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Abstract: The purpose of this paper is to explore conventional 

laser welding quality control methods and compare them with 

modern AI-based (Artificial Inteligence) testing solutions, 

highlighting the potential of AI in laser welding quality 

assurance. AI can effectively monitor various laser welding 

process signals and parameters to determine weld quality. 

Furthermore, AI image recognition can enhance weld error 

detection precision when monitoring laser welding with 

vision systems. In cases where conventional quality control 

methods, such as X-ray, are utilized, AI can be employed to 

process and interpret test results, reducing the time and effort 

required for a human operator. This paper presents and 

briefly discusses several successful AI application examples 

in laser welding quality assurance, as well as application 

possibilities, demonstrating the latest state-of-the-art non-

destructive laser welding test solutions. 

Keywords: Artificial Intelligence, Laser Welding, Quality 
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1. Introduction  

 

Achieving a certain quality standard requires 

taking into consideration several factors – 

technical, technological, and economic[1]. 

Working conditions and equipment, 

production layout, as well as expenses of 

inspection, testing, and rework all affect the 

quality of the product. [2] The same criteria 

can be applied to the assessment of the 

quality of welded joints. However, when it 

comes to welding it is crucial to control and 

monitor the entire process, as errors can be 

frequent and consequences can turn out to be 

severe and costly [2]. 

The advent and improvement of artificial 

intelligence (AI) and its subfields, resulted in 

their rising impact on the manufacturing 

industry [3]. The advantages automated 

procedures hold over manual work increased 

the popularity of AI applications in 

manufacturing processes, especially quality 

control [3]. The implementation of machine 

learning (ML) models in industrial quality 

has proven to be of great use as it contributes 

to savings in resources, time, and money. A 

few examples of applied ML models in 

quality inspection procedures are stated 

hereinafter[4].  

Faults and defects in laser welding evaluated 

during quality control can be classified either 

as internal or external [2]. External defects 

can be detected by the naked eye or with 

magnifying glasses, as they appear on the 

surface of the material [2]. Internal defects 

can only be detected after the metallographic 

preparation of the samples [2]. These defects 

occur under the surface of the material. 

Some of the most common welding 

discontinuities are: 
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 cracks,  

 cavities,  

 solid inclusions,  

 lack of fusion and penetration,  

 imperfect shape and dimension. 

Welding parameters should be closely 

followed during process as they affect the 

quality of the weld [19]. For example, by 

analyzing and controlling parameters such as 

the laser power, the welding speed, and the 

size of the laser beam, the formation of 

welding discontinuities can be predicted 

[12]. Also, process parameters determine the 

geometry of the keyhole which affects the 

weld geometry and quality[5]. 

 

1.1 AI application in industrial quality 

 

AI-based methods are most commonly used 

for prediction, classifying a large amount of 

obtained data, and in optical inspection, 

when a high level of precision and accuracy 

is required for time-consuming and 

monotonous work. 

An example of optical inspection based on a 

machine learning method is a blister defect 

detection for polymer lithium-ion batteries 

(PLB) performed by Ma et al. [6]. In this 

case, a widely used deep learning model, 

convolutional neural network (CNN), is 

employed to detect blisters in PLB sheets 

from images [4]. This can be regarded to as 

an image classification problem[6]. CNN 

uses a hierarchical structure to gradually 

extract advanced features from low-level 

features. It then uses these advanced features 

to do image classification and detect defects 

in PLB sheets from images [6]. 

Further use of machine learning methods is 

found in the identification of root causes of 

failures and quality deviations. Lokrantz 

et.al.[7] uses a Bayesian network, a form of a 

probabilistic graphical model, to represent 

dependence between manufacturing stages. 

This model uses expert knowledge and 

previously recorded data to perform 

inferences regarding the root causes of 

quality deviations [7]. Such framework 

provides a chance for the knowledge to be 

stored for further use and distributed to other 

manufacturing sites [7]. 

Another instance of employing machine 

learning tools is set by Sumesh et. al.[8]. 

They used two different classifier 

algorithms, J48 and Random Forest, to 

determine the quality of the weld based on 

the corresponding arc sound [7]. Input 

parameters for the classifier were sound 

signals recorded during experiments and 

later generated in Matlab software. The 

accuracy Random Forest showed was 

88.69% and that of J48 was 70.78% [7]. 

Although the results turned out to be 

satisfactory there is still room for enhancing 

the performance of algorithms by bettering 

the conditions in which the sound arc is 

recorded, according to Sumesh et al. [7]. 

