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ABSTRACT 

Parasitic displacements of a guiding plate of a lumped compliant parallel-guiding mechanism are analyzed using the 
pseudo-rigid-body (PRB) approach. Small deformations of flexure hinges are assumed. Each flexure hinge of the 
compliant mechanism is modelled by the PRB model with 3-DOF (degrees of freedom). This model allows that axial 
deformation of the flexure hinge to be considered. The corresponding expressions in symbolic form for both 
translational and rotational parasitic displacements of the compliant mechanism are derived. The obtained 
expressions enable the analysis of the influence of various structural parameters as well as various types of flexure 
hinges on the parasitic displacements of the considered type of compliant parallel-guiding mechanisms. 

KEYWORDS

Pseudo-rigid-body model, Compliant mechanisms, Parasitic displacements, Quasi-static, Flexure hinge 

1. INTRODUCTION 

The compliant mechanisms are widely used in many industrial applications such as micro/nano positioning and 
measuring, energy harvesting, micro vibration suppression etc. (see e.g. [1-5]). Today, kinetostatic and dynamics 
analyses of this type of mechanisms represent an attractive scientific research field. Unlike classic mechanisms, where 
the transfer of forces and displacements between the members of the mechanism is realized through classic joints, 
in compliant mechanisms it is realized by means of flexure hinges. In this way, the unwanted effects of friction, 
bucklash, and wear, which always appear during the exploitation of mechanisms with classic joints, were avoided. In 
the literature, various procedures have been developed for kinetostatic and dynamic analyses of compliant 
mechanisms such as the transfer matrix method [6-10], the dynamic stifness method [11,12], the beam theory based 
method [13-15],  the pseudo-rigid-body model [16-20], the finite element method [21-23], the multi-compliant-body 
matrix method [24], the compliance matrix method [25-27], the Castigliano’s second theorem based method [28], the 
unit-load method [29] etc. A survey of results, methods, and ongoing problems in compliant mechanisms research 
field was given in [30].  

In this paper the problem of analysis of parasitic displacements occurring in lumped compliant parallel-guiding 
mechanisms are considered. Previously in the literature, this problem was discussed in papers [31-33]. The analysis of 
parasitic displacements in spatial complaint mechanisms was given in [34].  However, in papers [31-33] the 
considerations were limited only to the leaf spring type of flexure hinges in the frame of Euler-Bernoulli beam theory. 
In this paper, the flexure hinges of variable thickness with both transverse and axial symmetry axes are considered. 
Using the pseudo-rigid-body (PRB) approach derived in [17], the corresponding expressions for parasitic 
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displacements of the considered compliant parallel mechanism are derived. The influence of both various 
geometrical parameters of the compliant mechanism and various shapes of flexure hinges on the mechanism 
parasitic displacements is examined.  

2. PRB MODEL OF THE LUMPED COMPLIANT PARALLEL-GUIDING MECHANISM 

2.1. Model 1 

Consider a lumped compliant parallel-guiding mechanism shown in Fig. 1. The corresponding geometric parameters 
of the compliant mechanism are indicated in Fig. 1. The out-of-plane width  w  of the compliant mechanism is 
constant. 

 

Figure 1: A lumped compliant parallel-guiding mechanism 

The compliant mechanism is composed of four identical flexure hinges with variable thicknesses and of four rigid 
beams. The geometric parameters of the flexure hinges are shown in Fig.2 where ξ= =( / 2)c ct t L represents the 
minimal value of the flexure hinge thickness.  

 

Figure 2: Geometry parameters of flexure hinges 

In Fig. 2, the inertial frame ξηζ1O is fixed at the left end 1O  of the flexure hinge where the ξ − axis coincides with the 
neutral axis of the flexure hinge in its undeformed configuration and the axes η  and ζ  represent the principal axes 
of the flexure rectangular cross-section.  It is assumed that the flexure hinges have both transverse and axial symmetry 
axes. The flexure hinges are denoted by (#1), (#2), (#3), and (#4) whereas the rigid beams are denoted by (𝑉ଵ), (𝑉ଶ), (𝑉ଷ), and (𝑉ସ) ≡ (𝑉଴). The rigid body (𝑉ଶ) represents the guiding plate of the parallel-guiding mechanism and the 
left and the right supporting arm of the mechanism are formed of the elements  (𝑉ଵ), (#1), and (#2) as well as of (𝑉ଷ), 
(#3), and (#4), respectively. It is assumed that the flexure hinges perform small plane deformations in the plane Oxy

of the inertial frameOxyz . In addition, the guiding plate is exposed to a horizontal force 

