predict the 
probability of an event happening based on 
certain input variables. LR is an abbreviation for 
the term "logistic regression." In ML, it is a 
binary classification technique, where with a 
given collection of variables serving as inputs, 
the objective is to identify the line or curve that 
provides the best approximation of the 
possibility that an event will take place. A 
logistic function is used to model the 
relationship that exists between the variables 
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that are used as input and the binary variable 
that is used as output in this form of 
generalized linear model.  

LDA is a technique for supervised learning 
that seeks to identify a linear combination of 
features that best separates the data into 
distinct classes. LDA aims to reduce the 
dimensionality of input data by projecting it 
onto a lower-dimensional space while 
preserving as much class-discriminatory 
information as feasible. The resulting lower-
dimensional space can then be applied to 
classification problems.  

As its name indicates, the KNC algorithm 
takes into account the data points in the 
training set that are the most similar to the new 
data point being predicted. The parameter "k" 
or "n" represents the amount of data points 
that are considered to be the most relevant in 
order to make a prediction about a new point. 
The level of difficulty of a KNC model is 
determined by the number of the parameter n. 
Therefore, in order to optimize performance, it 
is necessary to select the value of k in a 
thoughtful manner, taking into consideration 
the data type and the degree of difficulty of the 
optimization problem. A KNC model also needs 
to take into account the assignment of a 
uniform or distance-based weight to the 
neighboring points. This is an essential 
consideration. 

DTC is a supervised ML algorithm used as a 
form of decision support tool that classifies new 
data using a tree-like model of decisions and 
their potential outcomes. Each internal node 
represents a feature or attribute, each branch 
represents a possible value of that feature or 
attribute, and each leaf node represents a class 
designation or a decision. The objective of the 
DTC algorithm is to discover a decision tree that 
can classify new instances precisely.  

GNB is a probabilistic ML algorithm 
employed for classification tasks. It is a variant 
of the Naive Bayes algorithm that implies 
continuous and normally distributed input 
features. GNB is a supervised learning 
algorithm that calculates the conditional 
probability of each input feature given the class 
label, and then multiplies these probabilities 

together to derive the probability of the class 
label given the input features. However, if the 
input features are not normally distributed or if 
there are correlations between the input 
features, it may not perform well. 

The CSVC is a complex ML algorithm. It is 
particularly well-known for its ability to handle 
successfully a large number of input variables 
with a small dataset. In order for CSVC 
regression algorithms to work properly, the 
datapoints need to be reorganized into 
hyperplanes in higher dimensional space. 

EGB is an ML algorithm that pertains to the 
boosting algorithm family. It is a robust, 
versatile, and effective algorithm that operates 
by training a series of weak decision tree 
models iteratively and then combining them to 
form a robust model that can accurately predict 
the target variable. In each iteration, the 
algorithm focuses on the examples that the 
current model struggles to correctly classify 
and attempts to adapt the new model to these 
examples. This is accomplished by adjusting the 
weights of the examples so that the new model 
gives greater weight to the misclassified 
examples.  

ABC is an algorithm for ML that pertains to 
the boosting algorithm family. Similarly to EGB, 
ABC operates by training a series of weak 
classifiers iteratively and then combining them 
to produce a strong classifier that can 
accurately predict the target variable. In each 
iteration, the algorithm focuses on the 
examples that the current model struggles to 
correctly classify and attempts to adapt the 
new model to these examples.  

The GBC prediction model is constructed 
using the ensemble technique, which involves 
combining a number of different decision trees. 
Each decision tree works on its own 
independently on a portion of the dataset, and 
the optimization of arbitrarily differentiable 
loss functions is carried out for each of them 
individually. After that, the results from all of 
the decision trees are combined to produce an 
accurate projection.  

RFC is a type of supervised ML algorithm that 
makes use of decision trees to learn and 
improve itself based on instances from training. 
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This algorithm is well-known for its ability to 
handle massive datasets and problems that 
involve a large number of input variables in an 
effective manner. The RF algorithms are made 
up of a collection of individually crafted 
decision trees. After that, the results of these 
decision trees are averaged, which provides 
RFC with an enhanced capability for predictive 
analysis.  

