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Abstract

Physics-Informed Neural Networks (PINNs) are artificial neural networks
that encode Partial Differential Equations (PDEs) as an integral component
of the ML model. PINNs are successfully used nowadays to solve PDEs,
fractional equations, and integral-differential equations, including direct and
inverse problems. Just as in the case of other kinds of artificial neural
networks, the architecture, including the number and sizes of layers, acti-
vation functions, and other hyperparameters can significantly influence the
network performance. Despite the serious work in this field, there are still
no clear directions on how to choose an optimal network architecture in a
consistent manner. In practice, expertise is required, with a significant num-
ber of manual trial and error cycles. In this paper, we propose PINN/GA
(PINN/Genetic Algorithm), a fully automatic design of a PINN by an evolu-
tionary strategy with specially tailored operators of selection, crossover, and
mutation, adapted for deep neural network architecture and hyperparameter
search. The PINN/GA strategy starts from the population of simple PINNs,
adding new layers only if it brings clear accuracy benefits, keeping PINNs
in the population as simple as possible. Since the examination of dozens of
neural networks through the evolutionary process implies enormous compu-
tational costs, it employs a scalable computational design based on containers
and Kubernetes batching orchestration. To demonstrate the potential of the
proposed approach, we chose two non-trivial direct problems. The first is
1D Stefan transient model with time-dependent Dirichlet boundary condi-
tions, describing the melting process, and the second is the Helmholtz wave
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equation over a 2D square domain. The authors found that PINNs accuracy
gradually improves throughout the evolutionary process, exhibiting better
performance and stability than parallel random search and Hyperopt Tree of
Parzen Estimators, while keeping the network design reasonably simple.
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1. Introduction

In past decades, different deep learning methods are preferred for solv-
ing various types of problems, such as image recognition, speech recognition,
natural language processing, search engines, recommender systems, bioin-
formatics, etc. However, traditional supervised deep learning methods are
not suitable for solving all types of problems, regardless of the sufficient
amount of available data describing the system’s behavior. Concretely, prob-
lems described by linear and non-linear equations have not been the focus of
deep learning. Various numerical methods have been used for solving partial
differential equations. Classical methods such as finite difference, finite vol-
ume, and finite element are considered state-of-the-art methods because of
their efficiency and ability to be applied in a wide range of areas. However,
solving inverse problems with classical numerical methods demands calcu-
lations that are extremely time-consuming, because dealing with unknown
model parameters involves an iterative search procedure. Therefore, accu-
racy is often traded for efficiency. Towards eliminating these shortcomings of
numerical methods, a new deep-learning method for solving partial differen-
tial equations has been developed. That method, dubbed Physics-Informed
Neural Networks (PINNs) is used for solving supervised learning tasks while
respecting any given law of physics described by general nonlinear partial
differential equations [1]. The major innovation of PINNs compared to the
classical supervised artificial neural networks (ANNs) is the introduction of
a residual a network that encodes the governing physics equations, takes the
output of a deep-learning network, called the approximator, and calculates
a residual value [2]. The residual of the differential equation is minimized by
training the approximator neural network, where differential operators are
applied using automatic differentiation. To attain satisfactory generalization
results in PINNs, it is crucial to choose appropriate hyperparameters and
network architecture. Nevertheless, a large number of hyperparameters and
their wide ranges makes it difficult to identify the combinations that provide
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a good generalization performance.
Creating an optimal neural network model is an extremely difficult task.

It is shown that a model’s architecture and hyperparameters impact the
model’s performance in many ways. However, it is a particular challenge
to determine hyperparameters of the model that will result in an optimal
model, thus researchers are often forced to manually construct a set of hy-
perparameters through a repetitive and tedious process of trials and errors.
Another widely used approach is a combination of grid search and manual
search that dominate as the state of the art despite decades of research into
global optimization [3]. In [4] it was shown that these methods can be very
inefficient in large search spaces due to their exhaustive nature. Recently,
Neural Architecture Search (NAS) has reached popularity in the field of au-
tomated machine learning [5]. The aim of NAS is to search for the optimal
network structure in a large space of architectures, in an automated manner
with minimal human involvement. The earliest NAS strategies were based
on reinforcement learning methods [6, 7, 8] and were successfully used for
solving image classification problems. In [9] authors achieved similar results
by employing an evolutionary strategy. Both methods proved the feasibility
of neural network design automation but assumed extreme computational
costs. The majority of subsequent research focused on decreasing computa-
tional requirements by tailoring a search space and choosing a search strategy
to reach high–performing architectures quickly. The computational cost of
NAS can be significantly reduced using differentiable search methods. How-
ever, these methods often do not reach the best architectures because the
best ones in the search process are not necessarily optimal for evaluation.
To bridge the gap, the authors in [10, 11] present a progressive version of
differentiable architecture search, where the size of the architecture gradu-
ally increases. Evolutionary algorithms have been widely used for finding an
optimal topology, i.e., the number of layers and the number of neurons in
each layer of an ANN [12]. These algorithms are also used as an alternative
to the backpropagation algorithm for tuning the set of weights [13, 14, 15].
These hyperparameter optimizations certainly increase the performance of
an ANN. However, there are other essential hyperparameters that may also
affect ANN’s performance. The authors in [16] propose the algorithm for the
automatic design of DNNs based on evolutionary strategies not only to find
the best topology but also to optimize layer-specific hyperparameters.

