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Nonlinear Model Predictive Control (NMPC) formulations through quasi-Linear Parameter Varying (qLPV) 

embeddings have been brought to focus in recent literature. In this brief paper, we evaluate the application of this kind of 
control strategy to the reference tracking problem of a cascaded tank system. This benchmark application has four states 
and two control inputs, which represent the fluid inlets to the upper tanks. The levels of each of the four tanks dependent 
not only on these input flows, but also on bounded disturbance variables. The system exhibits nonlinearities due to the fluid 
dynamics, which are incorporated as state-dependent qLPV variables. This case study serves to illustrate how a Sequential 
Quadratic Program (SQP) is an elegant solution to NMPC design: the qLPV realisation of the nonlinear dynamics yields 
linear predictions at each sampling instant, which can be refined through sequential operations of a single QP. The 
resulting numerical toughness is much smaller than the Nonlinear Programs generated with “regular” NMPC design, 
which is very convenient. Moreover, the SQP solution provides estimates of the future scheduling parameters, with 
convergence properties. Using realistic simulations, we demonstrate the effectiveness of this control approach with respect 
to piecewise constant reference tracking and disturbance rejection, which are assessed using standard performance 
indexes. 
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1. INTRODUCTION 
Model Predictive Control (MPC) represents a 

family of advanced control techniques, derived in the late 
1980's for industrial processes subject to with constraints 
[1], since then, they have been intensively studied by 
academics and used by engineers. With thousands of 
industrial applications [2], some of the problems still open 
for research are nonlinear applications and their 
particularities. Nonlinear Model Predictive Control 
(NMPC) may, among other problems, bring real-time 
obstacles, given that the resulting numerical complexity 
increases. 
 

The key step of MPC algorithms, solving an 
optimization problem, gets complicated in the majority of 
nonlinear systems: this procedure is not trivial and is 
frequently avoided through approximations. One possible 
solution explored more recently is the use of sophisticated 
tools for solving Nonlinear Programming (NP), as [3-5]. 
 

Linear Parameter Varying (LPV) framework has 
been, concurrently, expanded lately, as a way to 
circumvent these nonlinear issues. For a large class of 
nonlinear systems, it is possible to make use of a quasi-
LPV (qLPV) embedding in order to redesign state 
equations by the means of linear maps parametrized by 
known and bounded scheduling variables, denoted ρ. 
 

Nevertheless, qLPV embedding are not compatible 
with linear MPC techniques, since these realisations are 
based on the availability of the scheduling parameters, 
which depend on endogenous variables of the process. As 
the future process variables are unknown, qLPV model-

based predictions are of uncertain computation, these are 
based on scheduling variables. The usual solution for this 
kind of problem would be Robust MPC (RMPC), but it 
usually implies excessive conservativeness.  
 

Recent methods have provided alternative options 
to the robust design, considering qLPV embedding, [6-8]. 
Bearing in mind this context, a NMPC solution based on 
Sequential Quadratic Programming (SQP) is presented in 
this work. This approach contrasts with full nonlinear 
MPCs, making real-time applications possible, as well as 
with RMPCs, since the method does not imply in 
conservative results. The method is applied to a 
benchmark quadritank process [9], for which we 
demonstrate the effectiveness of the method in terms of 
reference tracking and disturbance rejection. 
 

This paper is organized as follows: Section 1 
introduces briefly the subject studied; Section 2 lays down 
the problem setup, passing through qLPV framework, 
qLPV MPC and SQP problems; Section 3 describes the 
process used as case study; and finally, on Section 4, 
results derived from a numerical simulation are shown. 
 

2. PROBLEM SETUP 
Consider the following discrete-time nonlinear 

system: 
 

 
[ 1] ( [ ], [ ])

[ ] ( [ ], [ ])
x k f x k u k

y k g x k u k
+ =

 =
 (1) 
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where xnx∈R , unu∈R  and yny∈R  are, 
respectively, state, input and output variables, all 
constrained to sets X , U  and Y . Functions 

: x u xn n nf + →R R  and : yx u nn ng + →R R  are called the 
state and output maps, respectively. 

