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This paper considers optimal tracking control for hydraulic servo actuator with unknown dynamics. The aim is 
to achieve asymptotic tracking and disturbance rejection by minimizing some predefined performance index. Through the 
combination of adaptive dynamic programming (ADP) and internal model principle, an approximate optimal controller is 
iteratively learned online using measurable input/output data. Unmeasurable states are also reconstructed from input/output 
data. The discrete-time algebraic Riccati equation is iteratively solved by ADP approach. Simulation results demonstrate the 
feasibility and effectiveness of the proposed approach. 
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1. INTRODUCTION 
The performance of hydraulic servo systems 

strongly depends on the control valve and spool geometry 
as well as their manufacturing tolerances. Without a proper 
model, accurate analysis of hydraulic system performance 
is not possible. It is well known that it is very difficult to 
determine a large number of physical parameters which are 
integral part of complex systems. Despite the fact that many 
system parameters are available with some reasonable 
accuracy, a large number of parameters are known within a 
certain range, while some parameters are entirely unknown 
because manufacturers consider these data as proprietary 
information. For example, precise determination of system 
parameters such as dimensions of certain components, 
leakage and friction coefficients, as well as static and 
dynamic friction forces due to impossibility of direct 
measurement or calculation causes great difficulty in 
control of servo actuators [1]. More precise knowledge of 
the system parameters increases the model quality, which 
causes better control performances. Recent reviews 
dedicated to the influence of disturbances, modeling errors, 
various uncertainties in the control systems in the real 
systems[2-3].  

Adaptive dynamic programming (ADP) provides a 
feasible and effective way to achieve optimal control 
performance based on traditional or intelligent control 
methods. It combines the theories of dynamic programming 
and neural networks, trying to solve optimal control 
problems in dynamic programming problems using the 
approximating characteristic of neural networks [4-5]. 
Recent years the ADP also has been extended and applied 
to many different areas, such as robots, spacecraft and so on 
[6-7].  

For the reason that ADP not only has unique 
algorithm and structure, but also overcomes the 
disadvantage that classical variational theory cannot deal 
with the optimal control problem of control variables with 
closed-set constraints, and also solves the curse of 
dimensionality problems, more and more research and 
application attentions have focused on it. 

When the state of a system is not directly measurable 
and the system matrices are unknown, it is thus meaningful 
to resort to output feedback based ADP. An output feedback 
ADP methodology for discrete-time linear systems is 
proposed in [8]. The measurable input/output data are used 
to describe the state of the discretized model, and then use 
policy iteration (PI) and value iteration (VI) to obtain 
optimal control policy. Nevertheless, in order to get the 
unique solution in each iteration step, some exploration 
noise need to be added, which may influence the accuracy 
of solutions.  

It is usually too expensive to measure directly the 
system states. Self-applied state estimation methods 
assume that the system parameters are constant. In the real 
world, these parameters can’t know exactly (e.g., 
friction coefficients, temperature, pressure, or flow). It’s 
also known that the dynamic behavior of complex systems 
can be described by a linear stochastic state-space model 
with online estimated dynamics [9]. Precise knowledge of 
system parameters and states is crucial for successful 
realization of many control techniques. Many modern 
engineering applications such as intelligent vehicles[10], 
microphone sensing[11], maintaining security of cyber–
physical systems[12], robotic manipulation tasks[13], 2-
degree-of-freedom helicopter[14], require real-time control 
based on linear models. 

In this paper, the continuous-time linear plant is 
discretized due to easier practical implementation, and then, 
the optimal control problem is considered. An adaptive 
optimal output feedback strategy for the discretized model 
is applied for optimal control of hydraulic actuator with 
unknown dynamics. Simulation results demonstrate the 
validity and effectiveness of the proposed control approach, 
in which the exploration noise does not affect accuracy of 
the solution of discrete Riccati equation. 

 
2. HYDRAULIC SERVO ACTUATOR 

Hydraulic systems are often employed in high 
performance applications that require fast response and 
high power. These applications include high bandwidth 
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control position and force. The problem is that these 
systems contain non-smooth nonlinearities caused by 
variable geometry and variable working conditions. The 
external load consists of the mass of external mechanical 
elements connected to the piston and a force produced by 
an environmental interaction. Schematic view of double 
acting, asymmetric hydraulic cylinder with connected four-
way spool valve is shown on Figure 1. 

