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Abstract: Hydraulic servo actuators (HSAs) are often used in the industry in tasks that request great
power, high accuracy and dynamic motion. It is well known that an HSA is a highly complex nonlinear
system, and that the system parameters cannot be accurately determined due to various uncertainties,
an inability to measure some parameters and disturbances. This paper considers an event-triggered
learning control problem of the HSA with unknown dynamics based on adaptive dynamic program-
ming (ADP) via output feedback. Due to increasing practical application of the control algorithm, a
linear discrete model of HSA is considered and an online learning data driven controller is used, which
is based on measured input and output data instead of unmeasurable states and unknown system pa-
rameters. Hence, the ADP-based data driven controller in this paper requires neither the knowledge of
the HSA dynamics nor exosystem dynamics. Then, an event-based feedback strategy is introduced to
the closed-loop system to save the communication resources and reduce the number of control updates.
The convergence of the ADP-based control algorithm is also theoretically shown. Simulation results
verify the feasibility and effectiveness of the proposed approach in solving the optimal control problem
of HSAs.
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1. Introduction

Important properties of the HSA, such as fast and accurate responses, a high force/mass ratio and
relatively good stiffness, have attracted great interest in the HSA and its applications. In the last two
decades, high-performance controller design of the HSA has attracted increasing attention due to the
expanded performance requirements of technical systems in the industry [1–4].

A large number of machines driven by HSAs often work with high payloads in harsh and mostly ex-
ternal environments. As a result of variables of their environment, such as temperature, dust, humidity,
wear, variable loads and disturbances, the HSA is usually subject to large uncertainties during opera-
tion. Hence, high-precision control of the HSA has always challenged researchers due to its unmodeled
dynamics, large nonlinearities, parametric uncertainties, unmeasurable states in practice, etc. It is well
known that it is impossible to determine most of the physical parameters of HSA components. While
some HSA parameters are available only with certain accuracy, the other parameters are completely
unknown. Dominant nonlinear sources existing in HSAs are impossibility of accurate determining pa-
rameters, which are very difficult to handle with high accuracy. These unknown parameters are caused
by protection of proprietary data of individual manufacturers or indirect measuring and calculating,
pressure losses, transient and turbulent flow conditions, friction, leakage characteristics, and gener-
ation discontinuous control signals to HSAs due to effects of saturation and changing the direction
of servo valve. Furthermore, variable working conditions during operation, such as oil temperature,
the bulk modulus, fluctuating supply pressure and pipe volume will lead to parameter changes, which
worsen the existing control performances. These facts make it difficult to realize high-quality control
of the HSA, which cannot be achieved without knowing the accurate HSA model [5–8].

Further, direct measurement of the whole HSA state vector is not feasible for practical implemen-
tation and in addition would require very expensive measurement equipment. It is more convenient to
use control algorithms which apply methods based on state reconstruction rather than to perform direct
measurements of the states [9].

In modern control theory, optimal control of the HSA plays a vital role in the controller design.
Namely, the main challenge is to design optimal control algorithms that will affect the minimum energy
consumption [10, 11]. The optimal control design is an offline control technique that usually depends
on perfect knowledge of the HSA model, which is not possible to obtain in most practical situations.
Even if an approximated model of the HSA can be developed, the dynamic uncertainty, produced
by the mismatch between the approximated model and the true HSA model, will degrade the control
performance of the traditionally designed optimal controller [9, 12]. Therefore, further research on the
design of optimal controllers of HSAs is very important and our primary aim for this study.

The practical applicability of control algorithms is enhanced by the fact that nonlinear systems can
be very precisely represented by linear models with online estimated dynamics [13,14]. Many modern
engineering applications such as intelligent vehicles [15,16], modernized microgrids [17], microphone
sensing [18], strain prediction for fatigue [19], maintaining the security of cyber–physical systems [20],
robotic manipulation tasks [21], 2-degree-of-freedom helicopter [22] and requests for online controller
design which rely on linear systems.

Adaptive dynamic programming (ADP) ensures an effective way to achieve high performance of
the optimal controller which relies on adaptive control, optimal control and reinforcement learning
[9, 23–26]. ADP represents a kind of data-based control technique which can guarantee the stability
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of the feedback control system [9]. Recently, the field of ADP application has also been expanded to
various research areas, including robotic systems, aerospace systems, guided missiles, spacecraft, etc.
[27–29]. In circumstances of unknown system dynamics and unmeasurable states, of great interest is
to use ADP techniques based on measured input/output data from linear systems, which are commonly
called output feedback. A main benefit of the output feedback techniques is that knowledge of the
HSA dynamics is not needed for their application. For an unknown HSA model, this indirect technique
generates a sequence of suboptimal controllers which converge to the optimal control policy with an
increasing number of iterations.

