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This paper analyses optimization of the tubular plane truss with two case of loads. The aim of the 
analyses was to find out minimal weight of plane truss using PSO. This optimum design also has to satisfy 
the stress and the displacement constraints, and the elastic stability too. 
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0 INTRODUCTION 

 
Determining the optimal construction dimensions 
is  one of the major demands in the process of 
construction. 
Their determination importantly influences the 
reduction of construction overall mass and costs 
too. According this fact, the construction solution 
becomes competitive. In the analysis of the metal 
construction cost, Farkas  deduce that the price is 
primarily influenced by the price of the material 
(30–73)%, while the other costs are lower: 
manufacture (16–22)%, assembling (5–20)%, 
transportation (3–7)%, design (2–3)% [2]. By this 
data, reducing of material, i.e., weigth, is major 
tasks in optimization process.  
Numerous researchers have dealt with the 
construction optimization using different methods 
of optimization[5], [6]. Olsen and Vanderplaats, 
and Jalkanen too, have treated the problem of ten-
bar tubular plane truss [9]. 
Kennedy and Eberhart[7], studing social behavior 
of bird flocking, developed one new heuristic 
optimization method. 
Ostrić and Petković [1] have treated the problem 
of steel truss construction.  

In this paper we analyze eigth-bar steel plane 
truss example. Yet, ten-bars aluminium plane 
truss is benchmark in the research papers and it 
can be seen that two additional diagonal bars  are 
needless too, because the kinematical stability is 
satisfied without its. 
 

1 PARTICLE SWARM OPTIMIZATION 
ALGORITHM  

 
Particle swarm optimization (PSO) is a 
population based metaheuristic optimization 

technique developed by Eberhart and  Kennedy in 
1995, inspired by social behavior of bird flocking 
or fish schooling. It is based on the evolutionary 
cultural model of Boyd and Richerson which 
states that in social environments individuals have 
two learning sources: individual learning and 
cultural transmission. PSO and evolutionary 
algorithms (EA) such as Genetic Algorithms 
(GA) and Simulated Annealing (SA) have many 
similarities, however, some literature suggests 
they should be treated separately. These methods 
use a stochastic search process. PSO does not use 
the concept of survival of the fittest. In the PSO 
unfit individuals do not die. The system is 
initialized with a population of random solutions 
and searches for optima by updating generations. 
In PSO, the potential solutions, called particles, 
fly through the problem space by following the 
current optimum particles. It is demonstrated that 
PSO gets better results in a faster, cheaper way 
compared with other methods. Another reason 
that PSO is attractive is that there are few 
parameters to adjust. One version, with slight 
variations, works well in a wide variety of 
applications. If one sees a desirable path to go 
(e.g., for food, protection, etc.) the rest of the 
swarm will be able to follow quickly even if they 
are on the opposite side of the swarm. This is 
performed by particles in multidimensional space 
that have a position and a velocity. These 
particles are flying through hyperspace (i.e., _n) 
and have two essential reasoning capabilities: 
their memory of their own best position and 
knowledge of the swarm’s best  („best“ - the 
position with the smallest objective value). 
Consider Swarm of particles is flying through the 
parameter space and searching for optimum. Each 
particle is characterized by, 
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Position vector . . . . xi (t) 
Velocity vector . . . . vi (t) 
as shown in Fig. 1. 

 
Fig. 1. Updating of position of the i-th particle 

During the process, each particle will have its 
individual knowledge pbest and its own best-so-
far in the position and social knowledge gbest.  
Performing the velocity update, using the formula 
(1) given below, 
vi (t + 1) = ω vi + c1×rand×pbest((t)-xi (t))+ 
+ c2×rand×gbest((t)-xi (t))                 ... (1) 
 
where ω�is the inertia weight that controls the 
exploration and exploitation of the search space.     
Inertia weight w impacts the first component, and 
for the values in the range of 0,9 – 1,2  it gives 
the best results, that is, the algorithm has greater 
chances of finding the global minimum for a 
reasonable number of iterations. For coefficient 
values which are smaller than 0,8, if algorithm 
finds global minimum it will find it fast. Particles 
in this case move quickly and it can happen that 
they “fly over” some area, so it can happen that 
they do not find global minimum. On the other 
side, if inertia weight is bigger value, then 
particles search the solution space more 
thoroughly and the chances of finding global 
minimum are greater. 
Coefficients c1 and c2, the cognition and social 
components respectively are the acceleration 
constants which changes the velocity of a particle 
towards the pbest and gbest, rand is a random 
number between 0 and 1. Usually c1 and c2 values 
are set to 2. 
The particle swarm optimization concept consists 
of, at each time step, changing the velocity of 
(accelerating) each particle toward its pbest and 
lbest locations (local version of PSO). 