All these attempts refer to the classical supervised ANNs. Most NAS
methods are still computationally intensive and targeted toward convolu-
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tional neural networks. Typically, the PINN is a fully connected network, i.e.
simple multilayer perceptron (MLP), and there are quite a few attempts at
the optimization of such networks. Most of the reported PINN optimization
methods refer to hyperparameter tuning for a specific type of problem. In [17]
hyperparameter tuning of the PINN model for the Helmholtz operator was
conducted via Gaussian processes based Bayesian optimization. The same
method was used for optimizing the stochastic PINN model of the Advection-
Difusion-Reaction problem in [18]. In [19] authors applied a genetic algorithm
to identify the network types and optimization functions suitable for several
dynamic systems. In [20] authors presented Auto-PINN, architecture, and
hyperparameter optimizator for PINNs. The presented methodology implies
an exhaustive search in a reduced space. The authors conducted a set of
pre-experiments on PDE benchmarks for probing the structure-performance
relationship, which is then used for decoupling the search of different hyper-
parameters and reducing search space for each hyperparameter. The very
recent research [21] explores the possibilities to optimize the architecture of
a PINN, but leaving other hyper-parameters aside.

In most recent works that tackle PINN optimization, the conclusions
regarding the structure-performance relationship are based on several char-
acteristic use cases, but the question remains whether the conclusions can be
generalized. Also, the network architecture is specified so that all layers of
the network have the same number of neurons, making fine-tuning the com-
plexity of the network architecture impossible. However, to the best of our
knowledge, besides Auto-PINN, which is itself based on search space reduc-
tion, there is no general framework for the efficient automatic construction
of PINNs.

To address this, we propose PINN/GA framework, an efficient fully auto-
matic, and massively parallel Auto-ML solution based on a genetic algorithm
(GA). Starting with an initial population of candidate solutions, called indi-
viduals, GA, as an optimization algorithm inspired by the process of natural
selection, evolves the population by selecting the fittest individuals, applying
crossover to create offspring with combinations of their parent’s genes, and
mutating some of the genes to introduce new variations in the population.
When the termination criterion is reached iterative process of population
evolution stops, and the fittest individual is selected. In PINN/GA, the indi-
viduals are PINNs encoded as chromosomes containing a learning algorithm,
architecture, activation in hidden layers, and output activation. The op-
erators of selection, crossover, and mutation, are also customized for neural
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architecture and hyperparameter search. The PINN/GA offers two major in-
novations. Firstly, we keep the PINN search space as computationally simple
as possible by evolutionary search from simple to more complex architectures,
as proposed in [16] for general deep architectures. Secondly, we propose a
scalable distributed computational design for PINN/GA optimization. With
these two-fold innovations, it is possible to speed up PINN hyperparameter
search by almost two orders of magnitude, making it feasible for practical
use.

We demonstrate the potential of the proposed PINN/GA search method
by comparing its performance with the massively parallel random search and
a well-known Hyperopt’s Tree of Parzen Estimators [22] on two non-trivial
direct problems. The first is a direct form of the 1D transient Stefan problem.
The second demo problem is a Helmholtz wave equation over a 2D square
domain.

This paper is organized as follows. We first introduce the background in-
formation about PINNs, followed by a detailed description of our PINN/GA
algorithm with its special operators. In Section 4, we briefly explain the
practical side of the distributed computing aspects. The specifications of the
benchmark cases are given in Section 5. Section 6 is all about the accuracy
and performance results, followed by Conclusion with a few directions for
future work.

2. Physics-Informed Neural Networks (PINNs)

The Physics-Informed Neural Network is a machine-learning technique
that can be used to approximate the solution of partial differential equa-
tions. Partial differential equations (PDEs) with corresponding initial and
boundary conditions can be expressed in a general form as:

ut+N [u] = 0, X ∈ Ω, t ∈ [0, T ], (1)
u(X, 0) = h(X), X ∈ Ω, (2)
u(X, t) = g(X, t), X ∈ Ωg, t ∈ [0, T ]. (3)

Here N is a differential operator, X ∈ Ω ⊆ Rd and t ∈ R represent spatial
and temporal coordinates respectively, Ω ⊆ R is a computational domain,
Ωg ⊆ Ω is a computational domain of the boundary conditions, u(X, t) is the
solution of the PDEs with initial condition h(X) and boundary condition
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g(X, t). A formulation like this can also be applied to higher-order PDEs,
since higher-order PDEs can be written in the form of first-order PDEs.

In the original formulation [23], PINN consists of two subnets: an approx-
imator network and a residual network. The approximator network receives
input (X, t), undergoes the training process, and provides an approximate
solution û(X, t) of the PDEs as an output. The approximator network trains
on a grid of points, called collocation points, sampled from the simulation
domain. Weights and biases of the approximator network are trainable pa-
rameters that are trained by minimizing a composite loss function with the
following form:

L =Lr + L0 + Lb, (4)

where

Lr =
1

Nr

Nr∑
i=1

∣∣u (X i, ti
)
+N

[
u
(
X i, ti

)]∣∣2 , (5)

L0 =
1

N0

N0∑
i=1

∣∣u (X i, ti
)
− hi

∣∣2 , (6)

Lb =
1

Nb

Nb∑
i=1

∣∣u (X i, ti
)
− gi

∣∣2 . (7)