F  of a magnitude equals 2 .F  

Note that, in [31] the rigid body 1( )V is fixed instead of the body 0( )V and force 

F has the vertical direction acting on 

the top surface of the guiding plate 2( )V . In this paper, the PRB approach is used in the kinetostatic analysis of the 
considered compliant mechanism. In the PRB approach a flexure hinge is replaced by two massless rigid links 
interconnected by a joint with either one degree of freedom or three degrees of freedom (DOF) as it is shown in Fig. 
3. 
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The stiffnesses 𝑘௅ଵ, 𝑘௅ଶ, and 𝑘ோ indicated in Fig. 3 are determined by the following expressions [17]: 

 
( )α μ

= = =
+ + −  

,
1 2 2 2

, , , ,
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2 1 / 4
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k k k
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where α =1/f sk  is the correction factor, = 5 / 6sk  is the shear coefficient for rectangular cross-section, μ is Poisson’s 

coefficient, and finally aC , ,b tC , and ,b rC  are axial, bending translatory and bending rotary compliances, respectively. 

In according to the Castigliano’s second displacement theorem [5,27], these compliances are determined by the 
following expressions: 
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where E   is the elasticity modulus of the compliant mechanism. The closed-form expressions of these compliance 
coefficients for various types of flexure hinges can be found, for example, in [3,5]. In accordance to [27], for the short 
flexure hinges with a length to depth ratio of less than 5, that is ξ< 5max( ( ), )cL t w , it should be taken that  α ≠ 0f .  

 

Figure 3: (a) PRB model of a flexure hinge; (b) model with 1-DOF joint; (c) model with 3-DOF joint  

The 1-DOF PRB model of a flexure hinge is developed in [1] whereas the 3-DOF PRB model is presented in [17]. The 
main drawback of 1-DOF PRB model is that it cannot cover either the effect of the axial loading of the flexure hinge 
or the effect of shearing produced by the transverse loading of the flexure hinge. So, in this paper, 3-DOF PRB model 
of the flexure hinges developed in [17] is used. Application of the 3-DOF PRB model approach [17] to the general 
planar flexure-based compliant mechanism yields the corresponding planar rigid multibody system as it is shown in 
Fig. 4.  

 

Figure 4: PRB model of a general planar flexure-based compliant mechanism 

Here, iP  represents an arbitrarily chosen point on the rigid body ( )iV , ξ η ζi i i iO  is the flexure hinge inertial frame where 

the axis ξi  coincides with the undeformed rectilinear axis of the flexure hinge (#i), and αi  is the angle between the 

axis ξi   and the axis x  in the undeformed configuration of the compliant mechanism. More details on this modelling 
technique can be found in [17]. Applying this modelling technique to the lumped compliant parallel-guiding 
mechanism considered yields its PRB model shown in Fig. 5. 

The geometric parameters corresponding to the PRB model derived read as follows: 

 α α π α α π= = = = −1 2 3 4/ 2, / 2,  (3) 

 = − − = + = − −1 1 2( ) ( ) ( )
1 2 2[0, , 0] , [0, , 0] , [ , , 0] ,

2 2 2 2 2 2
V V VT T Tc c cr r rL L LL L t

pd d d  (4) 
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 = + − − = + = − −3 32 ( ) ( )( )
3 3 4[ , , 0] , [0, , 0] , [0, , 0] .