2.1. qLPV-embedding 
Consider that the Linear Differential Inclusion 

property is satisfied [10], which means that 
( ) ( )( , ) : x y x ux u n n n nn nG x u + × ++∃ →R R  such that 

( , ) ( , ) ( , )
T TT T T Tf x u g x u G x u x u   =    . 

Then, there exists a qLPV realization for the considered 
nonlinear system, as follows: 
 

[ 1] ( [ ]) [ ] ( [ ]) [ ]
[ ] ( [ ]) [ ] ( [ ]) [ ]

[ ] ( [ ], [ ])

x k A k x k B k u k
y k C k x k D k u k

k h x k u k

ρ ρ
ρ ρ

ρ

+ = +
 = +
 =

  (2) 

 
where nρρ ∈ ⊆ RP  is called scheduling variable vector 

and : x u nn nh ρ+ →R R , scheduling map. As all four 

matrix functions : x xn n nA ρ ×→R R , 

: x un n nB ρ ×→R R , : y xn nnC ρ ×→R R  and 

: y un nnD ρ ×→R R derive from LDI matrix, 

( [ ], [ ]) ( [ ]) ( [ ])
( [ ], [ ]) ( [ ]) ( [ ])

f x k u k A k B k
g x k u k C k D k

ρ ρ
ρ ρ

   
=   

   
(3) 

 
Note that Eq. (1) and Eq. (2) are equivalent, with 

the upper part of Eq. (2) is outsourcing the nonlinearities 
through the scheduling parameter interconnection 

( , )h x uρ = , which depends on the endogenous variables 
x and u. Hence, we emphasize the quasi(-LPV) prefix 
given that ρ  is not exogenous. 

2.2. qLPV MPC Problem 
As an intrinsically discrete-time technique, MPC 

solves, at each sampling instant, an optimization problem, 
which attempts to minimize a cost function subject to a set 
of constraints, with respect to a vector of decision 
variables. It does so by making use of a model of the 
system to be controlled in order to predict future values for 
the output vector and utilizing these predictions to evaluate 
performance. 
 

Consecutively applying state equation from some 
initial condition 

0kx  yields 
 

0 0 0 0 0

0 0 0 0 0

0 0 0

( ) ( )

( ) ( )

( , )

k k k k k

k k k k k

k k k

X x U

Y x U

X U

 = Ρ + Ρ
 = Ρ + Ρ
 Ρ =

A B
C D

H
                 (4) 

 
where

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

[ 1| ] [ ] [ 1| ]
[ 2 | ] [ 1| ] [ 2 | ]

[ | ] [ | ] [ | ]

|

1

k k

p p p

k

x k k u k k y k k
x k k u k k y k k

X U Y

x k N k u k N k y k N k

+ +     
     + + +     = = =
     
     + + +         − 

  
     (5)

 
are the prediction vectors for, respectively, states, inputs 
and outputs. Also, 
 

 
 

 

0 0 0 0 0 0[ ] [ 1| ] [ ]1|T T TT
pk k k k k N kρ ρ ρΡ =  −+ +                                        (6)

 
represents the predictions for scheduling variables, which 
parametrizes all matrix functions 

( ): p p x xN n N n nρ ×→R RA , ( ): p p x uN n N n nρ ×→R RB , 
( ): p p y xN n N n nρ ×→R RC  and ( ): p p y uN n N n nρ ×→R RD , 

and map ( ): p x u pN n n N nρ+ →R RH  defines it. Previous 
vectors take values from instant 0k  to instant 0 pk N+ , 

thus comprising the full prediction horizon of pN  steps. 
 
Accordingly, we consider the following quadratic cost 
function: 
 

T T
k k k k kJ E E U U= + ∆ ∆Q R                          (7) 

as a performance index, where k k kE R Y= −  is a 

reference tracking prediction vector and kU∆  is the input 

variation prediction vector, weighted by matrices Q  and 
R , implies on a nonlinear cost function for the problem 

0
( , )k kx RP : 
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A B
C D

H
X
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P

           (8) 

 
Since a qLPV embedding was used to rewrite Eq. 