Here, Lr, L0, and Lb represent residuals of governing equations, initial and
boundary conditions, respectively. Additionally, Nr, N0, and Nb are the num-
bers of collocation points of the computational domain, initial and boundary
conditions, respectively. These residuals are calculated by a non-trainable
part of the PINN model called the residual network. In order to compute
the residual Lr, PINN requires derivatives of the outputs with respect to the
inputs. Such computation is achieved by automatic differentiation, which
relies on the fact that combining derivatives of the constituent operations by
the chain rule gives the derivative of the overall composition. This technique
is a key enabler for the development of PINNs and is the key element that
differentiates PINNs from similar efforts in the early 90s [24, 25], which relied
on the manual derivation of back-propagation rules. Nowadays, automatic
differentiation capabilities are well-implemented in most deep learning frame-
works such as TensorFlow [26] and PyTorch [27], and they allow us to avoid
tedious derivations or numerical discretization while computing derivatives
of all orders in space-time.
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A schematic of the PINN is demonstrated in Figure 1 in which a simple
partial differential equation ∂f

∂x
+ ∂f

∂y
= 0 is used as an example. As shown

in Figure 1, the approximator network is used to approximate the solution
u(X, t) which then goes to the residual network to calculate the residual loss
Lr, boundary condition loss Lb, and initial condition loss L0. The weights and
biases of the approximator network are trained using a custom loss function
consisting of residuals Lr, L0, and Lb through gradient-descent technique
based on the backpropagation.

Figure 1: The architecture of the PINN and the standard training loop of PINN con-
structed for solving a simple partial differential equation, where PDE and Cons denote
governing equations, while R and I represent their residuals. The approximator network
is subjected to a training process and provides an approximate solution. The residual
network is a non-trainable part of PINN capable to compute derivatives of approximator
network outputs with respect to the inputs, resulting in the composite loss function, de-
noted by MSE.

3. PINN/GA optimization method

There are no clear guidelines on how to design an ANN model, making the
design process substantially complex. Trial and error approach for validation
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of models with different architectures and hyperparameters requires a lot of
time. This problem also occurs in PINN design, since the only difference
compared to classical neural networks is that PINNs are trained to satisfy
any given law of physics instead of satisfying a predefined output. We pro-
pose an automatic approach that employs a specially tailored evolutionary
strategy to search for optimal architecture and hyperparameters of a PINN,
while the weights of individual PINNs are learned by classical gradient-based
technique.

3.1. Genetic algorithm for a PINN optimization
Genetic algorithms (GAs) are evolutionary algorithms that have proven

to be powerful and robust mechanism when it comes to solving complex,
realistic optimization problems. GA rests on the theory of natural selection
where the best individuals are chosen to survive and produce offspring for the
next generation. In each generation, a new set of individuals is created using
pieces of the individuals from the previous generation. In GA terminology,
each individual is represented by a chromosome which is a potential solution
to a problem. The chromosomes are made up of genes that contain a part
of genetic material, and each gene controls one or more chromosome char-
acteristics. GA processes a population of chromosomes through generations
using a kind of natural selection through the genetics-inspired operators of
selection, crossover, and mutation [28].

The process starts with a randomly generated population. All individuals
of the initial population are evaluated to obtain their fitness. The population
is then subjected to the iterative process of selection, crossover, mutation, and
evaluation for the next iteration (generation). The selection operator chooses
those individuals from the population that will be allowed to reproduce, and,
on average, the fitter individuals, called parents, produce more offspring than
the less fit ones. Crossover exchanges sub-parts of two-parent individuals
[28], whereby there is an exchange of genetic material. Constant application
of selection and crossover operations leads the population to an increasing
number of individuals with good genes, approaching the global optimum.
The mutation operator introduces stochastic changes in the characteristics
of chromosomes, for the purpose of reintroducing genetic diversity back into
the population and assisting the search to escape from local optima [29]. This
iterative process stops when the termination criterion is reached.

The proposed PINN/GA optimization methodology is based on the it-
erative strategy of GA, shown in Figure 2. In our approach to identifying
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the optimal PINN architecture and hyperparameters, each individual repre-
sents an individual PINN model. All individuals of the current population
are evaluated to determine their fitness, taken as a measure of satisfying the
governing differential equation, initial, and boundary conditions. The indi-
vidual with a lower mean squared error (MSE ) is considered fitter. According
to the chosen selection criterion and the elitism concept, only the fitter indi-
viduals enter the reproduction phase. Using the operators of crossover and
mutation, new generations of PINNs with various architectures and hyper-
parameters are created. Once the stop criterion is achieved, the output is a
population of the fittest individuals. The stop condition can be a predefined
number of generations, or a hyper-volume indicator [30]. Upon the optimiza-
tion process completion, an individual with the lowest MSE is chosen as the
optimal one.

Figure 2: PINN/GA evolutionary loop. Implements an iterative GA strategy, where each
individual represents a PINN. Special crossover and mutation operators aim at better
PINN performance while keeping PINNs’ architecture as simple as possible.

3.2. PINN chromosome structure
Let PINN (ψ) denote an individual PINN from the set of all possible

PINNs ω. For finding an optimal PINN architecture, we propose a specific
GA approach with the genetic structure of chromosomes shown in Figure 3.
Each chromosome encodes a learning algorithm, architecture of the PINN
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model, activation function in the hidden layers, and output activation. A
similar chromosome structure is originally introduced in [16], where an op-
timal architecture of a classical deep neural network was the subject of the
search.