The implementation of ADP algorithms is usually based on periodic selection [30]. In order to save
limited communication and computational resources, event-triggered strategies have recently started
to be applied in control algorithms based on ADP [31–34]. Moreover, the number of updates of the
control inputs in this way will be smaller compared to the periodic update of the controller, because it is
updated only when necessary (e.g., when the performance of the system deteriorates). The implemen-
tation of event-triggered algorithms is based on aperiodic sampling. Several event-based controllers
have been proposed in the literature, most of which are state-feedback controllers [35–39]. In contrast,
this paper will consider the event-triggered ADP-based control problem of HSAs in the case where
only output feedback is available.

This paper considers an online learning technique, where during operation, from measured in-
put/output data, the controller learns to compensate unknown HSA dynamics, various disturbances
and modeling errors, ensuring desired performances of the control system. The optimal control law
is accomplished iteratively based on output feedback, state reconstruction and ADP. The unknown
HSA model is first identified after which the algebraic Riccati equation (ARE) is iteratively solved.
To ensure consistency of approximations and obtain unique solutions in each iteration step, some ex-
ploration noise must be added to control input to meet the requirements of the persistent excitation
condition [40–42]. For exploration noise, some persistent excitation is usually applied such as white
noise or pseudo random binary signals (PRBS). The selection of exploration noise is a non-trivial task
for the most learning problems, as it can affect the accuracy of solutions, especially for large sys-
tems [43]. By applying the theory of experimental design, we will use the sum of sinusoidal signals
as an exploration noise that will enable the output of the system to carry maximum information about
the system, which will shorten the learning time, i.e., speed up the controller design process. Thus,
the obtained input and output signals are used to reconstruct the state vector of the model, which is of
great practical importance in relation to control techniques with direct state measurement that rely on
a large number of sensors.

Due to implementation of the ADP-based control techniques, it is easier to realize data acquisi-
tion for the discrete-time HSA model in relation to its continuous-time model. ADP-based control
methodology for discrete-time systems is proposed in [44].

We chose to use the measured input and output data to reconstruct the state vector of the discretized
HSA model, after which ADP-based control can be implemented. The control law is learned iteratively
and very efficiently provides solutions for optimal control of HSAs based only on measurements in real
time. The main advantage of the proposed control methodology is avoiding the knowledge of system
dynamics, which is very important under practical conditions.

By applying an event-based control strategy, the number of control input updates will be reduced
relative to periodic update of the controller, because the controller is only updated when certain con-
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ditions are met. In this way, energy, computing and communication resources will be significantly
preserved.

The rest of the paper is organized as follows. The problem of modelling an HSA with unknown
dynamics is presented in Section 2. Event-triggered control based on ADP is shown in Section 3.
Simulation results show the validity and effectiveness of the event-triggered ADP-based controller
for HSAs in the presence of completely model uncertainty in Section 4. Finally, Section 5 gives the
concluding remarks.

2. Description of the HSA

The HSA under study is shown in Figure 1, and it consists of a servo valve and a hydraulic cylinder.
The analysis of the properties of the HSA comes out from the dynamics of its components, which
involves the piston motion dynamics, pressure dynamics at the cylinder and servo valve dynamics.
Hence, the model of the HSA is derived from complex nonlinear equations that depend on many
parameters which cannot be accurately obtained [7, 8].
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Figure 1. The HSA configuration.

See Table 1 for the description of the HSA parameters. Using the notation in Figure 1, and defining
the area ratio of the piston α = Ab/Aa as well as Va = Va0 + yAa, Vb = Vb0 + (L − y)αAa and
qLi = cLi(pa−pb), where cLi is the internal leakage flow coefficient; cvi > 0 denote discharge coefficients,

the sign function sg(x) =

{
x x ≥ 0
0 x < 0

and assuming an external leakage negligible, the considered model
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can be described by the following equations:

mtÿ = Aa pa − Ab pb − F f (ẏ) − Key − −Fext, (2.1)

ṗa =
βe

Va(y)
(qa − Aaẏ − qLi − qLea) , (2.2)

ṗb =
βe

Vb(y)
(qb + αAaẏ + qLi − qLeb) , (2.3)

qa = qsv1 − qsv2 = cv1sg(xv)sign(ps − pa)
√
|ps − pa| − cv2sg(−xv)sign(pa − p0)

√
|pa − p0|, (2.4)

qb = qsv3 − qsv4 = cv3sg(−xv)sign(ps − pb)
√
|ps − pb| − cv4sg(xv)sign(pb − p0)

√
|pb − p0|. (2.5)

Table 1. Parameters of the HSA.