 
Figure 1: Schematic representation of the valve-controlled 

asymmetric piston 

The total mass of the piston tm includes the mass of 
piston rod pm and the mass of the load m  referred to the 
piston. 

A detailed mathematical model derivation of the 
hydraulic servo actuator is given in [1]. Using this model, 
we can express the system model in the state space. 

 

2.1. Force balance equation for piston 
Applying Newton’s second law to the forces on the 

piston, the resulting force equation is: 
 ( )a a b b t f e extA p A p m y F y K y F− = + + +   (1) 

The spool valve displacement is denoted as vx . 
Pressures ap  and bp denote the forward and the return 
pressure, respectively, the corresponding flows are aq  and 

bq , y  is the piston displacement, eK denotes the load 
spring gradient, Sp  is the supply pressure, and 0p  is the 
tank pressure. The piston displacement depends on the 
action of fluid pressures as well as on the load referred to 
the piston. This load can be seen as summing effects of 
inertia which comes from the total piston mass tm , friction 
forces fF , spring load forces eK y and disturbance forces

extF . The total mass of the piston tm  in addition to the mass 
of piston rod pm also includes the mass m  of the load 
referred to the piston. The mass of the piston is considered 
together with the load mass due to the fact that, in every 
moment, the load directly affects on the piston. The term 

fF  in equation (1) describes the summing nonlinear effects 
of viscous, static and Coulomb friction forces of the system. 
The detailed analysis for the influences of friction forces 
can be found in [15]. The area ratio of the asymmetric piston 
is b aA Aα = , where bA  is the effective area of the head 
side of the piston, and aA  is the effective area of the rod 
side of the piston, see Figure 1. 

2.2. Pressure dynamics in cylinder chamber 
Applying the continuity equation to each of the 

cylinder chambers yields: 

 a
a Li a a

e

V
q q V p

β
− = +   (2) 

 b
b Li Le b b

e

V
q q q V p

β
+ − = +   (3) 

where eβ  is� the� bulk� modulus� of� the� fluid, Liq and Leq
denote the internal leakage flow and the external leakage 
flow, respectively. The internal leakage flow can be 
calculated by: 
 ( )Li Li a bq c p p= −  (4) 
where Lic  is the internal leakage flow coefficient. External 
leakage (leakage from each cylinder chamber to case drain 
or to tank) is usually neglected, 0Lea Lebq q= = . 

The�total�fluid�volumes�of�two�cylinder�sides, aV  and 

bV , are given as:  
 0a a aV V yA= +  (5) 
 0 ( )b b aV V L y Aα= + −  (6) 
where L is the piston stroke and 0aV  and 0bV  represent 
initial chamber volumes. Equations (2) and (3) can be 
rearranged to yield the pressure dynamics equations 

 ( )
( )

e
a a a Li Lea

a

p q A y q q
V y
β

= − − −   (7) 

 ( )
( )
e

b b a Li Leb
b

p q A y q q
V y
β

α= + + −   (8) 

2.3. Valve flow equatins 
The flow through the i th valve orifice sviq  is 

described by next relation, which takes the direction of the 
pressure drop into account: 

 
 ( , ) sg( ) ( )svi v vi vq q x p c x sign p p= ∆ = ∆ ∆  (9) 
where 1,2, , 4i =  . 
The function ( )sg x  is defined by: 

 
, 0

( )
0, 0
x x

sg x
x
≥

=  <
 (10) 

where 1,2, , 4i =  . 
Discharge coefficients of valve orifices 0vic > , 1,2,3,4i =  
represent valve constants, which will be equal if all orifices 
are identical. Consider the four-way spool valve as shown 
in Figure 2. 