Figure 3: The structure of the PINN/GA chromosome. The chromosome encodes: the
learning algorithm, LA(ψ); the activation function, AF (ψ), common for all hidden lay-
ers; the number of hidden layers, N (ψ); the number of neurons in each hidden layer,
n
(ψ)
1 , n

(ψ)
2 , . . . , n

(ψ)

N(ψ) ; the output activation, OA(ψ).

The very first gene LA(ψ) represents the learning algorithm. The next
gene, AF (ψ), represents the activation function acting in all hidden layers.
The gene N (ψ) represents the number of hidden layers. Next N (ψ) genes
characterize specific hyperparameters for each layer. These genes can contain
one or more sub-genes that act as layer-specific hyperparameters. In this
chromosome interpretation, only the number of neurons in hidden layers
are stored in genes n(ψ)

1 , n
(ψ)
2 , . . . , n

(ψ)

N(ψ) . The last gene, OA(ψ), denotes the
output activation. For each of the previously mentioned elements of the PINN
chromosome, we must specify ranges representing the search space. PINNs
can contain up to Nmax hidden layers and each hidden layer contains up to
nmax neurons. All neurons from all hidden layers use the same activation
function from the set of possible activation functions AF . The same goes for
the neurons in the output layer, but the specific kind is taken from the set
of possible output activations OA. Additionally, each model picks one of the
offered learning algorithms LA [29]. The possible values of each gene of the
chromosome are defined as:

LA(ψ) ∈ {Adam, RMSprop, Adagrad, Nadam} , (8)

AF (ψ) ∈ {tanh, sigmoid, selu, softmax, relu, elu, sin} , (9)

1 ≤N (ψ) ≤ Nmax, (10)

1 ≤n(ψ)
i ≤ nmax, i = 1, . . . , N (ψ), (11)

OA(ψ) ∈ {linear, relu} . (12)

All variables except the number of hidden layers are encoded as an integer
values that represent the index of an element from the corresponding set of
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possible values. The error of the PINN (ψ) model ψ is mean squared error
calculated as:

MSE(ψ) = max
{
MSE

(ψ)
train, MSE

(ψ)
val

}
, (13)

where MSE
(ψ)
train and MSE

(ψ)
val represent PINN’s mean squared error on train-

ing and validation set, respectively. This way, the model’s ability to gener-
alize is increased. The best choice of architecture and hyperparameters can
be written briefly as min

{
Minimize MSE(ψ) | ∀ PINN (ψ) ∈ ω

}
.

3.3. Initial population
The initial population consists of individuals whose genes take random

values from the corresponding set of possible values (8)-(12), except for the
gene that represents the number of hidden layers N (ψ). Following the ap-
proach proposed in [16], the number of hidden layers for all individuals in
the initial population is set to N (ψ) = 1. The number of hidden layers can
only be modified as a result of the mutation operator, which will be explained
later. If an increased number of hidden layers brings accuracy improvement,
the PINN/GA algorithm will guide the optimization process toward increas-
ing the number of layers in the entire population. This controlled increase in
complexity results in an algorithm that converges faster since simpler PINNs
require less training time.

3.4. PINN/GA operators
We cover the operators of selection, crossover, and mutation, each spe-

cially tailored for neural architecture and hyperparameter search.

3.4.1. Selection
The better the individual, the greater the chance of being chosen as a

parent. This creates selection pressure that leads the population to bet-
ter solutions. According to the optimization criterion, the individuals are
ranked based on fitness value (13). To ensure the survival of the best indi-
viduals, the elitism strategy has also been used [31]. This means that two
fittest individuals from the current generation pass directly to the next gen-
eration. To determine the remaining individuals for the next generation, we
apply binary tournament selection, which performs a tournament between
a randomly chosen pair of individuals from the current generation. Fitter
individuals from each pair enter the reproduction phase, where crossover and
mutation operators are applied.
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3.4.2. Crossover
The crossover operator combines the genes of two parent individuals to

produce two offspring individuals. It is implemented as a one-point crossover.
Suppose that two parents P1 and P2 are given as

P1 =
(
LA1, AF 1, N1, n1

1, n
1
2, . . . , n

1
N1 , OA1

)
, (14)

P2 =
(
LA2, AF 2, N2, n2

1, n
2
2, . . . , n

2
N2 , OA2

)
. (15)

Here, N1 and N2 are numbers of hidden layers of parents P1 and P2, re-
spectively. The cross-point divides individuals into two parts: a head and
a tail. As shown in [16], the cross-point can only be located between two
genes representing the number of neurons in a hidden layer. The crossover
application over parents P1 and P2 produces offspring

O1 =
(
LA1, AF 1, N2, n1

1, . . . , n
1
cp, n

2
cp+1, . . . , n

2
N2 , OA2

)
, (16)

O2 =
(
LA2, AF 2, N1, n2

1, . . . , n
2
cp, n

1
cp+1, . . . , n

1
N1 , OA1

)
, (17)

where cp is the cross-point with randomly selected value from the set
{1, . . . ,min( N1, N2)− 1 | N1, N2 > 1}. Those individuals exchange their
tails, together with genes containing the number of hidden layers. The
crossover operation is presented in Figure 4.

3.4.3. Mutation
The mutation is the unary operator representing a small change in an

individual’s genetic material. Mutation provides an escape from the local
optimum and is a special highlight of the PINN/GA approach. The the
mutation operator is applied under a certain probability and each of the
following types of mutations have an equal probability of being elected:

• Mutate layer – the hidden layer mutation acts on a randomly selected
hidden layer by replacing the number of neurons with a randomly cho-
sen number of neurons from a specified range.