Notations Descriptions
xv The spool valve displacement
pa, pb Forward and return pressure
qa, qb Forward and return flows
y Piston displacement
L Piston stroke
Ke Load spring gradient
pS , p0 Supply and tank pressure
mt, mp, m total mass, piston mass, payload mass
F f Friction force
Fext Disturbance force
Aa,Ab Effective areas of the head and rod piston side
Va, Vb, Va0, Vb0 Fluid volumes of the head and rod piston side and corresponding initial volumes
qLi, qLe Internal and external leakage flow
βe Bulk modulus of the fluid

According to Eqs (2.1)–(2.5), and by defining the state and input variables as

x(t) =
[
x1(t) x2(t) x3(t) x4(t)

]T
,

[
y(t) ẏ(t) pa(t) pb(t)

]T
, (2.6)

u(t) = xv(t), (2.7)

the governing nonlinear continuous-time dynamics of the HSA can be expressed in a state-space form
as follows:

ẋ(t) = f (x(t)) + g(x(t), u(t)) + h(t),
y(t) = η(x(t)),

(2.8)
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where f (x(t)) and g(x(t), u(t)) are the state dynamics and the input function, respectively:

f (x(t)) =


x2

1
mt

(
Aax3 − αAax4 − F f (x2) − Kex1

)
−

βe
Aa x1+Va0

(Aax2 + cLi(x3 − x4))
βe

αAa(L−x1)+Vb0
(αAax2 + cLi(x3 − x4))

 ,

g(x(t), u(t)) =



0
0

βe

Aax1 + Va0

(
cv1sg(u)sign(ps − x3)

√
|ps − x3|−

−cv4sg(−u)sign(x3 − p0)
√
|x3 − p0|

)
βe

αAa (L − x1) + Vb0

(
cv3sg(−u)sign(ps − x4)

√
|ps − x4|−

−cv2sg(u)sign(x4 − p0)
√
|x4 − p0|

)


,

where output function η(x(t)) = x1(t) and disturbance function h(t) =[
h1(t) −Fext/mt + h2(t) h3(t) h4(t)

]
include loads, unmodelled dynamics and parameter un-

certainties.
One of the main nonlinearities of the cylinder model is the nonlinear friction force F f , which con-

sists of static friction, Coulomb friction and Stribeck effect of velocity. An extensive study related to
acting friction forces upon the HSA can be found in [7]. Further, we consider the linearized model of
the HSA, whose parameters are experimentally identified for different working points of the HSA (i.e.,
different positions and external load conditions) [8]. Now, the model equations are expressed in a more
suitable way in terms of the load pressure:

pL = pa − αpb, (2.9)

which leads to simplified dynamic equations. At last, using the new state vector
[
x1(t) x2(t) x3(t)

]T
,[

y(t) ẏ(t) pL(t)
]T

allows us to express the HSA in a more compact form. Taking an operating point

x0 ,
[
y0 ẏ0 pL0

]T
, and assuming dominance of the first order term from the Taylor series expansion,

the linearized continuous-time description of the reduced order is stated as follows

ẋ(t) = Ax(t) + B(t)u(t), (2.10)

y(t) = Cx(t), (2.11)

where A =


0 1 0
0 −

BC
mt

Aa
mt

0 −Kd Kp

, B =
[
0 0 Kx

]T
and C =

[
1 0 0

]
. The sensibility constants can be found

as follows:

Kd = Aa

(
βe

VA
+ α2 βe

VB

)−1

,

Kp =
βe

(
KpA −CLi

(
1 + α2

))
VA

(
1 + α2) −

αβe

(
KpBα

2 + CLi

(
1 + α2

))
VB

(
1 + α2) ,

Kx =
βe

VA
KxA − α

βe

VB
KxB,
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where the flow sensibility constants regarding the pressure at the cylinder chambers are stated as:

KpA =

 −cv xv0√
ps−pA0

for xv > 0
−cv xv0√
pA0−p0

for xv < 0
, (2.12)

KpB =

 −cv xv0√
pB0−p0

for xv > 0
−cv xv0√
ps−pB0

for xv < 0
, (2.13)

and the flow sensibility constants regarding the spool position are stated as

KxA =

{
cv
√

ps − pA0 for xv > 0
−cv
√

pA0 − p0 for xv < 0
, (2.14)

KxB =

{
−cv
√

pB0 − p0 for xv > 0
cv
√

ps − pB0 for xv < 0
. (2.15)

The previously mentioned valve sensibility constants are very significant in defining system stability
and other dynamic characteristics [8]. Namely, the flow gain Kx has a direct impact on the stability of
the HSA, because it directly affects the gain constant in the open loop of the HSA. Further, direct impact
on the damping ratio of the HSA has the flow-pressure constant Kp. Hence, the pressure sensibility
Kpx = Kx/Kp is quite high, which explains the ability of the HSA to transfer large friction loads with a
small error.

3. Event-triggered ADP-based controller

Let us consider a linear continuous-time model of the HSA with unknown dynamics, as follows:

ẋ(t) = Ax(t) + Bu(t), (3.1)

y(t) = Cx(t), (3.2)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rr are the system state vector, the control input vector, and the
output vector, respectively. A ∈ Rn×n, B ∈ Rn×m and C ∈ Rr×n are unknown system matrices, assuming
that (A, B) is controllable and (A,C) is observable.

For the HSA described by (3.1) and (3.2), the performance index is stated as

J(x0) =

∞∫
0

[
yT (τ)Qy(τ) + uT (τ)Ru(τ)

]
dτ, (3.3)

where x0 ∈ R
n is an initial state, Q = QT ≥ 0 and R = RT > 0, with (A,Q1/2C) being observable.

A control law is also called a policy. The design objective is to find a linear optimal control policy
in the form of

u = −K∗x, (3.4)

which minimizes the performance given by index (3.3). The optimal feedback gain matrix K∗can be
determined as

K∗ = R−1BT P∗, (3.5)
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where P∗ = (P∗)T > 0 is a unique symmetric positive definite solution of the well-known ARE

AT P∗ + P∗A + CT QC − P∗BR−1BT P∗ = 0, (3.6)

under conditions that the system matrices are accurately known, as well as conditions that the pair
(A, B) is controllable and the pair (A,Q1/2C) is observable [12]. It should be noted that this optimal
control design is mainly applicable to low order simple linear systems. In fact, for high-order large
scale systems, it is usually difficult to directly solve P∗ from (3.6), which is nonlinear in P.

Also, for practical implementation of the control system, it is easier to realize the data acquisition for
discrete-time systems than for continuous-time systems. Consequently, we transform the continuous-
time HSA into the following discrete-time HSA:

xk+1 = Ad xk + Bduk, (3.7)

yk = Cxk, (3.8)

where Ad = eAh and Bd =
h∫

0

(
eAτdτ

)
B, where h > 0 is a specific sampling period, assuming ωh = 2π/h

is the nonpathological sampling frequency whose existence is well known [45]. In other words, the con-
trollability and observability of the original continuous-time HSA system is kept after discretization.
Namely, if the state, input and output vectors at the sampled instant kh are xk, uk and yk, respectively,
then (Ad,C) and

(
Ad,Q1/2C

)
are observable while (Ad, Bd) is controllable.

Discretized
HSA

Approximate
ARE

State
reconstruction

Critic 

Actor 

V̂ ( x)

ûk

z k

yk

Event-trigger
and Sampler 

Input/output
measurements

Figure 2. Event-triggered ADP-based control algorithm for the discretized HSA system.

As depicted in Figure 2, the ADP-based controller for the discretized HSA system consists of three
parts: the state reconstruction, critic, and actor. The state reconstruction provides the relationship be-
tween the input/output data and the HSA states, which allows one to solve the optimal control problem
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of an HSA with unknown dynamics. Based on the input/output data, the critic part of the controller
is designed to evaluate the performance of the control policy. The controller learns online in order
to maximize its performance. Finally, the actor applies the improved control policy. The updates
of the control actions are governed by an event-triggering mechanism to reduce the amount of data
transmission from the controller to the HSA system.

