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Abstract – In paper considered outliers-robust recursive stochastic 

approximation algorithm for adaptive prediction of MIMO (multiple-

input multiple output) Hammerstein models. The static nonlinear block 

has polynomial form and linear block is output-error model. It is sup-

posed that a priori known class of distributions to which belongs the real 

disturbance. In that situation we can use Huber`s methodology for 

design of robust algorithm which introduces nonlinear transformation 

of prediction error. Model transformation allows representation of 

unknown matrix parameters in the form of vector. The problem is not 

considered before in the field of adaptive prediction. Simulation study 

presents the practical behaviour of algorithm. 

Key words: Hammerstein model, outliers, prediction, stochastic ap-

proximation 

I. INTRODUCTION 

Output error (OE) models are frequently used for identi-

fication, prediction and adaptive control system. This paper 
focuses on the synthesis of one-step-ahead predictors, for 

MIMO non-linear systems.  The non-linear model dis-

cussed in the paper belongs to class of   block-oriented 

models. The example is a Hammerstein’s model where 

static non-linear block is given in polynomial form while 

linear model is OE model. 

Adaptive prediction focuses on recursive estimation of 

future values of system outputs based on past and present 

values of system inputs and outputs [1]. Applications of 

prediction algorithms are numerous [2]-[3]. Adaptive pre-

diction in this work is based on algorithm of stochastic 

approximation. Standard algorithms of adaptive prediction 

assume that distribution of stochastic disturbance is exactly 

known (usually it is Gaussian distribution). However, anal-

ysis of practical measurements has shown that, in popula-

tion of observations, exists rare large observations (outli-

ers) [4]. Direct implication is that assumption on exact 
knowledge of disturbance distribution   should be replaced 

by the assumption on a priori knowledge of the class of 

distribution to which the relevant disturbance belongs.  The 

theory of robust statistics is built on this basis [5]-[6]. 

Based on this theory it is possible to get, in the statistical 

sense, robust recursive algorithms (reduced sensitivity to 

change of the disturbance distribution) for estimation of the 

parameters of dynamic phenomena. The application of the 

above mentioned ideas in the problems of identification 

and predictions was demonstrated in references [7]-[11] 

and [17]-[22]. Simulations have shown superiority of ro-
bust algorithms in relation to classical (linear) algorithms. 

In regards to algorithms based on stochastic approximation 

it is necessary to invest additional effort for increase of 

speed of algorithm convergence (especially on initial itera-

tions). 

As far as authors are informed, new robust recursive al-

gorithm for prediction of non-linear MIMO OE models is 

proposed in this paper.  Namely, algorithm is modified so 

that the unknown parameters are given in the form of vec-

tor.   For approximately normal distributions non-linear 

transformation of prediction error is Huber’s function and 

algorithm gain is exactly defined for this case (matrix M in 
algorithm) which, as well, represents new result.  This was 

achieved by the application of Laplace functions. [12]. 

The algorithm developed in this paper is generalized 

form of algorithm for identification of MIMO systems 

when unknown parameter has vector form [14]. 

 

II. ROBUST RECURSIVE STOCHASTIC GRADIENT 

ALGORITHM 

 Suppose that the considered system is described by the 

nonlinear multivariable output-error (OE) model with r-

dimensional input and p-dimensional output: 

     1 1 1 1    k k kq q q fy F B u w  (1) 

where     1qB   and  1 1 qF  are matrix polynomials 

and 1q  denotes the shift-back operator  1

1



k kq x x . 

Orders of polynomials  1qB   and  1 1 qF  are m  and 

n, respectively 

 1 1

0 1 ....     m

mq q qB B + B B    (2) 

 1 1

1 ....      n

nq q qF I F F    (3) 

where  1,2,...,i i mB  are  p x r matrices, and 

 1,2,...,i i nF  are p x p matrices. The stochastic disturb-

ance  kw  is a martingale-difference in relation to the 

nondecreasing family of  -algebras kF . The Hammer-

stein model is given on the Figure 1. 

 



 

 

 
 

Fig.1. Hammerstein model 

The methodology for adaptive prediction, in this paper, 

is based on the model reference control paradigm [15]-[16]. 