The ETC is a ML algorithm that is a member 
of the ensemble methods family. It is similar to 
RFC, but creates decision trees using a different 
method. Similar to RFC, ETC combines the 
predictions of multiple decision trees to arrive 
at a final conclusion. However, ETC employs a 
random split at each node to construct the 
decision trees rather than the optimal split at 
each node.  

 
3.4 Deterministic optimization algorithm 

 
The assumption of the authors of this paper 

is that after applying the mentioned ML 
algorithms for predicting the occurrence of 
material transfer, it is additionally possible to 
optimize the hyperparameters of the ML 
algorithm that proved to be the most accurate 
by using a deterministic optimization 
algorithm,i.e. Hill Climbing Local Search (HCLS) 
algorithm. HCLS is a straightforward algorithm 
for local search optimization. It seeks the 
optimal solution in close proximity to the 
current solution, while improving a candidate 
solution iteratively by making minor local 
modifications and selecting the best 

neighboring solution at each iteration. The 
algorithm begins with an initial candidate 
solution and then repeatedly investigates its 
surrounding area to find a superior solution. It 
evaluates each neighboring solution and selects 
the one that improves the objective function 
the most before reiterating the procedure with 
that solution. The algorithm terminates when it 
reaches a local maximum, a solution that 
cannot be enhanced by any adjacent solution. 
 
4. RESULTS AND DISCUSSION 
 

In the present study, ML algorithms were 
utilized to predict the occurrence of material 
transfer in tribological contacts. Using a dataset 
of experimental observations of material 
transfer from prior studies, we trained and 
evaluated a eleven of ML algorithms and 
employed HCLS optimization method to 
determine combinations of input features and 
algorithm parameters, for the ML algorithm 
thta showed best results. 

 
4.1 Experimental Results 

 
After loading, summarizing and preparing 

the data, data were used to train the 
considered ML algorithms. After training the 
considered algorithms, the values of precision 
were determined, which are shown in Table 1. 
The precision of considered ML algorithms is 
expressed in the form of mean and standard 
deviation for 10 k-folds of training data set. 

Table 1. Applied algorithms parameters and training accuracy scores 

No ML 
algorithm 

Algorithm hyperparameters Training accuracy 
scores for 10 k-folds 
(mean and standard 

deviation) 

1.  LR  penalty = l2, dual = False, tolerance = 0.0001, C = 1, 
fit_intercept = True, intercept_scaling = 1, solver = lbfgs, 
max_iterations = 100 

0.849167 (0.093408) 

2.  LDA  solver = svd, store_covariance = False, tolerance = 0.0001 0.815833 (0.088207) 

3.  KNC n_neighbors = 5, weights = uniform, leaf_size = 30, p = 2, metric 
= minkowski 

0.828750 (0.068121) 

4.  DTC criterion = gini, splitter = best, min_samples_split = 2, 
min_samples_leaf = 1, min_weight_fraction_leaf = 0, 
min_impurity_decrease = 0, ccp_alpha = 0 

0.882083 (0.056336) 
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5.  GNB var_smoothing = 1e-9 0.777083 (0.172856) 

6.  CSVC C = 1, kernel = rbf, degree = 3, gamma = scale, coef0 = 0, 
shrinking = True, probability = False, tolerance = 0.001, 
cache_size = 200, verbose = False, max_iterations = -1, 
decision_function_shape = ovr, break_ties = False 

0.868333 (0.066750) 

7.  EGB learning_rate=0.1, n_estimators=100, subsample=1, 
max_depth=3 

0.894583 (0.061068) 

8.  ABC n_estimators = 50, learning_rate = 1, algorithm = SAMME.R 0.802917 (0.083209) 

9.  GBC learning_rate=0.1, n_estimators=100, subsample=1, 
max_depth=3 

0.901250 (0.061295) 

10.  RFC n_estimators = 100, criterion = gini, min_samples_split = 2, 
min_samples_leaf = 1, max_features: str = "auto", 

0.868333 (0.059722) 

11.  ETC n_estimators = 100, criterion = gini, min_samples_split = 2, 
min_samples_leaf = 1 

0.815417 (0.093728) 

 
The data from the table 1 shows that the 

GBC algorithm had the highest accuracy score 
(0.90) when it comes to predicting the material 
transfer occurrence.  