The event-triggered design is based on a periodic sampling with a nonpathological h > 0. We use
ûk to represent the sampled value of uk, that is

ûk = uk j , k ∈
[
k j, k j+1

)
, (3.9)

where
{
k j

}∞
0

is a monotonically increasing sequence of the sampling time instants, and the control input
is only updated at the discrete-time instants: k0, k1, k2, . . .

For the convenience of discussions, define the sampling error of the input data as

∆k = ûk − uk. (3.10)

Hence, the discrete-time system described by (3.7) and (3.8) can be rewritten as

xk+1 = Ad xk + (Bduk + ∆k) , (3.11)

yk = Cxk. (3.12)

Further, the performance index for the discretized system described by (3.7) and (3.8) is

Jd(x0) =

∞∑
j=0

yT
j Qdy j + uT

j Rdu j, (3.13)

where Qd = Qh and Rd = Rh. The optimal control low minimizing (3.13) is

uk = −K∗d xk, (3.14)

where the discrete optimal feedback gain matrix is K∗d =
(
R + BT

d P∗dBd

)−1
BT

d P∗dAd, where P∗d is the
unique symmetric positive definite solution to

AT
d P∗dAd − P∗d + CT QC − AT

d P∗dBdK∗d = 0. (3.15)

Since (3.15) is nonlinear in P∗d , it is difficult to directly solve P∗d for high-order large-scale systems.
Nevertheless, many efficient algorithms have been developed to numerically approximate the solution
of (3.15). One of such algorithms was developed by Hewer [46], and it is introduced in the form of
Lemma 3.1.

Lemma 3.1. Let K0 ∈ R
m×n be any stability feedback gain matrix and P j be the symmetric positive

definite solution of the Lyapunov equation(
Ad − BdK j

)T
P j

(
Ad − BdK j

)
+ CT QdC + KT

j RdK j = 0, (3.16)

where K j, j = 1, 2, . . . can be updated as follows:

K j =
(
R + BT

d P j−1Bd

)−1
BT

d P j−1Ad. (3.17)

Then, it holds that
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1) Ad − BdK j is a stability matrix

2) P∗d ≤ P j+1 ≤ P j

3) lim
j→∞

K j = K∗d , lim
j→∞

P j = P∗d.

By iteratively solving the Lyapunov equations given by (3.16), which is linear in P j, and recursively
updating the control policy K j by (3.17), the solution to the nonlinear equation given by (3.15) is
numerically approximated [46]. It has been concluded that the sequences

{
P j

}∞
j=0

and
{
K j

}∞
j=0

, computed
from this algorithm, converge to P∗d and K∗d , respectively. Moreover, for j = 0, 1, . . ., Ad − BdK j is a
Schur matrix. It should be noted that the method by Hewers involves a model-based policy iteration
(PI) algorithm, which cannot be directly applied to the problem studied in this paper since it is an offline
algorithm which depends on the system parameters. To apply this algorithm online for the discretized
HSA described by (3.7) and (3.8), we will develop the control algorithm based on ADP via output
feedback, which does not depend on the knowledge of HSA matrices.

Motivated by [44,47], the discrete-time HSA described by (3.7) and (3.8) can be extended by using
input/output sequences on the time horizon [k − N, k − 1] as follows:

xk = AN
d xk−N + V(N)ūk−1,k−N ,

ȳk−1,k−N = U(N)xk−N + T (N)ūk−1,k−N ,
(3.18)

where
∆̄k =

[
∆T

k−1 ∆T
k−2 . . . ∆T

k−N

]T
,

ūk−1,k−N =
[
ûT

k−1 ûT
k−2 . . . ûT

k−N

]T
,

ȳk−1,k−N =
[
yT

k−1 yT
k−2 . . . yT

k−N

]T
,

V(N) =
[
Bd AdBd . . . AN−1

d Bd

]
],

U(N) =
[
(CAN−1

d )T (CAd)T . . . CT
]T
,

T (N) =



0 CBd CAdBd · · · CAN−2
d Bd

0 0 CBd · · · CAN−3
d Bd

...
...

. . .
. . .

...

0 0 · · · 0 CBd

0 0 · · · 0 0


,

and the observability index is N = max(ρu, ρv) where ρu is the minimum integer which ensures that
U(ρu) has full column rank and ρv is the minimum integer which ensures that V(ρv) has full row
rank [44]. Therefore, there exists a left inverse of U(N), stated as U+(N) =

[
UT (N)U(N)

]−1
UT (N).