 

1.2 Conventional laser welding quality 

controls 

 

Laser technology has been present in the 

industry for more than 40 years, and it has 

contributed greatly to the improvement of 

welding efficiency and accuracy [9]. These 

developments enable greater manufacturing 

flexibility (control over design) and therefore 

increase the range of useful material 

properties that can be achieved [8]. 

However, laser welding requires rigorous 

control and constant process monitoring to 

achieve a high-quality standard [2]. 

Conventional methods used to evaluate the 

quality of a welded joint can be destructive 

or non-destructive [1]. 

Destructive tests are achieved through 

mechanical and structural tests and they 

provide quantitative indicators of the quality 

of the welded joint [2]. To determine the 

mechanical properties of welded joints, it is 

necessary to make test samples under the 

appropriate standard [1]. These samples are 

obtained by cutting a small part of the 



 
 

639 

welded piece that was intentionally left 

there, or by making special pieces (test 

plates) that are welded using the same 

procedure and welders as the planned 

construction [10]. Some mechanical tests 

include testing by tension, bending, 

measurement of hardness, etc[10]. 

 

 

Figure 1. Test plate 

 

To determine the structure of the welded 

joint, structural (metallographic) tests are 

performed [10]. Samples used for these tests 

are prepared by grinding and polishing, after 

which the surface of the sample is etched [9]. 

The choice of the chemical reagent used for 

etching is based on the material of the tested 

object [10]. This procedure lets us see the 

macroscopic appearance of the welded joint 

as well as the microstructure in the thinned 

zones of the welded joint [10]. 

On the other hand, non-destructive 

evaluation involves the detection and 

assessment of deviations on both the surface 

and interior of the material [2]. Considering 

the fact that achieving a welded joint without 

any discontinuities is almost impossible, it is 

important to determine their shape and 

dimensions [1]. Discontinuities aren’t 

considered errors if they are evaluated to be 

within the permitted limits, prescribed in the 

quality requirements of the welded joint [1]. 

During these tests, the material is not 

damaged in any way. Some of the most 

common non-destructive tests are visual 

tests, testing with liquid penetrants, magnetic 

flux testing, ultrasound testing, and 

radiographic examination [10]. 

Both destructive and non-destructive 

methods usually require a lot of time and 

additional workstations, specialized 

equipment and materials, and trained staff, 

resulting in a high cost [11]. 

 

2. Smart laser welding quality 

assurance systems 
 

An alternative to conventional quality 

assessment methods is found in the 

development and integration of process 

monitoring systems. These systems detect 

welding errors during the process and the 

negative impact of uncertain interfering 

factors can be effectively reduced and 

flawed parts can be separated [11]. 

When it comes to laser welding, process 

monitoring is conducted in three stages. In 

the first stage, during the pre-process, the 

weld seam is tracked [12]. After that, the 

melt pool, weld defects, spatter, etc. are 

monitored during the process. Lastly, the 

geometry of the weld and visible defects are 

examined post-process [12]. 

Using AI-based methods, weld features, 

defects, and the state of the weld can be 

predicted and adjusted [13]. Also, corrective 

measures are proposed through feedback to 

system control if needed, and the entire 

process becomes more efficient over time, as 

more data is collected. There are different 

methods used for process monitoring and 

quality assessment.  
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2.1 Signal monitoring sensor techniques 

 

During process monitoring, the most 

commonly monitored signals are acoustic, 

optical, and thermal. 

Acoustic emission signal is one way to 

monitor the laser welding process. The 

plasma ejected from the keyhole leads to 

pressure fluctuations which bring about the 

acoustic signal [13]. This signal can be 

measured without contact, by using a 

microphone or a resonant sensor [14]. 

Acoustic signatures, such as sound pressure 

deviation and band power, can be used to 

specify the weld penetration by applying a 

neural network algorithm and regression 

analysis methods [15]. The algorithms 

effectively separated full penetration from 

partial penetration. An automatic measure 

and control system designed by Lv et al. [16] 

proved that acoustic signals are also helpful 

in controlling arc length in real-time, based 

on the linear relationship between the arc 

sound and arc length. The linear fitting 

model was used to predict the surface height 

of the molten pool. Achieved prediction 

results were successful [16]. 

The main downside of this signal is its 

susceptibility to environmental noise. This 

interferes with the forthputting of acoustic 

signal monitoring[13]. However, this can be 

avoided by using noise reduction methods to 

reduce the background noise signals [17] or 

by using a plane microphone array system, 

composed of eight microphones [18]. 