• Add layer – the number of hidden layers increases when a new layer
with a random number of neurons appends to an individual PINN. This
mutation operator can be performed only if the limit of a maximum
number of layers is not violated.
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Parent 1 Parent 2 Offspring 1 Offspring 2

Figure 4: PINN/GA crossover operator. The individuals exchange their tails, along with
genes encoding the total number of the hidden layers. Chromosome heads are positioned
above the red line, tails being below.

• Delete layer – removal of a randomly chosen layer from the individual.
This mutation operator can be performed only if there are at least two
hidden layers in a selected PINN.

• Mutate training algorithm – a training algorithm is chosen from a set
of possible training algorithms, reflecting the change of the optimizer
gene OA.

• Mutate activation – choose from a set of possible activation functions,
reflecting the change of the activation gene.

3.5. Evaluation of individuals
Each individual from the population impersonates the architecture and

hyperparameters of a specific PINN. The evaluation of each individual implies
building a PINN with a combination of hyperparameters and architecture
represented by the chromosome. To obtain a valid result, all PINNs exhibit
training on an identical set of collocation points, uniformly sampled from
the computational domain. The result of the evaluation is the individual’s
fitness, represented by MSE (13).
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4. Distributed implementation of PINN/GA search

Since the examination of dozens of PINNs through the evolutionary pro-
cess implies enormous computational costs, to validate the proposed concept,
we developed a distributed software framework based on contemporary tech-
nologies.

PINN/GA makes use of a slightly modified WoBinGO framework [32, 33,
34], shown in Figure 5. Its major feature is the distributed evaluation of the
population of PINNs, capable of training multiple PINNs at the same time,
ideally the entire generation. The PINN/GA framework’s scalable computa-
tional design is based on containers and Kubernetes batching orchestration,
significantly reducing the time for training multiple PINNs simultaneously.
The optimization process is initiated and can be monitored through JARE
Manager. It interacts with JARE service, which oversees the guidance of
the whole optimization process. The framework operates according to a sim-
ple manager-worker principle. Whenever a generation of PINNs needs to
be evaluated, the JARE service creates an array of asynchronous Kubernetes
batching requests. The main PINN/GA loop then awaits all requests to com-
plete, gathering fitness values for all PINNs. Binder master acts as a helper
service capable of storing various PINN models and making them available
for the worker pods. It makes use of rsync protocol for the sake of efficiency.
In each PINN/GA generation, upon evaluating all PINNs, JARE applies
selection, crossover, and mutation operators described in Section 3.4 to ob-
tain the next generation. Subsequently, the new generation is sent for the
distributed evaluation, and the whole process repeats until the GA stopping
criterion is reached (Figure 2).

It is important to mention that we use this same framework to implement
the parallel random search with which we compare the proposed PINN/GA
approach since the JARE component implements a simple random search,
as well.

5. Case studies

The proposed PINN/GA approach was validated in two distinct case
studies. The first is the 1D Stefan problem of the ice melting process, and the
second is a 2D standing acoustic wave modeled by the Helmholtz equation.
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Kubernetes cluster

Worker nodes

rsync

New optimization

Evaluate model Evaluate model Evaluate model

Binder masterJARE Manager JARE

Figure 5: PINN/GA distributed software framework. JARE Manager initiates and mon-
itors the optimization process interacting with JARE service. Whenever an evaluation of
PINNs is needed, JARE service creates an array of asynchronous Kubernetes batching
requests. Binder master stores PINN models and delivers them to the worker pods for
evaluation. The main PINN/GA loop awaits to gather the fitness values of all PINNs. If
stopping criteria is not yet reached, JARE service creates a new generation of PINNs and
the process repeats.

5.1. Stefan problem in 1D
Stefan problems with the change of phase have applications in various

fields of science and industry, in which the phase changes from liquid, solid,
or vapor states. The material is assumed to undergo a phase change with
a moving boundary whose position is unknown and must be determined as
a part of the analysis. Since moving boundary problems require solving the
heat equation in an unknown region that also has to be determined as a
part of the solution, they are inherently non-linear. One dimensional phase
change problem could be demonstrated by a semi-infinite solid, like a thin
block of ice occupying 0 ≤ x < ∞, on solidification temperature. At
the fixed boundary of the thin block of ice (x = 0), various types of flux
functions could act. In this case study, we use the same boundary condition
as [35, 36], so the temperature at x = 0 increases exponentially with time.
We also expect that the entire solid phase has a melting point temperature.
Therefore, the problem is to determine the temperature distribution in the
liquid phase at time t0, where x < s(t0), as well as the location of the free
boundary s(t0). At a later time t1 > t0, the moving boundary s(t) moves to
the right and occupies the position s(t1) > s (t0) = s0, as shown in Figure 6.
The part of the thin block of ice from position s (t0) to position s(t1), has
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melted over the time interval (t0, t1).

Figure 6: 1-D Stefan problem. s(t) denotes the moving boundary and u(x, t) the liquid
phase (x < s) temperature.