 

 

 
 

Fig. 2. The model reference concept 

Output of the system is compared to that of adjustable 

model. The model parameters are updated until the differ-

ence cannot be further improved. The procedure is present-

ed in   Figure 2 where the model  M   , for known param-

eters, is  

         0 1 1 1 1 1 1      k k ky q q q q q q fF B v F B u   (4) 

It is supposed that  kw  and  ku  are independent. The 

optimal one-step-ahead predictor can be given by minimi-

zation of the following criterion 

 
2

0

1p k kJ E Fe     ,  
0 0 k k ke y y       (5) 

where  
0

ky  is an optimal prediction for one step. Introduc-

ing (1) in (5), one gets 

 
2

0

1 k k kE Fy y  

      
2

1 1 1 1 0

1

   

  k k kE q q q FF B f u y  

 2

1 k kE Fw  

       1 1 1 1 0

12    

 T

k k k kE q q q Fw F B f u y     (6) 

The third term of (6) is zero owing the property of kw  

that is independent with respect to 1,..., k ku u . The second 

term does not depend upon the choice of 
0

ky  and the crite-

rion will be minimized if the first term becomes zero. This 

leads to nonlinear optimal predictor 

     0 1 1 1 1   k kq q qy F B f u              (7) 

Model (1) belongs to the class of block-oriented models 

(Hammerstein model) [13]. Function  kf u  is nonlinear 

vector function 

       1 2

1 2, ... 
 

T
r

k k k r kf u f u f uf u ,    r

k Rf u        (8) 

 1 2, ,...,   
T

r

k k k ku u uu
 

where  i

i kf u   1,2,..., ri  is a nonlinear function of a 

known basis  1 2, ,..., s    and unknown parameters  

 1,2,...,sid i
 
[13] 

       1 1 2 2 ...   i i i i

i k k k s s kf u d u d u d u      , 1,2,..., ri

 (9) 

Remark 1. Special form of the nonlinear part (relation 

(9)) in the Hammerstein model is a polynomial of a known 

order in the input 

     
2

1 2 ...   
s

i i i i

i k k k s kf u d u d u d u  

It is, also, possible to represent nonlinear part of model 

in the form of cubic splines [18]-[19]. 

From relation (9) we have 

       1 1 2 2 ...   k k k s s kd d df u u u u        (10) 

           1 2 ... 
 

T r

i k i k i k i ku u u  u   

Let us notice that 

   

     

     

     

1 1

1 0 1 1 1 2 2 1 1

2 0 2 1 1 2 2 2 1

0 1 1 2 1

...

...

...

 

   

   

   



      

      

     

k

k k m k m

k k m k m

s s k s k m s k m

q q

d

d

d

B f u

B u B u B u

B u B u B u

B u B u B u

  

  

  

 (11) 

Remark 2. The static nonlinear block is described as 

  k i k iv f u    ,   0,1,2,....i   (12) 

whereby 

     1 1 ...    k i k i s s k id df u u u  , 0,1,2,....i   (13)                                       

The shift-back operator 
iq is applied to kv , i.e. 



i

k k iq v v  

From (7)  it follows that 

 0 0
T

M

k ky X     (14) 

where 

     

       

     

     

0 0 0

1 2

0

1 1 1 2 1 1

2 1 2 2 2 1

1 2 1

, ,...,

, ,..., ,

, ,..., ,...,

, ,...,

 

    

   

   

  




T T T

k k k

T
T T T

k n k k k m

T T T

k k k m

T T T

s k s k s k m

X y y

y u u u

u u u

u u u

  

  

  

   (15) 



 

 

 

  



1 2 1 0 1 1 1

2 0 2 1 2 0 1

, ,..., , , ,..., ,

, ,..., ,..., , ,...,

 
T

M

n m

m s s s m

d d d

d d d d d d

F F F B B B

B B B B B B


   (16) 

We, also, have from (1), (7) and (15) 

  0 
T

M

k k ky X w     (17) 

Note that in relation (17) the quantities 

 0   1,2, ,  k i i ny  are unknown. We will replace them 

with   

 0ˆ 
T

M

k k ky X    (18) 

where 
M

k  is estimate of unknown parameter and 

   

       

     

     

0 0

1 2

0

1 1 1 2 1 1

2 1 2 2 2 1

1 2 1

ˆ ˆ, ,...,

ˆ , ,..., ,

, ,..., ,...,

, ,...,

 

    

   

   

 




T T
T

k k k

T
T T T

k n k k k m

T T T

k k k m

T T T

s k s k s k m

X y y

y u u u

u u u

u u u

  

  

  

   (19) 

Let us introduce the matrix 

0

0

 
 

   
 
 

T

k

T

k k

T

k

X

I X

X

   (20) 

where the symbol   denotes the Kronecker product. 

For the p x r  matrix    ijuU   the operator "vec"  gen-

erates a column vector by setting the columns of the matrix 

U one below the other. 