Optical signal monitoring consists of optical 

radiation and optical vision monitoring [13]. 

The molten pool, spatters, and plasma emit 

strong optical radiation, and the optical 

radiation signal mainly comes from the laser 

beam and the welding area [19]. Based on a 

different wavelength, optical radiation 

signals can be divided into two categories – 

one is UV and VIS radiation, where the 

wavelength is 0.3 – 0.7 μm, and the other is 

IR radiation with a wavelength range 

between 1.1 μm and 1.6 μm [20, p.]. The 

equipment used to collect the optical 

radiation signals consists of, most 

commonly, spectrometers, photodiode 

sensors, high-speed cameras, CCD cameras, 

and CMOS cameras [13]. This monitoring 

method is widely used nowadays as it 

provides a large amount of reliable data. For 

example, [21] used the image processing 

method under different welding conditions to 

gain insight into the dynamic behaviors of 

the keyhole, and [22] measured the velocity 

and direction of the fluid flow inside the 

keyhole, by attaching a glass plate, very 

precisely. Results showed a connection 

between the fluid flow and laser power, feed 

rate, and welding gap [22]. Still, due to 

spatial restrictions, the signal camera sensor 

is limited in data collection[13]. To avoid 

this downside and to be able to extract 

enough features for proper evaluation of the 

quality of the weld seam, researchers opt for 

multiple camera sensors [13]. This way, the 

welding zone can be monitored from 

different angles and extensive information 

can be obtained [13].  

Thermal radiation signal is especially 

strong in the keyhole, the molten pool, and 

the high-temperature metallic vapor,  as the 

temperature and thermal radiation are very 

high in these parts of the welding zone [13]. 

Frequently used sensors for obtaining 

thermal signals are pyrometers and IR 

cameras [13]. While the pyrometer is 

cheaper and easier to assemble, the IR 

camera can reflect the temperature 

distribution of the welding zone more 

extensively [13]. IR images of the molten 

pool were used to estimate the width and 

depth of the weld seam[23], [24]. By 

analyzing the emitted thermal radiation, 

Weberpals et al. [25], examined the 

temperature distribution and geometrical 

structure of the welding zone. This approach 

could also be used to define the inclination 

of the keyhole [25]. 
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2.2 Monitoring techniques 

 

Traditional monitoring methods can be 

divided into two approaches, coaxial and 

paraxial [26]. The coaxial monitoring 

method monitors the welding zone by 

installing a spectroscope in the laser 

propagation path. [27]. Obtained optical and 

thermal signals are stable and undisturbed. 

The imperfection of this method is its lack of 

flexibility and complex installation of the 

monitoring sensor [13]. However, paraxial 

monitoring is characterized by easily 

adjusted monitoring distance and angle 

between the welding zone and the sensor 

[13]. These traditional methods commonly 

represent a basis for novel monitoring 

methods and multi-sensor fusion technology 

[13].  

Novel monitoring methods, like X-ray 

imaging technique, inline coherent imaging 

(ICI), magneto-optical imaging (MOI), etc. 

have achieved good results in obtaining 

some welding features, which are normally 

difficult to get during the process [13]. These 

features, like the depth of a keyhole for 

example, are very helpful when evaluating 

welding quality since they are closely 

connected to it [13]. 

X-ray videography can obtain temporally 

and spatially defined information about the 

keyhole geometry during the welding 

process[5]. Furthermore, this method can 

also be used to identify the inner defects of 

the weld seam with high spatial and temporal 

resolution [13]. By using an X-ray 

diffraction system, the microstructure and 

mechanical properties of the weld seam can 

be investigated [28], and residual stress 

distribution in the weld seam measured [29]. 

Optical coherence tomography (OCT) is 

another novel technique. OCT is a 3D 

measuring technology for automated laser 

welding[13]. It can serve as a basis for an 

inline monitoring device used to extract the 

tomographical geometrical measurement 

data during the process of weld seam 

forming [30]. 

The MOI technique is based on the 

magnetic induction principle and the Faraday 

rotation effect [31]. An experiment showed 

that the microstructure of the weld joint can 

be investigated using the MOI method, and 

without the metallographic preparation 

process [32]. 

Automated monitoring of laser welding 

processes is often achieved using weld 

watchers. Analyzing the measured light 

emission, created from the interaction 

between the laser and the material, weld 

watchers can recognize errors in welding 

based on previously recorded error-free 

weldings[33] [32]. 