The temperature distribution u(x, t) in the liquid phase region 0 ≤ x ≤
s(t) is given by the heat equation:

∂u

∂t
= α · ∂

2u

∂x2
, (18)

that can be written in this form:

∂u

∂t
− α · ∂

2u

∂x2
= 0, (19)

under the following boundary conditions:

u(x, t) = eαt, x = 0, t > 0 (20)
u(x, t) = 1, x = s(t), t > 0. (21)

Here, α denotes a physical parameter combining thermal conductivity, den-
sity, and specific heat. The location of the moving boundary is given by the
equation known as Stefan condition:

1

α
· ds
dt

= −∂u
∂x
, x = s(t), t > 0. (22)

In the general case, the initial condition is given by

s(0) = 0. (23)
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The solution to this problem is known as:

u(x, t) = eαt−x (24)
s(t) = αt. (25)

Solving this problem following the PINN approach assumes constructing
two neural networks. The first one approximates the temperature distri-
bution function u(x, t) and the second approximates the function of free
boundary location s(t). Approximate solutions are differentiated with re-
spect to their variables, for values defined in the set of collocation points
selected from the domain [0, T ]×D, where D ⊂Rd is a bounded domain, and
T denotes the final time. Loss function consists of terms used in (19), (20)
and (21) by neural network approximations of u and s at collocation points,
where terms include a given partial differential equation and the initial and
boundary conditions along the domain boundary.

The first approximator network approximates the temperature distribu-
tion function u(x, t), and the second approximates the function of free bound-
ary location s(t). The loss function consists of terms used for assessment dif-
ference between u and s and their approximations û and ŝ given by a PINN.
Here, terms represent residuals of the governing partial differential equation,
the initial and boundary conditions. The total loss L is determined by the
sum of residuals as:

L =Lr + L0 + Lb1 + Lb2 + Lb3 , (26)
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where

Lr =
1

Nr

Nr∑
i=1

∣∣∣∣∂û(x, t)∂t
− α

∂2û(x, t)

∂x2

∣∣∣∣2 , (27)

L0 =
1

N0

N0∑
i=1

|ŝ(0)− s(0)|2 , (28)

Lb1 =
1

Nb1

Nb1∑
i=1

∣∣∣∣1a ∂ŝ(t)∂t
+

∂û

∂ŝ(t)

∣∣∣∣2 , (29)

Lb2 =
1

Nb2

Nb2∑
i=1

|û(0, t)− u(0, t)|2 , (30)

Lb3 =
1

Nb3

Nb3∑
i=1

|û (ŝ(t), t)− u (s(t), t)|2 . (31)

The first term Lr penalizes the governing equation (19), Nr being the
batch size of collocation points randomly sampled in the training domain
consisting of spatial and temporal coordinates taking values from 0 ≤ x ≤ 1
and 0s ≤ t ≤ 0.5s, respectively. û(x, t) is the neural network approximation
of the temperature field u(x, t). The second term L0 determines the fulfill-
ment of the initial condition (23). The fulfillment of the Stefan condition
(22) is given by residual Lb1 , ŝ(t) denoting PINN approximation of the mov-
ing boundary position. The last two terms Lb2 and Lb3 indicate residuals of
boundary conditions (20) and (21) N0, Nb1 , Nb2 , and Nb3 denote the numbers
of the collocation points in which initial and boundary conditions apply.

5.2. Helmholtz equation over a 2D square domain
The Helmholtz equation is an important tool in the field of acoustics

to study the behavior of acoustic waves in different types of media. It de-
scribes the behavior of the pressure wave in space, by modeling sound in the
frequency domain.

We choose to model a standing wave in a 2D domain of a simple unit
square, where a sound signal is assumed to be time-harmonic, as described
by [37] and Lu Lu1. The problem of pressure change can be modeled by the

1https://deepxde.readthedocs.io/en/latest/demos/pinn_forward.html
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following Helmholtz equation:

∂2u

∂x2
− ∂2u

∂y2
− k20u = f, Ω = [0, 1]2, (32)

where k0 designates the wave number with a value of k0 = 2πn. We choose
the multiplier n = 2, and the source term f as f(x, y) = k20 sin(k0x) sin(k0y),
under the following Dirichlet boundary conditions:

u(x, y) = 0, (x, y) ∈ ∂Ω, (33)

as shown in Figure 7.

y

x
u(x,0)=0

u(0,y)=0

(0,0) (1,0)

(1,0) (1,1)

u(1,y)=0

u(x,1)=0

Figure 7: (a) The 2D unit square domain for solving Helmholtz equation with prescribed
Dirichlet boundary conditions. (b) The exact solution to the posed problem.

The analytical solution to this problem is

u(x, y) = sin(k0x) sin(k0y) (34)

Solving this problem following the PINN approach assumes constructing
a neural network that approximates pressure distribution function u(x, y).
The approximate solution is differentiated with respect to its variables, for
values defined in the set of collocation points selected from bounded domain
Ω = [0, 1]2. The loss function consists of terms used in (32), and (33) by
neural network approximation of u at collocation points, where terms include
given partial differential equation and boundary conditions along the domain
boundary:

L = Lr + Lb1 + Lb2 + Lb3 + Lb4 , (35)
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where Lr represents residual that originate from the PDE (32), and Lbi resid-
uals computed by Dirichlet boundary conditions (33) for each side of the
square.

The choice of the Helmholtz equation for the PINN/GA benchmark is
deliberate. This type of problem is still a challenge for many numerical
methods including FEM, from the point of view of formulation, mesh density,
etc. When solving by the PINN approach, special attention must be paid to
the density of collocation points (at least 10-30 per wavelength), the choice
of activation functions and architecture. A small change can lead to a lack
of convergence.