Similarly, in order to additionally display the 
results of training algorithms, boxplot based on 
k-fold cross-validations were created (Figure 1). 
Box plot showing the distribution of accuracy 
score for all considered ML algorithms. 

 
Figure 1. ML algorithm comparisons boxplots 

The box represents the accuracy scores (AS) 
from the first quartile (Q1) to the third quartile 
(Q3), and the line inside the box represents the 
median for the k-fold cross-validations of all 
considered ML algorithms. The whiskers extend 
to the minimum and maximum values within 
1.5 times the AS, and any data points beyond 
the whiskers are considered outliers. Presented 
boxplots show that the median line within 
boxes are closest to accuracy score of 1 for the 
k-fold cross-validations of GBC algorithm and 
that it coincides with upper whisker. This 

indicates that the accuracy score data for k-fold 
cross-validations of GBC algorithm are skewed 
towards higher values, with no extreme values 
that are considered outliers. 

Optimization process for parameters values 
of the GBC that had the highest accuracy score 
has been performed with the HCLS algorithm. 
HCLS optimization algorithm may be used to 
tune the hyperparameters of the GBC model. 
There are many hyperparameters that we may 
want to optimize for the GBC model. We have 
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focused on four key hyperparameters; and they 
are: 

• Learning Rate (learning_rate) 
• Number of Trees (n_estimators) 
• Subsample Percentage (subsample) 
• Tree Depth (max_depth) 
The learning rate controls the contribution 

of each tree to the ensemble. Sensible values 
are less than 1.0 and slightly above 0.0 (e.g. 
10−8). The number of trees controls the size of 
the ensemble, and often, more trees is better 
to a point of diminishing returns. Sensible 
values are between 1 tree and hundreds or 
thousands of trees. The subsample percentage 
define the random sample size used to train 
each tree, defined as a percentage of the size of 

the original dataset. Values are between a 
value slightly above 0.0 (e.g. 10−8) and 1.0. The 
tree depth is the number of levels in each tree. 
Deeper trees are more specific to the training 
dataset and perhaps overfit. Shorter trees often 
generalize better. Sensible values are between 
1 and 10 or 20. By applying the HCLS 
optimization algorithm through iterations 
(Table 2), the optimal values of the GBC 
algorithm hyper parameters were determined 

Table 2 shows that the accuracy score has 
been improved through iterations. The 
accuracy score prior the optimization and after 
the optimization of hyperpatameters for the 
overall data set are presented in Table 3. 

Table 2. Iterations of the hill climbing optimization algorithm 
Iteration Learning Rate Number 

of Trees 

Subsample Percentage Tree 

Depth 

Accuracy 

score 

1 0.09530291179573293 237 0.7793838317124095 1 0.87781 

46 0.10122603449958356 252 0.7340932083423659 1 0.87956 

53 0.09339199355325446 229 0.792218296926685 1 0.88307 

122 0.07730787333501404 202 0.5903714816137815 1 0.88482 

 
Table 3. Gradient Boosting Classifier parameters and accuracy scores 

Algorithm with 

best 

peorformance 

Parameters with values 

prior optimization 

Overall 

accuracy 

score 

Parameters with values after 

optimization 

Overall accuracy 

score after 

optimization 

Gradient Boosting 

Classifier 

learning_rate=0.1, 

n_estimators=100, 

subsample=1, 

max_depth=3 

0.871 learning_rate=0.077, 

n_estimators=202, 

subsample=0.59, 

max_depth=1 

0.897 

 
In this case, we can see that the best result 

involved using a learning rate of about 0.01, 
202 trees, a subsample rate of about 59 percent, 
and a large depth of 1 level. This configuration 
resulted in a mean accuracy of about 89.7 
percent, better than the default configuration 

that achieved an accuracy of about 87.1 
percent. Below (Table 4) is the confusion matrix 
showing the number of correct and incorrect 
predictions made by the by default and 
optimized configuration of the GBC model 
compared to the actual outcomes. 