 
 

Figure 2: Four-way spool valve 
The corresponding flow equations for two valve 

chambers can be written as: 
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1

2

1 2

0 0

( ) ( )

( ) ( )

a sv sv v v s a s a

v v a a

q q q c sg x sign p p p p

c sg x sign p p p p

= − = − − −

− − − −
 (11) 

3

4

3 4

0 0

( ) ( )

( ) ( )

b sv sv v v s b s b

v v b b

q q q c sg x sign p p p p

c sg x sign p p p p

= − = − − − −

− − −
 (12) 

2.4. Dynamic model of the hydraulic servo actuator 
If state variables and input variables are defined as: 

 1 2 3 4[ ] [ ]T T
a bx x x x x y y p p=    (13) 

 vu x=  (14) 
then a completely nonlinear model of the hydraulic system, 
can be expressed in a state-space form as:

 

( )

( )

( ) ( )
1 4

3 2

1 2

2 3 4 2 1

3 3 3 3 0 3 0 2 3 4
1 0

4 4 4 4 0 4 0 2 3 4
1 0

1 ( ) ,

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

a a f e
t

e
v s s v a Li

a a

e
v s s v a Li

a b

x x

x A x A x F x K x
m

x c sg u sign p x p x c sg u sign x p x p A x c x x
A x V

x c sg u sign p x p x c sg u sign x p x p A x c x x
A L x V

α

β

β
α

α

=

= − − −

= − − − − − − − − −
+

= − − − − − − + + −
− +









 (15)

 It is known that there are coefficients with random 
characters in the nonlinear state space model of a hydraulic 
servo system [16]. Taking into account that some parameter 
changes have random character, as well as the possibility of 
approximation of nonlinear models with a model with time-
varying parameters, see [17], this paper proposes a linear 
stochastic model with time-varying parameters. 

It is now more convenient to define the pressure drop 
across the load, or simply the load: 
 L a bp p pα= −  (16) 
which can be seen as the "virtual" pressure required to 
counterbalance the friction and load forces. 

Finally, after linearization of nonlinear equations 
(15), using previous notation which allows us to present the 
hydraulic servo system in more compact form, with new 
state vector [ ] [ ]1 2 3 ( )T T

Lx x x y k y p∆ ∆ ∆  , the 
continuous time state-space description of the reduced 
order, can be obtained as [16]: 
 ( ) ( ) ( )x t Ax t Bu t= +  (17) 

 ( ) ( )y t Cx t=  (18) 

where 

0 1 0
10

10

a

m p

d
h

A
A

T m

K
T

 
 
 
 −

=  
 
 − −
  

, 0 0
T

QB K =   . 

The damping of the resonance frequency is determined by 
the viscous friction ( 1 m C pT B m− = − ) and the leakage (

1 hT− ), where m t CT m B= . Other useful quantities are the 

hydraulic capacitance , 1
d

h

A
K

C
= , 

valve flow-pressure coefficients QpK , valve flow gains QxK
, as well as pressure sensitivities p x Qx Q pK K K=  and 
damping ratio: 
 ( ) 1

1 1
T T

j d j d d j dK R B P B B P A
−

− −= +  (19) 

3. OPTIMAL PROBLEM FORMULATION 
For practical implementation in the hydraulic 

actuator control system, we will consider the discretized 
system described by: 
 1k d k d kx A x B u+ = +  (20) 
 k ky Cx=  (21) 

in which Ah
dA e= , ( )

0

h
A

dB e d Bτ τ= ∫  and 0h >  is the 

sampling period, assuming 2h hω π=  is non-pathological 
sampling frequency [18]. In other words, one cannot find 
any two eigenvalues of A  with equal real parts and 
imaginary parts that differ by an integral multiple of hω . 
The state, input, and output vector at the sampled instant kh  
are kx , ku , ky , respectively. Then, both ( ),dA C  and 

( )1 2,dA Q C  are observable and ( ),d dA B  is controllable. 
Cost for (20)-(21) is: 

 0
0

( ) T T
d j j j j

j
J x y Qy u Ru

∞

=

= +∑  (22) 

The optimal control law minimizing (un) is 
 *

k d ku K x= −  (23) 
where discrete optimal feedback gain matrix is 

( ) 1* * *T T
d d d d d d dK R B P B B P A

−
= + , and *

dP  is the unique 
symmetric positive definite solution to 
 * * * * 0T T T

d d d d d d d dA P A P C QC A P B K− + − =  (24) 
Up to now, this known optimal control design 

method is mainly applicable to low order simple linear 
systems. In fact, for high order large scale systems, it is 
usually difficult to directly solve *

dP  from (24), which is 
nonlinear in dP . Nevertheless, many efficient algorithms 
have been developed to numerically approximate the 
solution of (24). One of such algorithms was developed by 
Hewer [19]. By iteratively solving the Lyapunov equation 