Acceleration is weighted by a random term, with 
separate random numbers being generated for 
acceleration toward pbest and lbest locations. 
Now, performing the position update(as shown in 
Fig. 1.), 
Xi(t + 1) = Xi(t) + Vi(t + 1)   ... (2) 
This process is repeated for each and every 
particle considered in the solution space and the 
best optimal solution is obtained. 
 
Basic Flow of Particle Swarm Optimization 
The basic operation of PSO is given by, 
Step1: Initialize the swarm from the solution        

space 
Step 2: Evaluate fitness of individual particles 
Step 3: Modify gbest, pbest and velocity 
Step 4: Move each particle to a new position 
Step 5: Go to step 2, and repeat until convergence 
or stopping condition is satisfied.  
 

 
 
Fig. 2. Particle swarm optimizer flowchart 
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While maximum iterations or minimum error 
criteria is not attained Particles’ velocities on 
each dimension are clamped to a maximum 
velocity Vmax. If the sum of accelerations would 
cause the velocity on that dimension to exceed 
Vmax, which is a parameter specified by the user, 
then the velocity on that dimension is limited to 
Vmax. 
In recent years the concept of PSO has been 
applied to various engineering problems. 
Specifically, it has been applied to structural 
design optimization problems. Ant colony 
optimization (ACO), a type of PSO, was tested on 
steel frame optimization problems with discrete 
variables by Camp et al. The PSO method found 
better results on these test problems than any of 
the other optimization algorithms used in 
previous research. 
 
 2 STRUCTUAL OPTIMIZATION  
 
The term optimal structure is very vague because 
a structure can be optimal in different aspects. 
These different aspects are called objectives, and 
may for instance be the weight, stiffness or cost 
of the structure. A numerical evaluation of a 
certain objective is possible through an objective 
function, f, which determines the goodness of the 
structure in terms of weight, stiffness or cost [4]. 
To  be well defined solution, the optimization has 
to be done within some constraints. Firstly, there 
are design constraints, like a limited geometrical 
extension or limited availability of different 
structural parts. Secondly, there are behavioral 
constraints  on the structure that denotes the 
structural response under a certain load condition, 
for instance, limits on displacements, stresses, 
forces and dynamic response. Finally, there is 
kinematical stability that is valid for all structures, 
otherwise they are mechanisms. This can be seen 
as a behavioral constraint. Structures that lie 
within the constraints are called feasible solutions 
to the optimization problem. 
A general expression for structural optimization is 
given for instance by Christensen &Klarbring [4]: 
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where f is the objective function; 
x is a function or vector representing the design 
variables, and; 
y is a function or vector representing the state 
variables, i.e. the response of the structure. 
Multi-objective optimization (also called multi-
criterion or vector optimization) can be done with 
respect to two or more different objective 
functions.  
When it applies to trusses, the optimization can 
be divided into sizing, shape and topology 
optimization. 
Sizing optimization refers to finding the optimal 
cross section area of each member of the 
structure; shape optimization means optimizing 
the outer shape of the structure; and topology 
optimization describes the search for the best 
inner connectivity of the members. 
One way of optimizing these three parameters is 
to take them into consideration one at a time, 
starting with the topology optimization, a so 
called multi-level optimization technique (also 
called layered optimization). One of the strengths 
and advantages of a genetic algorithm is that a 
simultaneous optimization of all three parameters 
can be done. 
Structural optimization, especially discrete 
structural optimization of practical problems, 
requires low computational cost and accuracy for 
all of the processes. By far the most 
computationally costly process is the FEA. The 
FEA for large-scale three-dimensional problems 
and eigenfrequency problems becomes difficult to 
optimize practically. 
 
2.1 Trusses 
 
As long as the load is applied in some of the 
nodes, the bars will only be subjected to 
compressive or tensile normal forces. This is one 
part of the explanation to why trusses are so light 
compared to their load capacity; bar effect is 
more efficient than beam effect. The other part is 
that the triangle is the simplest stable structure 
that extends in two dimensions. Due to their 
efficiency, trusses are desirable in long span 
structures with high demands in stiffness and 
strength. 
There are benefits of weight optimized structures 
in many engineering fields. In engineering it can 
for instance be associated with cheaper structural 
parts and easier transportation. In this paper a 
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PSO algorithm for weight minimization of steel 
trusses has been developed in MATLAB.  
 
The objective is to minimize the weight of the 
plane truss. This optimum design also has to 
satisfy the stress and the displacement constraints, 
and the elastic stability too. 
 
2.2 Eight-bar truss 

The first numerical example problem deals with 
the discrete optimization of a eight-bar steel 
tubular plane truss presented in Fig. 3. 