2 2 2 2 2 2
V VV T T Tc c cr r rL L Lt L L

d pd d d  (5) 

For each of the points = ( 1, ,4)iP i , the corresponding active external loads vector can be associated as follows:  

 = = =1 3 2[0, 0, 0] , [2 , 0, 0] .T TFF F F  (6) 

The external horizontal force 

F  produces small planar elastic deformations of the flexure hinges yilding 

displacements of the points = ( 1, ,3)iP i relative to undeformed configuration of the compliant mechanism 
described by the following vectors: 

 = = [ , , 0] , 1, ,3,
i

T
P ix iyu u iu  (7) 

as well as rotations θ = ( 1, ,3)i i of the rigid bodies = ( )( 1, ,3)iV i (the anticlockwise rotation is used as the positive 
direction of these angles), respectively to which the following vectors can be associated: 

 θ= = [0, 0, ] , 1, ,3.T
i i iΘ  (8) 

 

Figure 5: PRB model (model 1) of the lumped compliant parallel-guiding mechanism 

Also, the relative rotational displacements and the vectors of relative translatory displacements at the joints 
= ( 1, ,4)iJ i  expressed in the local frames ξ η ζ = ( 1, ,4)i i i iO i read as follows: 

 θ θ θ ξ η−Δ = − = Δ Δ = 1, [ , , 0] , 1, ,4,
i

T
i i i J i i iu  (9) 

where θ θ= =0 4 0  (see Fig. 5). Based on [17], the vectors = ( 1, ,4)
iJ
iu  are determined by the following expressions: 
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where  iΘ  is the skew-symmetric matrix associated with the vector iΘ  and where components of the vector ( )jV
id  and 

the matrix  iΘ  with respect to the inertial frame Oxyz are given by:  

 =( ) ( ) ( )[ , , 0] ,j j jV V V T
i ix iyd dd  (13) 

 
θ

θ
− 

 =  
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0 0
0 0 .

0 0 0

T
i

i iΘ  (14) 

Now, based on the expressions (7)-(9), (13), and (14), the coordinate forms of the matrix expressions (10)-(12) read: 
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where ×∈ 3 3
i RA  is the coordinate transformation matrix from the inertial frame Oxyz into the hinge frame ξ η ζi i i iO

determined by: 
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α α
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Based on the PRB model shown in Fig. 5, the potential energy of the considered compliant mechanism can be 
determined by the following expression: 

 ( )θ θ θ θ ξ η−
= = =

Π = + − + + Δ + Δ  
3 4 422 2 2 2

1 1 3 1 2
2 1 1

1 1 1 1 1
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Introducing a column matrix [ ]= 1 9, ,
T

q qq as the vector of generalized coordinates, where − = = 3 2 ( 1, ,3)i ixq u i , 

− = = 3 1 ( 1, ,3)i iyq u i , and θ= = 3 ( 1, ,3)i iq i , the expression (19) can be written in the following matrix form: 

 Π = 1
2

Tq Kq  (20) 

where ×∈ 9 9RK is the stiffness matrix of the PRB model of the compliant mechanism whose components are given as: 
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Using the principle of virtual work as it is shown in [17], in an equilibrium configuration of the compliant mechanism 
corresponding to an active external static load one has that: 

 ×− + = 9 1,Kq Q 0  (22) 

where, in the considered case, × = ∈ 
9 1

1 2 3, ,
TT T T RQ F F F  and ×

× ∈ 9 1
9 1 R0  is a zero-column matrix. Solving the matrix 

equation (22) for the column matrix q  yields: 

 −= 1 .q K Q  (23) 

Finally, based on (23), the parasitic displacements of the lumped compliant parallel-guiding mechanism analysed are 
given as follows: 

 θ θ= ≡ = ≡2 5 2 6, ,y y ps u q q  (24) 

whereas the guiding displacement of the mechanism is defined as: 

 = ≡2 4 .x xs u q  (25) 

The expressions (24) and (25) in the expanded form read: 
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The expressions (26) and (27) can be applied to any type of flexure hinges with transverse and axial symmetry axes. 
For example, for the leaf spring type of flexure hinges shown in Fig. 6 one has: 

 

Figure 6: A leaf spring flexure hinge 
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where =c cA t w  is the cross-sectional area and = 3 / 12c cI wt  is the cross-sectional moment of inertia of the leaf flexure 
hinge. Now, introducing (28) into (26) and (27) yields: 
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For = 0p andα = 0f , the expressions (29) and (30) are reduced to the corresponding expressions derived in [33] (see 
the expressions (24) and (28) in [33]). In this sense, the expressions (29) and (30) represent the generalized forms of 
the mentioned expressions derived in [33] because these expressions allow the geometric parameter p and the 
shearing effect during deformations of the flexure hinges to be included in the kinetostatic analysis of the compliant 
mechanism. 