( ) ( ) 0
T T T

d d j j d d j j jA B K P A B K C QC K RK− − + + =  (25) 
which is linear in jP , and updating jK  by 

 ( ) 1

1 1
T T

j d j d d j dK R B P B B P A
−

− −= +  (26) 

2e e
h

A B
C

V V
β βα

 
= + 
 
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the solution to the nonlinear equation (24) is numerically 
approximated. It has been concluded that sequences { }

0j j
P

∞

=
 

and { }
0j j

K
∞

=
 computed from this algorithm converge to *

dP  

and *
dK , respectively. Moreover, for 0,1,j =  , d d jA B K−

is a Schur matrix. 
It should be noted that Hewer’s algorithm is model 

based policy iteration (PI) algorithm which cannot be 
implemented when the system matrices are all unknown, 
since it is an offline algorithm relying on system 
parameters. In order to implement it online, we will develop 
an adaptive optimal control algorithm for the discretized 
system (20)-(21) via output feedback which does not rely 
on the knowledge of the system matrices. 
 

4. ADAPTIVE OPTIMAL CONTROLLER DESIGN 
Just like in [8] the extended state equation using 

input/output sequences on time horizon can be written as  
[ , 1]k N k− − : 

 1,

1, 1,

( )
( ) ( )

N
k d k N k k N

k k N k N k k N

x A x V N u
y U N x T N u

− − −

− − − − −

= +

= +
 (27) 

where 
1, 1 2[ ]T T T T

k k N k k k Nu u u u− − − − −=   

1, 1 2[ ]T T T T
k k N k k k Ny y y y− − − − −=   

1( ) [ ]N
d d d d dV N B A B A B−=   

1( ) [( ) ( ) ]N T T T T
d dU N CA CA C−=   

2

3

0
0 0

( )
0 0 0
0 0 0 0

N
d d d d d

N
d d d

d

CB CA B CA B
CB CA B

T N
CB

−

−

 
 
 
 =
 
 
  





    





 

and max( , )u vN ρ ρ=  is the observability index, where uρ
is the minimum integer which can make ( )uU ρ full column 
rank, vρ is the minimum integer which can make ( )vV ρ full 
row rank.  

A lemma about the uniqueness of state 
reconstruction is shown below.  
 
Lemma 1. Given a controllable and observable system (20)
-(21), the system state is obtained uniquely in terms of 
measured input/output sequences by 

k kx z= Θ                                 (28) 
where ( ) ( )u yM V N M T N= − , ( )N

y dM A U N+= , 

u yM M Θ =   , 1, 1,

TT T q
k k k N k k Nz u y− − − − = ∈    , where 

[dim( ) dim( )]q N u y= + . 
Now, based on (25)-(26) online output feedback learning 
strategy for linear discretized system (20)-(21) can be 
derived. The discrete model (20) can be rewritten as 

( )1k j k d j k kx A x B K x u+ = + +                  (29) 

where j d d jA A B K= − . Letting j jK K= Θ and 
T

j jP P= Θ Θ , from (25) and (29) it follows that, 

( )
1 1

1 1 2 2( ) ( )

T T
k j k k j k

T T T
к j к j k k k j j k

z P z z P z

vec H vec H y Qy z K RK zφ φ
+ + − =

+ − +
      (30) 

in which 1 T
j d j dH B P B= , 2 T

j d j dH B P A= Θ , 
1 ( )( )T T T T T T
к k k k k j ju u z z K Kφ = ⊗ − ⊗ ⊗ , 
2 2 ( )( ) ( )T T T T T
к k k q j k kz z I K z uφ  = ⊗ ⊗ + ⊗   

This assumption is related to the condition of persistent 
excitation in adaptive control theory [20]. Then, 1jK + can 
be computed as  

( ) 11 2
1j j jK R H H

−

+ = + .                  (31) 

Here, (30) is called policy evaluation, which is used to 
uniquely solve jP , and (31) is policy improvement (PI), 

which is used to update control gain 1jK + . Then, we present 
our output feedback adaptive optimal control algorithm. 