 
 

1

2
1

vec , vec  

 
 
  
 
 
 

U
pr x

r

R

U

U
U

U

 

Based on (19) let us introduce the vector: 

   Mvec  ,  
2dim (2 1)   np m pr s

The sequence of estimate  M

k will be defined recursively. 

At time k , before the estimate 
M

k is available, output of 

the model     is (according with the output error meth-

odology) 

 1
ˆ


T

M

k k kXy     (21) 

According with above considerations we have 

  
T

M

k kX     (22) 

and the prediction error 

1
ˆ

  k k k k k ke y - y y     (23) 

will be used for definition of identification functional.  

The dominant assumption in the literature is that the 

probability density for stochastic disturbance kw  is exactly 

known (usually normal). However, numerous researches 

have shown that such assumption is not justified in prac-

tice. Because, in this paper it is assumed that the only dis-

tribution class to which the disturbance belongs is known. 

We will consider next distribution class 

  : 1   ,   is symmetric   P P P N G G    (24) 

where  0,1  is the contamination degree and  20,N   

denotes a zero-mean Gaussian distribution with a variance 
2 . This distribution is suited to describe the presence of 

outliers in observations. The distribution G is an arbitrary 

symmetric distribution. For the Huber’s theory is important 
the restriction of the form (24) 

  { : 1 }  P P P N   

which is more convenient for solving variational problem 
whose solution is the least favorable probability density 

(relation (25)). 

We will further consider random vector
1 2....   

T p

k k k kw w ww . It is assumed that component of the 

vector 
kw  are independent. Each component has the distri-

bution (24). Applying Huber`s methodology, the least fa-

vorable probability density on a class (24) is obtained  

 

 
2

2

2

1
exp  ,   

22

1
exp  ,   

22

  
     

    
    

     
   

i

k i i

k

iii

i k

i i i

k k

ii

w
w k

p w

k k
w w k



 










(25) 

where the relationship between the contamination degree 

 and the parameter k  of Huber’s function is given by the 

following relation  

    

 
 

 
2

2

2
2   ,

1

1

2






   



  

i

N i

Ni

x y

N

k
k

k

x e dy













     (26)   

Due to the independence of the components of the vector

kw , the least favorable probability density of the vector 

kw is: 

   * *

1


p

i

k i k

i

p p ww   (27) 

On the basis of (27), by using the maximum likelihood 
methodology, it can be defined the loss function: 

   *log  p x x   ,    1:  pR R  (28) 

Using (22) and (27) the identification criterion can be 
defined 

     kJ E  e    (29) 

The recursive minimization of the criterion (29) can be 
realized by applying the Newton-Raphson algorithm  



 

 

   
1

2

1 1 1



  
         k k k k k kk J k J      (30) 

where 

   
1

1



 
k

k i

i

J
k

e     (31) 

is empirical functional. 

The resulting form of stochastic gradient algorithm is (it 
follows from relation (30)) 

 1

1
  T

k k k k

kr
e      ,     

0
ˆ  0  (32) 

 1  T

k k k kr r tr M    ,     
0 1r  (33) 

where   
1

2

1




   k k kr tr k J   ,  Mvec    ( M  is de-

fined with relation (16)) and    is defined as 

         The matrix M has the form 

1 0

0

 
 

  
 
 p

m

m

M   (34)                                       

where 

   i

i i km E w     (35)   

The predictor is, according with relations (21) and (22)    

1
ˆ

k k ky  
  

 (36) 

The adaptive predictor is described with relations (32), (33) 

and (36).              

From last fact and relations (25) and (35) it follows that 

      

 
 

2

1

*

1

2

1 10

2 1
2 1

2





 
  

 
 

   

    
     

   





ii
k

i

i i i i

i i k i k k k

wk i i
ik
L

i i

m E w w p w dw

w k
e d



 

 


 

 

          (37)                               

where 

 

 
2

2

0

1

2



 
x y

L x e dy


                 

The algorithm (32) and (33) is the most useful form of the 
recursive algorithm when unknown parameter is in vector 

form [14]. 

V. CONCLUSION 

In this paper is proposed outlier robust adaptive predictor 

for MIMO Hammerstein OE model. Linear part of model is 

MIMO OE model. The impact of outliers are reduced by 

introduction of non-linear prediction error transformation. 

The transformation depends on the a priori information 

about the stochastic disturbance. In this paper it is supposed 

that disturbance belongs to the a priori known class of 

distributions (not to the exact known distribution). 
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