 

 

Figure 2. Weld watcher 

 

Using smart evaluation methods, weld 

watchers can signal warning thresholds to 

the system control completely automatically 

[32]. 

Multi-sensor fusion technology combines 

various signal sensors and benefits from the 

advantages of each one [12]. It can, 

therefore, monitor the welding process 

effectively and comprehensively [13]. The 

main sensor of this technology is usually the 

vision sensor, as it provides extensive 

information about the welding zone [13]. 

The combination of sensors varies based on 

the desired outcome. For example, the X-ray 

system can be combined with the high-speed 

camera [34], the sound sensor with the 

vision sensor [35],  etc.  
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3. Successful examples and 

possibilities of AI application in 

laser welding quality assurance 
 

AI can be applied in many ways to ensure 

the quality of the welded seams, significantly 

reducing test costs, especially compared to 

destructive test methods. Possibilities are 

numerous, but some of the most significant 

would-be AI monitoring of various process 

parameters to determine weld quality, 

monitoring optical signals during welding 

and applying AI image recognition, and AI 

result processing and interpretation for some 

of the conventional control methods (such as 

X-Ray). A few successful application 

examples shall be presented and shortly 

discussed. 

Image recognition can be applied in many 

ways in quality control of welded joints. 

Welding errors can be detected while 

observing the melt pool contour, (melt-on 

and the resolidification line) [11]. Various 

defects can be identified in this way, 

especially lack of fusion. In order to have a 

proper setup researchers have used a CMOS 

camera with an additional light source, and a 

robust algorithm for image analysis. Image 

recognition approach can be utilized to 

detect laser optical backlash during welding, 

a heat camera can be used to monitor 

thermal distribution patterns, or different 

light sources can be applied in order to have 

a visual inspection of the welded seam in 

form of a machine vision [6], [11], [19], 

[23]. 

Monitoring process parameters in order to 

determine weld quality can be a very 

promising approach. Non-visual process 

parameters could be monitored during the 

welding process. For example, AI can be 

trained to monitor temperature, voltage, 

electric current, sound, pressure, and many 

other parameters during welding and 

determine the outcome of the welding 

operation based on various combinations of 

parameter values [8], [11], [13], [35]. When 

possible, the most economical approach is to 

use existing process parameters 

measurement values, without investment in 

microphones or other measurement devices. 

An example of this approach is the 

utilization of an adaptive neuro-fuzzy 

inference system (ANFIS) and multi-gene 

genetic programming (MGGP) to predict the 

laser weld quality, such as surface 

roughness, weld strength and more [36]. 

AI result processing and interpretation is 

a useful method to eliminate long manual 

work, make the process cost-efficient, and 

get the testing results faster. Eddy current 

testing, ultrasonic testing, X-Ray, or CT 

(computer tomography) scanning can 

provide as an output a very complex result. 

For a human, it can be quite tricky to 

analyze, understand and interpret those 

results, and the process can take a long time. 

If a CT scan of a laser welded seam is 

analyzed for pores, on the output scan an 

operator should look for pores, measure 

them and make a report. Many scanning 

systems have a built-in AI feature for 

porosity analysis, but if porosity-induced 

fatigue damage should be calculated 

numerous calculations should be performed. 

Researchers have tried to predict porosity-

induced fatigue damage of laser welded 

joints, where the AI algorithm could be a 

very beneficial tool to increase prediction 

accuracy and reduce testing time [37], [38]. 

 

4. Conclusion 

 
This paper provides a rough overview of the 

AI application in industrial quality, with a 

focus on laser welding quality assurance. 

Basics of the laser welding process were 

given, followed by conventional laser 

welding control methods. Conventional 

testing methods can be quite costly and time-

consuming, especially destructive testing 

methods. State-of-the-art technologies 
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provide better solutions. AI prediction 

models or process monitoring solutions can 

be applied to provide real-time test results in 

a high-speed production environment with 

very low investments, and very low testing 

costs. 

Through various examples of AI application 

in laser welding quality assurance, it is 

shown that there is a great potential to 

improve conventional quality control 

systems, shorten the test duration, reduce the 

test cost, improve defect detection precision, 

and much more. AI can be successfully 

applied to monitor various laser welding 

process signals or parameters to determine 

the weld quality, in cases where laser 

welding is monitored with some vision 

systems AI image recognition can be applied 

to enhance the weld error detection 

precision, or if a conventional quality control 

method is applied (such as X-ray), AI can be 

utilized to process and interpret test results 

as it might be a time-consuming process for 

a human operator.  
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