6. Results and Discussion

In order to evaluate the quality, performance, and stability of the PINN-
/GA approach, we compare the real-world performance of the proposed
method with two other highly parallelizable methods. The first is the Ran-
dom search, while the second is the widely used Hyperopt Tree of Parzen Es-
timators [22]. To ensure identical conditions, all algorithms run on the same
computing cluster. PINN/GA utilizes the platform described in Section 4,
while Random search and Hyperopt TPE rely on parallelization provided by
Apache Spark. To complete the experimental setup description, the details
of PINN implementation and the parameters of the GA are given in the next
two paragraphs, respectively.

We employed SciANN library [38] to implement both models (Stefan and
Helmholtz). SciANN is a Python package for physics-informed deep learning
using ANNs, based on the Keras and TensorFlow back-ends. The meshes of
collocation points in both models are regular 100× 100 grids, 70% of which
is used for training, and the remaining 30% for validation. The batch size
was set to 512 and the learning rate to 0.02. The training of models lasts for
3000 epochs for all PINNs considered throughout the optimization process
for all competing optimization methods.

As for the PINN/GA search, we set the following parameters. Each gen-
eration consists of 40 individuals and the whole GA optimization process
lasts for a maximum of 100 generations, or less if the hyper-volume indicator
reaches the threshold. The mutation and crossover probabilities are set to
0.4 and 0.9, respectively. It should be noted that the mutation probability is
higher than usual to give the opportunity to all important special operators
described in Section 3.4.3 to act. The upper limits for the number of hidden
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layers and the number of neurons per layer are 10 and 30, respectively, while
activation, output activation, and learning algorithms are chosen from the
sets specified in (8)-(9). We set the identical ranges for Random search and
Hyperopt optimization methods.

Since the major aim of the conducted research is to demonstrate the ben-
efits of doing optimization in the distributed computing environment in a
smart way, it is also important to describe the underlying computing plat-
form. All experiments were carried out on a Kubernetes 1.22 cluster consist-
ing of 7 physical nodes. Each node is equipped with dual Intel Xeon E5-2683
v4 @ 2.1GHz CPU (32 physical cores), 128GB memory, and 10 Gb inter-
connection, totaling 224 cores and 896GB of RAM. The base OS platform is
CentOS 7.9 x86_64.

6.1. 1D Stefan problem
Figure 8 demonstrates the entire flow of the optimization process for

the 1D Stefan problem for Random search, Hyperopt TPE, and proposed
PINN/GA. The left axis and corresponding solid lines show the fitness of the
best individual at a current time defined as (13). The right axis and dotted
plots show the best individual’s complexity in terms of trainable parameter
count (TPC). All plots are derived as an average from 10 distinct runs, which
took approximately 20 hours in total.

At the very beginning, the Random search finds a very fit, but solidly
complex network and performs better than both Hyperopt and PINN/GA,
but without systematic improvement over time. Hyperopt TPE also exhibits
a good gradient at the beginning and finishes slightly better than Random
search. On the other hand, PINN/GA gradually improves by adding more
layers and stays better than both competing methods almost all the time,
while keeping PINNs reasonably simple. It reaches a steady state after ap-
proximately 2 hours. As explained in Section 3, due to the specific implemen-
tation of the mutation operator, we set all PINNs of the initial population
to exactly one hidden layer. As PINN/GA progresses, we can observe how
models become more complex over generations. Sometimes, the complexity
reduces as a result of the Delete layer operator, acting as a certain kind of
regularization mechanism. The fitness represented by log(MSE), and the
PINN complexity represented by Trainable parameter count (TPC), reach
the plateau almost simultaneously. Another interesting finding is the indi-
rect demonstration of the validity of the Observation 1 found in [20]. It says
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that there is a dominant PINN activation for a certain problem. Judging by
the final GA population, 92% of all individuals possess Tanh activation.
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Figure 8: The PINN hyperparameter optimization process for Stefan’s problem. The left
axis and corresponding solid lines show the fitness of the currently best PINN. The right
axis and dotted plots show the best PINN’s complexity.

The optimal hyperparameters for the final PINNs approximating the one-
dimensional Stefan problem of ice melting determined by all three optimiza-
tion methods are enlisted in Table 1. It should be emphasized that these are
the best individuals obtained out of all 10 distinct runs. Only PINN/GA
found a very simple, but very fit PINN.

Table 1: The optimal PINN hyperparameters for 1D Stefan problem obtained by
PINN/GA, Random search, and Hyperopt TPE, taken from 10 independent runs.

Hyperparameter PINN/GA Random search Hyperopt TPE
Optimizer Nadam Nadam Nadam
Activation function Tanh Tanh Sigmoid
Number of hidden layers 2 8 7
Neurons in hidden layers [3, 22] [3, 12, 16, 10, 10, 18, 18, 18] [3, 25, 21, 5, 4, 28, 13]
Output activation Linear Linear Linear
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Finally, we compare the performance of an optimal PINN obtained by
PINN/GA (best) with the results of the PINN obtained by Random search
(worst). Figure 9a depicts residuals of the temperature field u, while Figure
9b shows residuals of the predicted positions of the moving boundary s.
While the prediction of u is slightly worse for PINN/GA optimized model,
it exhibits significantly better accuracy in terms of the moving boundary s.
Comparing the topological complexities of optimized PINNs, listed in Table
1, it is obvious that PINN/GA is significantly less complex than optimal
PINNs obtained by Random search and Hyperopt, thanks to the specific
gradual strategy and the elitism coded in GA. Less complex architectures
exhibit better performance in inference tasks.
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(a) Temperature field u at t = 0.5
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(b) Position of the moving boundary s

Figure 9: Stefan problem - residual plots of optimal PINNs obtained by PINN/GA and
Random search specified in Table 1.