With the state reconstruction in (3.18), the idea of an ADP-based controller with output feedback can
be applied to solve the optimal control problem of HSAs with unknown dynamics. A uniqueness of
state reconstruction is stated in the form of Lemma 3.2 as follows [48].

Lemma 3.2. If the conditions of observability and controllability of the system described by (3.7) and
(3.8) are fulfilled, then the states of the HSA are uniquely received in terms of measured inputs and
outputs signals as follows:

xk = Θzk, (3.19)
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where Θ =
[
Mu My

]
has full row rank, Mu = V(N) − MyT (N), My = AN

d U+(N) and zk =[
ūT

k−1,k−N ȳT
k−1,k−N

]T
∈ Rq, where q = N[dim(u) + dim(y)].

Now, based on (3.16) and (3.17), an online learning strategy using output feedback can be intro-
duced in the form of u∗k = −Kdzk, providing suboptimal property of the closed-loop system. The
discrete-time model (3.11) can be stated as follows:

xk+1 = A jxk + Bd

(
K jxk + ûk

)
, (3.20)

where A j = Ad − BdK j. Setting K̄ j = K jΘ and P̄ j = ΘT P jΘ, from (3.16) and (3.20), it can be obtained

zT
k+1P̄ jzk+1 − zT

k P̄ jzk =(
K̄ jzk + ûk

)T [
BT

d P̄ jBd BT
d P̄ jAd

] [−K̄ jzk + ûk

2zk

]
−

(
yT

k Qyk + zT
k K̄T

j RK̄ jzk

)
=[

ûT
k ⊗ ûT

k − (zT
k ⊗ zT

k )(K̄T
j ⊗ K̄T

j )
]

vec(H̄1
j )+

2
[
(zT

k ⊗ zT
k )(Iq ⊗ K̄T

j ) + (zT
k ⊗ uT

k )
]

vec(H̄2
j ) −

(
yT

k Qyk + zT
k K̄T

j RK̄ jzk

)
∧
=

φ1vec(H̄1
j ) + φ2vec(H̄2

j ) −
(
yT

k Qyk + zT
k K̄T

j RK̄ jzk

)
,

(3.21)

where H̄1
j = BT

d P̄ jBd, H̄2
j = BT

d P̄ jAdΘ, φ1 = ûT
k ⊗ ûT

k − (zT
k ⊗ zT

k )(K̄T
j ⊗ K̄T

j ) and φ2 =

2
[
(zT

k ⊗ zT
k )(Iq ⊗ K̄T

j ) + (zT
k ⊗ ûT

k )
]
.

The symbol ⊗ is used to denote a Kronecker product operator. The vector function vec(V) =[
vT

1 vT
2 . . . vT

m

]T
is stated as an mn-vector formed by stacking the columns of V ∈ Rn×m on top of one

another, where vi ∈ R
n denotes the columns of matrix V . For an arbitrary symmetric matrix M ∈ Rn×n,

vecs(M) =
[
m11, 2m12, . . . , 2m1n,m22, 2m23, . . . , 2mn−1,n,mnn

]T
∈ Rn(n+1)/2 and for an arbitrary column

vector v ∈ Rn, ṽ =
[
v2

1, v1v2, . . . , v1vn, v2
2, v2v3, . . . , vn−1vn, v2

n

]T
∈ Rn(n+1)/2.

The convergence of the online learning control using output feedback is guaranteed under the rank
condition stated in the form of Lemma 3.3 [47]. Lemma 3.3 is about the condition of persistent excita-
tion in adaptive control theory [49, 50].

Lemma 3.3. Let us suppose that for a sufficiently large s ∈ Z+, it holds that

rank(Γ) = (dim(u) + dim(z)) (dim(u) + dim(z) + 1) /2, (3.22)

where

Γ =
[
ηk0 ⊗ ηk0, ηk1 ⊗ ηk1, · · · , ηks ⊗ ηks

]
, where k0 < k1 < · · · < ks ∈ Z+ and ηk j = [ûT

k j, z
T
k j]

T , j = 0, s;
(3.23)

then
(
P̄ j, H̄1

j , H̄
2
j

)
can be uniquely solved based on K̄ j and measurable online data during the period

k ∈ [k0, ks]. Further, K̄ j+1 is obtained as follows:

K̄ j+1 =
(
R + H̄1

j

)−1
H̄2

j . (3.24)

Some exploration noise ek, which satisfies the persistent excitation condition, must be added into
the input signal during the online learning phase due to the satisfaction of the rank condition given by
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(3.22), without affecting the convergence of the learning phase [43, 51, 52]. Note that (3.21) is called
the policy evaluation, which is used to uniquely solve P̄ j, and (3.24) is the policy improvement, which
is used to update the control gain K̄ j+1. Finally, we present the ADP-based online learning control
algorithm in Figure 3.