 
Figure 3: Flowchart of adaptive optimal controller design 

5. SIMULATION RESULTS 
A basic prerequisite for energy savings in processes 

of production, transportation, and energy consumption is a 
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high-quality synthesis of optimal control algorithm. In this 
section, we conduct simulations on the valve-controlled 
hydraulic actuator to show the effectiveness of the output-
feedback ADP control algorithm in the case with unknown 
system matrices and unmeasurable states.  

Through iterative calculation, the approximated optimal 
control gain and performance index for the discrete-time 
system can be obtained. Furthermore, the discrete control 
policy is implemented on the continuous plant by zero-order 
holder. Adopted sampling time is 0.1h s= .  

The model parameters are: 82.1 10e Paβ = ⋅  is the bulk 
modulus� of� the� fluid,� 110eK −= denotes the load spring 
gradient, extF represents the load force disturbance on the 
piston, 40Sp bar=  is the supply pressure, and 

0 1.7p bar=  is the tank pressure, 6 3
0 0 8 10a bV V m−= = ⋅  

represent initial chamber volumes, 1L m=  is the piston 
stroke, 20m kg= is the piston mass.  

The area ratio of the asymmetric piston is 
b aA Aα = , where 4 22.36 10bA m−= ⋅  is the effective area 

of the head side of the piston, and 4 24.91 10aA m−= ⋅  is the 
effective area of the rod side of the piston. Discharge 
coefficients of valve orifices 1.14vic > , 1,2,3,4i =  
represent valve constants, and 145 10Lic −= ⋅  is the internal 
leakage coefficient.  

Behavior of the control algorithm will be considered 
on discretized continuous linear model (17)-(18). For the 
purpose of simulation, Q and R  are chosen to be identity 
matrices. The observability index is N = 3 and the stopping 
criterion is 0.1ε = . By solving of the discrete-time Riccati 
equation (24), we get the optimal values *

dP , *
dK .   More 

precisely

 *

 269.1657 -377.7014 139.5220 7.7063 -276.6863 293.3140
-377.7014 535.9737 -199.3177 -10.0756 387.6731 -419.0086
139.5220 -199.3177 74.4521 3.7667 3.7667 156.5180

7.7063 -10.0756 3.7667 1.5862 -7.2146 7.9186
-276.6830 387.

dP =

6731 -142.9420 -7.2146 284.9547 -300.5013
293.3140 -419.0086 156.5180 7.9186 -300.5013  329.0404

 
 
 
 
 
 
 
 
  

 (32) 

 [ ]* 3.3615 -4.4696 1.6358 0.3700 -3.3307 3.4388dK =  (33)
The input/output data are collected from 0.8 to 4 seconds, 
and the PI is started from t = 4s. The online information of 
input and output are collected in the whole process and the 

adaptive optimal controller is also computed iteratively. 
After 6 iterative iterations, we obtain the derived 
approximate optimal values as shown below: 

 *
6

 269.1659 -377.7057 139.5221 7.7082 -276.6863 293.3106
-377.7057 535.9646 -199.3158 -10.0757 387.6722 -419.0119
139.5221 -199.3158 74.4526 3.7667 -142.9427 156.5181
 7.7082 -10.0757 3.7667 1.5861 -7.2146 7.9186

-276.686

P =

3 387.6722 -142.9427 -7.2146 284.9548 -300.5016
293.3106 -419.0119 156.5181 7.9186 -300.5016 329.0404

 
 
 
 
 
 
 
 
  

 (34)

 [ ]*
6 3.3615 -4.4695 1.6358 0.3700 -3.3306 3.4387K =  (35) 

Figures 4-6 depict the plots of input, output and states of the 
hydraulic actuator. At t = 4s, the approximated optimal 
control gain is thus obtained by applied optimal ADP and is 
implemented online. 

 
Figure 4: Trajectory of input 

 
 
 

 
Figure 5: Trajectory of output 
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Figure 6: Trajectory of states 

 
6. CONCLUSION 

In this paper, ADP based optimal controller design 
has been considered for the hydraulic servo actuator with 
completely unknown dynamics. Applied sampled-data 
adaptive optimal control strategy based on the discretized 
model and output feedback has been shown as useful tool 
in this cases. It should be noted that exploration noise does 
not affect accuracy of the solution of discrete Riccati 
equation. Simulation results demonstrate the validity and 
effectiveness of the proposed control approach. 
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