(1) as Eq. (2), all state nonlinearities were reallocated to 
the definition of the scheduling variable . Yet, problem P  
still has to include its nonlinear dynamics, which 
implicates a NP problem. 

2.3 Sequential Quadratic Programming 
 
In this paper, we follow the method from [6]. 

Accordingly, we solve a Sequential Quadratic Program, 
which is operated as follows: we solve the original 
optimization problem (6) by iterating a sequence of QPs, 
all parametrized by a scheduling vector P . Starting with 
some suitable initial guess 0P , the MPC optimization 
problem is solved as a QP, given that Eq. (4) based on 0P  
is linear. Then, with the optimal values resulted from 
previous QP, P  is updated to 1 ( , )k kP h X U=  and this 
process is iterated until a convergence threshold is 
reached: 1l lP P ε−− ≤ . This SQP is able to 

approximate the NP problem form, Eq. (6), very well, for 
any arbitrarily small positive scalar ε  and can be solved 
more quickly. 
 

However, equality constraint ( , )k k kP X U= H  is 

the only nonlinear aspect of P . Thus, employing a SQP 
algorithm to solve it transposes a NP problem into a 
number of QP problems. This means any commercial QP 
solver would handle 

0
(x , R , P )k kSQP

lP  on a reasonable 
time. 
 

00

0 0 0

0 0 0

0

0

0

min

( ) ( )

( ) ( )

. .

kU k

k k k

k k k
l

l l

l

k

k

k

l

U

P

U

J

X x U

Y x

s t

P

P P

X

Y

P

∆

 = +


= +








∈

∈

∈

∈

A B
C D

X
U
Y
P

              (9) 

 

 
Algorithm 1: SQP qLPV MPC 

0k k←  

0
[ 1] kx k x− ←  

0
[ 1] ku k u− ←  

0 0
[ 1] ( , )k kk h x uρ − ←  

while control condition 
    Measure [ ]x k  
    0l ←  
    1lP α←


 

    while converge condition 
        Solve 

0
, R , P )(P

l
k kSQ xP  

        1 ( , )l l l
k kP h X U+ ←  

        1l l← +  
    Apply [ | ]u k k  

 
3. CASCADED 

In order to test the SQP method, we use the case 
study from [9]. Consider the scheme of four cascaded 
tanks as shown in Fig. 1. This system is an educational 
benchmark for illustration of performance limitations, with 
a focus on the adjustable multivariable zeros. 
 

Consisting of four tanks, two valves, two pumps 
and a reservoir, it is shown in Fig. 1. Fed by the reservoir, 
both pumps fill crossed lower and upper tanks, regulated 
by the valves. Each tank has an outlet hole that either fills 
another tank or the reservoir, this way there is no loss of 
liquid. 
 

 
Figure 1: Cascade Tanks Process. Fig. from Johansson 

(2000) 
 

From mass balance and Bernoulli's law, it is 
possible to model this process, yielding nonlinear ordinary 
differential equations, Eq. (8), 
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− + +

− + +

−
− +

−
− +

  (10)

 
where ih , 1, 2,3,4i = , is the water level on the i -th tank, 

iv , 1, 2i = , is the voltage applied on the i -th pump and, 

lastly, iγ , 1, 2i = , is the position of the i -th valve. 

Parameters ia  and iA , 1, 2,3,4i = , are, respectively, 
the area of the outlet hole of the i -th tank and the bottom 
area of the i -th tank. Also, ik , 1, 2i = , is the 
proportionality coefficient of flow per voltage of the i -
pump. 
 