Select a stabilizing gain
K̄0 and a sufficiently
small constant ε > 0.
j ← 0

Start

Apply an initail robust
control policy vk on
[0, k0] where k0 > N .

Apply ûjk = −K̄0zk +
∆k + ek on [k0, ks] with
ek an exploration noise.

Solve P̄j , K̄j+1 from

K̄j+1 =
(
R+ H̄1

j

)−1
H̄2

j

zTk+1P̄jzk+1 − zTk P̄jzk = φ1kvec(H̄1
j )+

+φ2kvec(H̄2
j )− (yTk Qyk + zTk K̄

T
j RK̄jzk)

∥∥P̄k − P̄k−1

∥∥ < εj ← j + 1

Use ûk = −K̄kzk as
the approximated opti-
mal control policy.

Stop

No

Yes

Figure 3. Flowchart of ADP-based controller design.

It should be noted that solving (3.21) instead of (3.16), completely eliminates the original request
on the accurate knowledge of the HSA dynamics. Now, we only need to measure uk and yk. Namely,
having in mind the expression for zk, we can see that the control policy ûk = −K

∗

kzk + ∆k contains only
the previously measured input-output data. With the event-triggered control law ûk, the system given
by (3.20) is globally asymptotically stable (GAS) at the origin if

‖∆k‖
2
≤
αγ ‖yk‖

2 + λmin(Rd) ‖ûk‖
2

η
, (3.25)
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where α ∈ (0, 1) and η is a positive constant satisfying η ≥ λmax

(
Rd + BT

d P̄dBd

)
.

The convergence of the ADP-based control algorithm is presented in the form of Theorem 3.4. For
Hurwitz feedback matrix A − BK, K ∈ Rm×n is called stabilizing feedback gain matrix for a linear
system ẋ = Ax + Bu.

Theorem 3.4. If the condition of Lemma 3.3 is fulfilled, with some initial stabilizing feedback gain
matrix K0, then the sequences

{
P j

}∞
j=0

and
{
K j

}∞
j=0

received from this algorithm, converge to their

optimal values P
∗
and K

∗
, respectively [46, 47].

Proof. If P j = PT
j represents the solution of (3.16) , under the stability feedback gain matrix K j , then

K j+1 is uniquely obtained from (3.17). It can be easily shown that P j and K j+1 fulfill (3.21) and (3.24).
Now, setting P and K as solutions of (3.21) and (3.24), Lemma 3.3 provides that P j = P and K j+1 = K
are uniquely stated. Furthermore, from Lemma 3.1, we have that lim

j→∞
K j = K

∗

d and lim
j→∞

P j = P
∗

d. The

proof of convergence is proved. �

The hybrid nature of the controller is shown in Figure 4. It is shown there that the feedback gain
or policy is updated at discrete times by using (3.24) after the solution to (3.21) has been determined.
On the other hand, the control input is a discrete time signal depending on the state z(k) at each time k.
From Figure 4, it can be seen that the control gains are updated at discrete times, but the control signal
is piecewise continuous.

t

t

K̄ k

1

1

2 3 4

2 3 4 t

uk

1 2 3 4

Control gain update (policy)

Control input

Control iteration update

uk=− K̄ k zk

Figure 4. Hybrid nature of control signal.

4. Simulation results

In this section, we apply the proposed event-triggered ADP-based control design to the HSA. In the
case of unknown dynamics and unmeasurable states of the HSA, it is meaningful to use the ADP-based
method. Consequently, we conduct simulations on the HSA given by the linearized continuous-time
description of (2.10) and (2.11) to show the effectiveness of the ADP-based control algorithm. A basic
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condition for energy savings in many hydraulically driven industrial systems is a high-quality design
of event-triggered ADP control for the HSA.

For this purpose, the HSA is discretized by applying the periodic sampling period h = 0.1 s and the
zero-order holder. The approximated optimal feedback gain and performance index for the discretized
model of the HSA are iteratively obtained.