6.2. Helmholtz equation over a 2D domain
Figure 10 shows the flow of the optimization process for the acoustic wave

propagation problem described by the Helmholtz equation in Section 5.2. As
for the previous use case, the plots for PINN/GA and Hyperopt are derived
as an average from 10 independent runs. Both fitness of the best individuals
(solid lines) and Trainable Parameter Count (dotted lines) exhibit similar
trends as in the case of Stefan’s problem shown in Fig. 8, but give more
interesting insights. At the very beginning, the Random search again per-
forms much better than PINN/GA and Hyperopt, thanks to a lucky hit of
a high-performance, but also modestly complex network. Hypeopt advances
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faster than PINN/GA thanks to the availability of the entire search space,
while PINN/GA gradually adds layers and monitors its impact on perfor-
mance. Due to this systematic nature of the proposed approach, PINN/GA
surpasses Random search by around 40. minute, Hyperopt by 50. minute,
and stays constantly better until the very end of the optimization process.
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Figure 10: The PINN hyperparameter optimization process for Helmholtz problem. The
left axis and corresponding solid line plots show the fitness of the best individual. The
right axis and dotted plots show the best individual’s complexity.

The optimal hyperparameters for the final PINNs obtained from all 10
independent runs are listed in Table 2. The learning rate, the batch size,
and the number of epochs are all constant, as specified above. It is apparent
that PINN/GA keeps adding complexity until the very end of the optimiza-
tion process, reaching the maximum of 30 neurons per layer in all layers.
Moreover, the trend of the log(MSE) curve in Fig. 10, clearly indicates
that a further increase in complexity would probably bring further benefit
to the accuracy. If we take a closer look at the proposed architecture, all
layers are full, but the number of layers (5) is less than the maximum pre-
scribed by GA (10). Therefore, one should probably search in the direction
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of fewer layers with a larger number of neurons than the current limit. This
recommendation is consistent with the findings of [17], who suggests quite
shallow architectures, with depth 2, 3, and high width (> 150) for such wave
problems. Even if in the end one doesn’t get a production-quality PINN,
the PINN/GA method indirectly recommends in which direction we should
move. The Observation 1 from [20] seems true in the Helmholtz case as
well, since 100% of the individual PINNs in the final generation possess sin
activation.

Table 2: The optimal PINN hyperparameters for the Helmholtz problem obtained by
PINN/GA, Random search, and Hyperopt TPE, taken from 10 independent runs.

Hyperparameter PINN/GA Random Search Hyperopt TPE
Optimizer Nadam Adam Adam
Activation function Sin Sin Sin
Number of hidden layers 5 5 3
Neurons in hidden layers [30, 30, 30, 30, 30] [22, 13, 29, 25, 23] [17, 17, 3]
Output activation Linear Linear Linear

At the end of the section, a few words about the performance of the
distributed software framework. Since the ideal speed-up equals the size of
the population in GA, set to 40, the achieved speed-up of approximately
27 is a satisfactory result, having in mind the load diversity due to variable
training times of PINNs with various complexities.

7. Conclusion

In this paper, a novel approach is presented identifying an optimal com-
bination of architecture and other hyperparameters of PINNs using an evo-
lutionary strategy. The proposed PINN/GA technique uses the genetic algo-
rithm with specially tailored operators of selection, crossover, and mutation.
The optimization process keeps the PINNs population as simple as possible
since new network layers are added only if they bring clear benefits. To make
the optimization feasible in a normal time frame, PINN/GA hyperparame-
ter search runs on a distributed computing framework based on Kubernetes
container orchestration.

PINN/GA approach was validated in two distinct use cases. The first is
the 1D Stefan problem, with time-dependent Dirichlet boundary conditions
driving the ice-melting process. The second is an acoustic wave forming in
a 2D domain respecting the Helmholtz equation. The experimental verifica-
tion of the PINN/GA method showed promising results in terms of accuracy
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and computational efficiency. Through the optimization process, the average
error gradually decreased by an order of magnitude, exhibiting predictabil-
ity and constant improvement throughout the optimization process. The
optimized PINN/GA model provides visibly better accuracy than PINN op-
timized by a parallel random search and Hyperopt’s TPE method carried out
in the same distributed computing environment. In most cases, PINN/GA
keeps the network topology reasonably simple. Even if the optimization pro-
cess reaches the limits posed by the GA setup, PINN/GA provides useful
information in which direction the search should be going. From the strict
user’s point of view, one should decide whether waiting for approximately
1-2 hours to get the optimal combination of hyper-parameters instead of 6-7
minutes for a PINN with random hyper-parameters is worth the effort.

In the future, the authors plan to extend the proposed PINN/GA method
so multiple layer-specific hyperparameters can be optimized simultaneously,
opening the possibility of finding even more favorable architectures. In or-
der to bring the use of the proposed methodology closer to the researchers
who are not primarily engineers, future work will also focus on developing an
open-source framework for the automation of the whole PINN optimization
process. Such a framework should provide an interface to the well-known
PINN libraries such as SciANN [38] and DeepXDE [39], enabling researchers
to optimize an already built PINN by a single function call.
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