This system is clearly a nonlinear model, which can 
be put in state-space by taking the following state, input 
and output vectors, respectively: 

[ ]
[ ]

[ ]

1 2 3 4

1 2 1 2

1 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

T

T

T

x t h t h t h t h t

u t v t v t t t

y t h t h t

γ γ

=

=

=

      (11) 

Since this model satisfied the LDI property, we 
can obtain a qLPV realization by considering the 
scheduling variables vector as 

( ) ( ) ( )
TT T

x ut t tρ ρ ρ =   , with 

1 2 3 4

1 1 1 1
( ) ( ) ( ) ( )( )

T

x h t h t h t h ttρ  =    and 

[ ]1 2 1 2( ) ( ) ( ) ( ) ( ) T
u t v t v t t tρ γ γ= , 

 
( ) ( ( )) ( ) ( ( )) ( )

( ) ( ( )) ( ) ( ( )) ( )

dx t A t x t B t u t
dt

y t C t x t D t u t

ρ ρ

ρ ρ

 = +

 = +

      (12) 
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This qLPV model is discretized in order for it to 
be presented in the form of Eq. (2). It is noteworthy the 
fact that ( ( ))A tρ  depends affinely only on ( )x tρ , 

( ( ))B tρ depends affinely only on ( )u tρ  and C  and D  
are constant matrices. 
 

4. SIMULATION RESULTS 
A simulation scenario is carried out to validate the 

SQP qLPV MPC algorithm in practice and it is described 
in detail in the sequence. 

Starting with the model itself, it is used Eq. (1) to 
reproduce the process, as it is a numerical simulation, and 
Eq. (8) for MPC predictions, both normalized, with 
sampling period 0.1st s= . Table 1 displays all model 
parameters. 
 

Table 1: Model Parameters 
2[ ]a cm  [ ]0.5 0.5 0.5 0.5 T  

2[ ]A cm  [ ]1 1 1 1 T  

3 1cmk
s V

 
 
 

 [ ]1.4 1.4 T  

[ ]
0kh cm  [ ]5 5 5 5 T  

[ ]
0

%ku V  5 0.5 5 0.5 0 0
T

 
   

 

Additionally, state, inputs and outputs constraint 
sets X , U  and Y  are given by 

0 10
0 10

:
0 10
0 10

0 5
0 5

:
0 1
0 1

0 10
:

0 10

x

u

y

n

n

n

x x

u u

y y

    
    
    = ∈ ≤ ≤             
    
    
    = ∈ ≤ ≤             
    

= ∈ ≤ ≤    
    

 

 

 

X

U

Y

              (14) 

 
as the scheduling variables constraint set can be derived 
from there, on an abuse of notation, 

( , ) nh ρ= ⊆  P X U . 

Now, on the control system scheme, Algorithm 1 is 
employed. All states are considered to be available, by 
measurement or estimation. Initialization for lP  is taken 
as a constant vector, 0 [ ] 1P kρ= ⊗


, and convergence 

condition is a limit on the number of iterations, iterl n≤ , 

and a lower bound on the variation of P , 

( ) ( )1 1Tl l l lP P P P ε− −

∞
− − ≤ . 

 
Cost function kJ  is the same from Eq. (5), where 

10I=Q  and I=R , both of appropriate dimensions, 
meaning it is 10 times more important to track reference 
than to have constant input signals. Also, the prediction 
horizon is chosen to be 20pN =  samples or 2pN s= . 

 

 
Figure 2: Cascaded Tanks: States - in blue is 1( )x t ; in 

red is 2 ( )x t ; in green is 3( )x t ; in pink is 4 ( )x t ; 

 

Fig. 2 depicts, starting on 
0kh , all four state's 

trajectories: in order, on blue, red, green and pink. On Fig. 
3, upper graph shows first output 1( )y t  and its reference 

signal 1( )r t  and lower graph, second output 2 ( )y t  and its 

reference signal 2 ( )r t . It is evident, by the first 12 
seconds, this approach can maintain the process on 

stationary regime, as the pair ( )0 0
,k kh u  is an equilibrium 

point. Likewise, as reference changes its value, both 
outputs can achieve a zero-error steady-state after just a 
few seconds. Nor first, nor second outputs do it with 
oscillations, although they present small overshoots when 
descending. Assessing disturbance rejection, every 12 
seconds, starting on 4t s= , it is applied 4 seconds long 
step-like signals with 10% of max level amplitude as 
additive disturbances, and MPC takes just a few seconds to 
completely reject them, implying a zero-error steady-state. 
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Figure 3: Cascaded Tanks: Outputs - (a) in black 
dashed is 1( )r t ; in blue is 1( )y t ; (b) in black dashed is 

2 ( )r t ; in red is 2 ( )y t ;

Fig. 4 exhibits all four input signals, both pump 
voltages and valves positions. It is clear that when it is 
necessary, such as during reference changes, there are 
significant inputs variations. 