The effectiveness of the ADP-based control algorithm will be considered for the HSA model de-
scribed by (2.10) and (2.11) with the following parameters: the viscous friction BC = 200 N s m−1,
the supply pressure pS = 45 bar, the tank pressure p0 = 1.6 bar, the bulk modulus of the fluid
βe = 2 × 108 Pa, the total mass m = 25 kg, the initial chamber volumes Va0 = Vb0 = 8.2 × 10−6 m3, the
load spring gradient Ke = 10−1, the effective area of the head side of the piston Aa = 4.91 × 10−4 m2,
the effective area of the rod side of the piston Ab = 2.43 × 10−4 m2, the internal leakage coefficient
cLi = 5 × 10−14, the piston stroke L = 1 m and discharge coefficients of valve orifices cvi = 1.15,
i = 1, 4.

For the purpose of demonstrating the event-triggered ADP method with the HSA, the weight matri-
ces, Q and R, are chosen to be identity matrices, the observability index is N = 3, initial state vector is
x0 =

[
5 −5 −10

]
and the convergence threshold ε is selected as 10−1.

It should be noted that our event-driven ADP control design does not require exact knowledge of
the HSA matrices. But, only for numerical verification via simulation, it is assumed that the system
matrices in (2.10) and (2.11) are known.

To verify the benefits of the ADP based online learning controller, Figure 5 depicts the errors be-
tween P̄ j and P̄∗d and K̄ j and K̄∗d , which indicate the convergence of P̄ j and K̄ j.
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Figure 5. Convergence of P̄ j and K̄ j to their respective optimal values P̄∗ and K̄∗ during the
learning process.

The evolution of the maximum cost for HSA is shown in Figure 6(a), where V1 is the maximum cost
by using the initial control policy, and V7 is the maximum cost by using the control policy after seven
iterations. It can be seen that the approximated cost function V7 has been remarkably reduced relative
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to the initial cost V1. Figure 6(b) shows the 3D plot of the approximation error of the cost function.
This error is close to zero which confirms that good approximation of the optimal cost function is
achieved during the learning process.
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Figure 6. (a) Comparison of the cost functions during learning; (b) error between the optimal
and approximated cost function signal.

The improved control policy and the initial control policy are compared in Figure 7(a). Further,
Figure 7(b) shows the 3D plot of the difference between the approximated control obtained by using
the online ADP-based control algorithm and the optimal control. This error is close to zero, which
confirms that good approximation of the optimal input is also achieved during the learning process.
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Figure 7. (a) Comparison of the control policies during the learning process; (b) error be-
tween the optimal and approximated input signal.
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Figure 8 shows the control input and the states of the HSA system desribed by (2.10) and (2.11) by
using the ADP-based controller with periodic sampling.
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Figure 8. Control input and states of the HSA model by using the ADP-based controller.
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Figure 9. Control input and states of the HSA model by using the event-triggered ADP-
based controller.
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To illustrate the benefits of the event-triggered ADP method, the control input and the states of the
original HSA system described by (2.10) and (2.11), as obtained by using the event-triggered ADP-
based controller is shown in Figure 9.

The comparison of sampling numbers by using the event-triggered ADP controller versus the ADP
controller with periodic sampling is shown in Figure 10.
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Figure 10. Comparison of the total sampling numbers.
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Figure 11. Sequence of steps of event-triggered sampling.

It can be observed that similar control effects have been achieved by the two methods, however,
for the event-triggered ADP method, the control input is updated only when the squared norm of the
triggering error reaches the threshold, and it is kept constant otherwise. It is also shown that about
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54% communication between the controller and the HSA is reduced by using the event-triggered ADP
method instead of the ADP method. The sequence of steps of event-triggered sampling is depicted in
Figure 11.

5. Conclusions

This paper has considered the event-triggered data-driven optimal controller of the HSA with com-
pletely unknown dynamics as based on an ADP framework. A basic advantage of the presented control
methodology is its ability to avoid the knowledge of entire system dynamics, which is very important
in real conditions. By using the output feedback and the state reconstruction method an applied ADP-
based control technique has been shown to be a useful tool for digital implementation in a real HSA.
For that purpose, a discrete-time control policy was iteratively learned based on the discretized HSA
model. The learned control policy very efficiently ensures online solutions to data-driven optimal con-
trol problems for the HSA. The presented online control policy only uses measured input/output data
to learn the optimal control gain. Then, to reduce the communication between the controller and the
HSA, an output feedback event-triggered ADP controller has been designed. The simulation results
have shown the validity and effectiveness of the applied control approach for the HSA.
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