Table 4. Gradient Boosting Classifier confusion matrix prior and after optimization 
Confusion matrix prior optimization Confusion matrix table after optimization 

 Predicted 

Negative 

Predicted 

Positive 

 Predicted 

Negative 

Predicted 

Positive 

Actual 

Negative 

7 2 Actual 

Negative 

7 2 

Actual Positive 3 27 Actual Positive 2 28 
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A confusion matrix shows that the number 
of positive instances that are correctly 
predicted by the default configuration of the 
GBC model is 27 and by the optimal 
configuration of the GBC model is 28. The 
number of positive instances that are 
incorrectly predicted as negative by the default 
configuration of the GBC model is 3 and by the 
optimal configuration of the GBC model is 2. 
Also, a confusion matrix shows the number of 
negative instances that are correctly predicted 
by the default configuration of the GBC model 
is 7 and by the optimal configuration of the GBC 
model is 7. The number of negative instances 
that are incorrectly predicted as positive by the 
default configuration of the GBC model is 2 and 
by the optimal configuration of the GBC model 
is 2. Having this in mind, it could be said that the 
confusion matrix shows that for a given case 
the accuracy of the ML algorithm is improved 
by optimizing its hyper parameters. 

 
4.2 Discussion 

 
The results of our analysis indicate that the 

ML models were able to accurately predict the 
occurrence of material transfer in tribological 
contacts, with a high degree of accuracy. In 
particular, we found that the GBC algorithm 
outperformed other algorithms in terms of 
predictive accuracy, with an overall accuracy 
score of 0.87. 

Overall, our results suggest that ML 
algorithms can be a powerful tool for predicting 
the occurrence of material transfer in 
tribological contacts, and that the performance 
of the models can be improved by carefully 
selecting input features and optimizing 
algorithm parameters. These findings have 
important implications for the design and 
optimization of tribological systems, as they 
provide a means to predict and prevent 
material transfer, which can lead to increased 
system reliability and durability. 

 
4.3 Practical Implications 

 
The practical implications of the results 

suggest that the use of ML algorithms can be an 

effective tool for predicting material transfer in 
tribological contacts with a high degree of 
accuracy. This can help in designing and 
optimizing tribological systems by predicting 
and preventing material transfer, which can 
lead to increased reliability and durability of the 
system. 

Furthermore, the finding that the GBC 
algorithm outperformed other algorithms in 
terms of predictive accuracy highlights the 
importance of careful algorithm selection and 
parameter optimization in ML models. This 
emphasizes the need for domain-specific 
expertise in choosing the appropriate 
algorithms and input features for the given 
problem. 

Overall, the results demonstrate the 
potential of ML in predicting and preventing 
material transfer in tribological systems, which 
has important implications for industries such 
as automotive, manufacturing, and aerospace. 
This can lead to cost savings and improved 
performance, as well as increased safety and 
reliability of the systems. 

 
5. CONCLUSIONS 

 
The study's main novelty lies in its use of ML 

algorithms to predict material transfer in 
tribological contacts. The study showed that 
the GBC algorithm outperformed other 
algorithms in terms of predictive accuracy, and 
this highlights the advantages of using ML 
algorithms in predicting and preventing 
material transfer in tribological systems. The 
results also showed that the performance of 
the models can be improved by selecting 
appropriate input features and optimizing 
algorithm parameters. 

The practical implications of the study are 
significant for industries such as automotive, 
manufacturing, and aerospace. Predicting and 
preventing material transfer in tribological 
systems can lead to increased system reliability 
and durability, resulting in cost savings and 
improved performance. The use of ML 
algorithms can be an effective tool in designing 
and optimizing tribological systems. The study 
emphasizes the need for domain-specific 
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expertise in selecting the appropriate 
algorithms and input features for the given 
problem. 

One of the limitations of the study is that the 
analysis was based on a limited dataset. Further 
studies could be conducted with larger datasets 
to validate the results. Additionally, the study 
focused only on predicting material transfer in 
tribological contacts and did not consider other 
important factors such as wear and friction. 
Future research could investigate the use of ML 
algorithms in predicting wear and friction in 
tribological systems. Finally, the study's 
findings emphasize the importance of domain-
specific expertise in selecting algorithms and 
input features. Future studies could investigate 
the development of automated methods for 
selecting algorithms and input features based 
on the characteristics of the data. 
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