Figure 4: Cascaded Tanks:  Inputs 

 As a way to quantify how well SQP qLPV MPC 
works, three indexes are proposed: integral squared error 
(ISE), integral average control variation (IACV) and mean 
value of cost function kJ . The first is an already 
established performance index and comprises of 

0

2

0

1 ( ( ) ( ))
k

k

ISE r y d
k k

τ τ τ
∞

∞

= −
− ∫ . The second is 

defined by 
00

1 ( )
k

k

IACV u d
k k

τ τ
∞

∞

=
− ∫ . The third is 

calculated by Eq. (5) divided by the number of samples. 
All indexes are presented in Table 2. 

Table 2: Performance Indexes 
3( 10 )[]ISE −×  [ ]3.6 3.9 T

3( 10 )[]IACV −×  [ ]14.9 17.1 14.7 18.0 T

3( 10 )[]kJ −×  6.2

[ ]compt s  0.3072

5. CONCLUSION
This paper offered validation through numerical 

simulation of an MPC algorithm for the nonlinear 
benchmark process Cascaded Tanks. Combining the qLPV 
framework and a SQP approach, the method showed 
satisfactory results for the tracking and rejection problems. 
And it does so because predictions for the scheduling 
variables converge to its nonlinear dynamics after a few 
iterations of QP optimization. 

ACKNOWLEDGEMENTS 
The authors thank CNPq for supporting project 

304032/2019-0 and Serbian Ministry of Education, 
Science and Technological Development (No. 451-03-
9/2021-14/200108). 

REFERENCES 
[1] E.F.Camacho, and C. Bordons, “Model Predictive

Control”. Springer Science & Business Media, (2013)
[2] M. Alamir, “A Pragmatic Story of Model Predictive

Control: Self Contained Algorithms and Case-
studies”. CreateSpace Independent Publishing
Platform, (2013)

[3] S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and
M. Diehl, “From linear to nonlinear MPC: bridging
the gap via the real-time iteration”. International
Journal of Control, 93(1), pp. 62–80. (2020)

[4] K.M.M. Rathai, “Synthesis and real-time 
implementation of parameterized NMPC schemes for 
automotive semi-active suspension systems”. Thèses, 
Université Grenoble Alpes.(2020). 

[5] R. Quirynen, M. Vukov, M. Zanon, and M. Diehl,
“Autogenerating microsecond solvers for nonlinear 
MPC: A tutorial using ACADO integrators”. Optimal 
Control Applications and Methods, 36(5), pp. 685–
704. (2015)

[6] P.S.G. Cisneros, S. Voss, and H. Werner, “Efficient
nonlinear model predictive control via quasi-LPV
representation”, In 2016 IEEE 55th Conference on
Decision and Control (CDC), pp. 3216–3221, (2016)

[7] M.M. Morato, J.E. Normey-Rico, and O. Sename,
“Model predictive control design for linear parameter
varying systems: A survey”. Annual Reviews in
Control, 49, pp. 64–80. (2020)

[8] P.S. Gonzalez Cisneros, and H. Werner, “Nonlinear
model predictive control for models in quasi-linear
parameter varying form”. International Journal of
Robust and Nonlinear Control, 30(10), pp. 3945–395,
(2020)

[9] K.H. Johansson, “The quadruple-tank process: A
multivariable laboratory process with an adjustable
zero”. IEEE Transactions on control systems
technology, 8(3), 456–465. (2000)

[10] J.S. Shamma, “An Overview of LPV Systems”, pp. 3–
26. Springer US, Boston, MA. (2012)

C.22