2.2. Model 2 

Often, due to the need for a more accurate analysis, it is necessary to take into account the compliances of bodies 

1( )V  and 3( )V of the compliant mechanism. In order to be able to apply the PRB approach from Section 2.1 in such 

cases, the bodies 1( )V  and 3( )V  will further be modeled as two identical leaf spring flexure hinges. According to this, 
a new PRB model of the lumped compliant parallel-guiding mechanism (model 2) is formed as it is shown in Fig. 7.  

 

Figure 7: PRB model (model 2) of the lumped compliant parallel-guiding mechanism 
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Based on Fig. 7, the geometric parameters of the new PRB model (model 2) read: 

  α α α π α α α π= = = = = = −1 2 3 4 5 6/ 2, / 2,  (31) 
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According to (28), the stiffnesses =( ) 1( ) 2( ), , ( 2,5)R j L j L jk k k j corresponding to joints 2J  and 5J are determined by: 
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where =r rA t w  is the cross-sectional area and = 3 / 12r rI wt  is the cross-sectional moment of inertia of bodies 1( )V  and 

3( )V shown in Fig. 1. The corresponding active external loads vectors read: 

 = = = = =1 2 4 5 3[0, 0, 0] , [2 , 0, 0] ,T TFF F F F F  (36) 

whereas the relative joints displacements are defined as follows: 

 

ξ θ
η θ

  Δ −   
     Δ = +     
           

1

1

( )
1 1 1 1

( )
1 1 1 1 1 ,

0 0 0

V
x y

V
y x

u d
u dA  (37) 

 

θ θξ
η θ θ

−

−

−−

− −

  − +Δ −         Δ = − + − =                 



1

1

( ) ( )
11

( ) ( )
1 1 , 2, ,5,

0 0 0

j j

j j

V V
j jy j jyj jx j x

V V
j j jy j y j jx j jx

d du u
u u d d jA  (38) 

 

ξ θ
η θ

  Δ −   
     Δ = − + −     
           

5

5

( )
6 5 5 6

( )
6 6 5 5 6 ,

0 0 0

V
x y

V
y x

u d
u dA  (39) 

and, according to this, the potential energy of the compliant mechanism represented by the model 2 reads: 

 ( )θ θ θ θ ξ η−
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where = = = =( ) 1( ) 1 2( ) 2, , , {1,3,4,6}R n R L n L L n Lk k k k k k n . Similarly, as in Section 2.1, in an equilibrium configuration of the 

compliant mechanism corresponding to the active external static load shown in Fig. 7 one has that: 

 −= 1q K Q  (41) 

where [ ]= 1 15, ,
T
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= ∂ Π ∂ ∂ = 2 / ( , 1, ,15)ik i kK q q i k . Finally, in the case of the model 2, the guiding displacement xs  and the parasitic 

displacements ys  and θp are defined as: 
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or, in the expanded form: 
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3. NUMERICAL EXAMPLES 

3.1. Example 1 

In this numerical example the following material and geometric characteristics of the compliant mechanism will be 
used: mass density ρ = 37820kg/m , Young’s modulus = × 9 2211 10 N/mE ,  Poisson’s ratio μ = 0.288 , =10mmcL , 

= 50mmrL , =12mmw , = 0.9mmct , = 4.5mmpt , =16mmrt . The model 1 is used. Now we will first analyze the 

influence of the geometric parameter d  on the values of the displacements xs , ys , andθp . For this purpose let us 

consider three types of flexure hinges: the leaf spring flexure hinge (see Fig. 6), the right-circular flexure hinge (see 
Fig. 8(a) where = / 2cR L ), and the elliptical flexure hinge (see Fig. 8(b) where = / 2ca L ).  

 

Figure 8: (a) a right-circular flexure hinge;  (b) an elliptical flexure hinge 

For = 0p and = 5NF , the corresponding graphs are shown in Figs. 9, 10, and 11. By observing Figs. 9, 10, and 11 it 

can be concluded that the effect of the parameter d  on the guiding displacement xs  is weak. Of course, this 

conclusion is valid under the assumption that the guiding plate represents a rigid body.  Also, increase of d causes a 
decrease of values of the parasitic displacements ys  and θp . Compared to the leaf spring flexure hinge, values of the 

parasitic displacements are significantly lower in the case of the right-circular and elliptic flexure hinges. This is 
especially pronounced with the right-circular flexure hinges. 