L = 9,1 m,  F = 444,8 kN,  E=210000Mpa, 

ρ = 7800kg/m3, σd = 160Mpa,  fd 
max

 = 5cm 

Mass of the truss should be minimized so that the 
normal stress is less than σd in all the bars and the 
maximum deflection in nodes 3, 4, 5 and 6 is less 

than the maximum allowed value fd 
max 

. The cross 
section areas Ai are the design variables and their 
values should be chosen from a set which 
includes 50 evenly distributed values. The cross 
section of bars is pipe-shape and its area is: 
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Fig. 3. The eight-bar steel plane truss 

The set of discrete variables (diametars) is: 

x ∈{x
1
, x

2
,..., x

8 
} 

Therefore, the problem can be stated as: 

The objective function is: 
min m(x) = ∑ρ L

 
A

i  ( i =1,2,...,8) 

 
Design constraint functions: 
σ ({x}) − σ d ≤ 0 , f ({x}) − f max ≤ 0 
Variable regions: 
1 ≤ d ≤ 60 ,  
where the maximum allowable stress (σd) is 160 
MPa and the only displacement constraint is the 
maximum (f max ) limited to 5 cm. 
The structural analysis is done using analitic 
method. Normal force is the only internal force in 
bars and results of analyzis are presented in 
Table1: 
Ni N1 N2 N3 N4 N5 N6 N7 N8 
Ni(1) -2F F -F 0 0 -F √2F √2F 
Ni(2) -F 0 0 0 0 0 √2F 0 
li l l l l l l √2l √2l 
 

In this paper we analyze eigth-bar plane truss 
example. Although, ten-bars plane truss is 
benchmark in the research papers and we can see 
that two additional diagonal bars  are needless 
too, because the kinematical stability is satisfied 
without its. Furthermore, due to analysis of 
normal forces, it is obvious that bars 4 and 5 (Fig. 
3) are needless and it can be reduced till only the 
necessary elements are remaining. This shape of 
8-bar plane truss example is more practical and 
very often in constructions. 
The deflection analysis is done using method of 
deformation energy and maximal displacement 
for load case 1 - force F at the end (node 5) of the 
truss is calculated as: 
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Vertical displacement of node 3 for load case 1 is 
calculated as: 
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Maximal displacement for load case 2 - force F at 
the node 3 of the truss is calculated as: 
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Vertical displacement of node 3 for load case 2 is 
calculated as: 
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Analyzing elastic stability of the truss, we have to  
test only compressed bars which marked 1, 3 and 
6.  
Firstly, we calculate effective slendernees ratio:

 
mini
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where is: 
minimal radius of qyration imin  is calculate as: 
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Imin – minimal moment of inertia of tubular cross-
section and it is: 

2
min 00537,0 i
i dI   

lr – effective length of the bar  
λr – effective slendernees ratio is quotient of 
effective length of the bar lr and minimal radius of 
qyration imin  
Now, we compare effective slendernees ratio λr 
with λP = 108 (Č.0361). 
If the effective slendernees ratio λr has bigger 
valeu than slendernees at proportional limit λP 
Eulers’ critical force for a bar is calculated as: 
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where =1,5 – coefficient of safety 

On the contrary, critical buckling force is: 
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3 OPTIMIZATION RESULTS 
 
Following parameters of the algorithm of particle 
swarm optimization (algorithm): 
 

Number of particles 30 

Number of iterations 10000 
Inertia weight w  1 
Acceleration coefficient 1c  2 

Acceleration coefficient 2c  2 

Boundaries for d 1-60 

 
The truss has to be analyzed ten thousands times 
during the optimization. The obtained results for 
the both load cases is represented in table: 
 

di (cm) d1 d2 d3 d4 d5 d6 d7 d8 
d(1)case 25 13 20 1 1 20 16 16 
d(2)case 20 1 1 1 1 1 12 1 

  
The objective function, i.e., overall mass of the 
truss is: 
-load case 1: m = 3645kg 
-load case 2: m = 1038kg 
By comparing this results with the other 
researches, Jalkanen has obtained for total weigth 
of ten-bar plane truss m = 2303kg, and we can see 
similarities, but this eigth-bar truss is made of 
steel. 
 

4 CONCLUSION 
 

This paper analyses optimization of the 
tubular plane truss with two case of loads. The 
aim of the analyses was to find out minimal 
weight of plane truss using PSO. 

According to results we can see that the 
value of totalmass for the first load case is very  
close  to the overall value 3645 kg, and the sum 
of mass all bars for the second load case is 1038 
kg, which is expeced due to the position of forces. 
By comparing this results with the other 
researches, for example Jalkanen has obtained for 
total weigth of ten-bar aluminium plane truss m = 
2303kg, we can see that, regardless three times 
bigger steel density, this eigth-bar steel truss is  
more practical in engineering problems. The 
method of PSO is suitable for this type of 
constructions. 
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