 

Figure 9: The displacement xs  versus d for three types of flexure hinges: the leaf spring type (solid line); 
the elliptical type (dot-dash line); the right-circular type (dashed line) 
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Figure 10: The displacement ys  versus d for three types of flexure hinges: the leaf spring type (solid line); 

the elliptical type (dot-dash line); the right-circular type (dashed line)   

 

  

Figure 11: The parasitic angle θp  versus d for three types of flexure hinges: the leaf spring type (solid line); 

the elliptical type (dot-dash line); the right-circular type (dashed line)  

Finally, for = 28mmd and = 5NF , the corresponding graphs that characterize the influence of the geometric 

parameter p  on the guiding displacement xs  as well as the parasitic displacements ys  and θp   are shown in Figs. 12, 

13, and 14. Note that the interval ≤ ≤0 pp t  is considered. 

 

 

Figure 12: The displacement xs  versus p  for three types of flexure hinges: the leaf spring type (solid line); 
the elliptical type (dot-dash line); the right-circular type (dashed line) 
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Figure 13: The displacement ys  versus p for three types of flexure hinges: the leaf spring type (solid line); 

the elliptical type (dot-dash line); the right-circular type (dashed line) 

Figs. 13 and 14 clearly show that increasing the parameter p  causes an increase in the value of parasitic 

displacements  ys  and θp . These values are the least in the case of the right-circular type of flexure hinges. Figure 12 

shows that the parameter p  has no significant influence on the guiding displacement xs .   

 

Figure 14: The parasitic angle θp  versus p for three types of flexure hinges: the leaf spring type (solid line); 

the elliptical type (dot-dash line); the right-circular type (dashed line)  

3.2. Example 2 

In this example the PRB model developed in Section 2.2 (called as model 2) will be tested through the comparison 
with the results obtained in [21,22]. For this purpose, the material and geometric characteristics of the compliant 
mechanism used in [21,22] will be considered as follows: = 200 GPaE , μ = 0.288 , = 6mmcL , = 24mmrL , = 8mmw

= 0.6mmct , = 6.6mmpt , = 6.6mmrt , = 5NF , = 0p , = 36.6mmd . Using both the approach developed in this paper 

and the approaches given in [21,22], the values of the angle θp  and the horizontal and vertical displacements of point 

P indicated in Fig. 7 are determined and shown in Table 1.  

Table 1: Values of  the angle θp  and the horizontal and vertical displacements of point P  

Methods [μm]Pxu  [μm]Pyu  θp  

FEM [22] 122.0 0.14 - 

PRB approach (model 2) 120.89 0.0415 −− × 62.26936 10  

Method in [22] 121.2 0.04 - 

Method in [21] 118.0 0.00 - 

Here, one has that =Px xu s  and θ= + ( / 2)Py y r pu s t . By observing data given in Table 1 it is obvious that the PRB 

approach proposed in this paper gives the results of high accuracy. 
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4. CONCLUSION 

Using PRB approach, the corresponding expressions for parasitic displacements of the lumped compliant parallel-
guiding mechanism have been derived. The derived expressions are valid for lumped compliant parallel-guiding 
mechanisms with both leaf spring flexure hinges and flexure hinges of variable thickness possessing transverse 
symmetry axis. These expressions include all geometric and physical parameters of the compliant mechanism as well 
as the shearing effect during deformations of the flexure hinges. This fact makes the derived expressions suitable for 
solving the problem of minimization of the parasitic displacements. Leaf spring, right-circular, and elliptical flexure 
hinges have been considered. It has been shown that flexure hinges of variable thickness allow significantly smaller 
values of the parasitic displacements of lumped compliant parallel-guiding mechanisms compared to the parasitic 
displacements values that are achieved when leaf spring flexure hinges are used. However, leaf spring flexure hinges 
enable higher values of the guiding displacement to be achieved. The stiffness coefficients 2Lk and ( )

2
r
Lk  have no effect 

on the compliant mechanism parasitic displacements. 
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