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A robust identification of output error (OE) models with optimal input design for a case of constrained 
output variance is considered in this paper. In a case when observations have Gaussian mixture distributions, it is shown 
that the proposed robust algorithm for identification of OE models with constrained output, which is based on Huber’s 
function, will give more accurate results in relation to the classical linear algorithm. In a form of the theorem, it is 
shown that an optimal input signal can be achieved by a minimum variance controller whose reference is a white 
noise. The essential problem is that the optimal input depends on the system parameters to be identified. In order to 
overcome this problem, a two-stage adaptive procedure is proposed, where iterations are alternately carried out 
between parameter estimation and experiment design using the current parameter estimates. It is shown that such 
obtained excitation signals result in a significant increasing in a convergence rate. Theoretical results are illustrated by 
simulations. 
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1. INTRODUCTION

The area, which deals with obtaining the 
mathematical model of the process, remains vibrant, as 
shown by recent research [1,2]. The main task of the 
theory of identification is the extraction of maximum 
information from the measurements that are available. 
This requirement is realized by optimal experiment design 
[3]. The basic approach consists in minimizing the scalar 
function of the Fisher information matrix [4]. 

The key problem in the optimal input design is 
that the optimal input depends on the unknown system 
properties, which need to be identified. Namely, the Fisher 
information matrix typically depends on system 
parameters. There are two basic approaches to overcome 
this problem. The first approach is based on robust optimal 
experiment design. In this case, the procedure is slightly 
sensitive to the uncertainty of a priori information about 
the system [5]. The basic a priori knowledge of the system 
can be obtained using a nonparametric frequency method 
[6]. The new results in this area cover the case of a finite 
number of model parameters and a very large number of 
measurements. The second approach is based on 
adaptation. One such, two-stage procedure has been 
proposed in [7]. In the first stage, in a short time interval, 
the data are collected using PRBS input. Based on these 
data, a system model is identified, and that is an initial 
model for optimal input design. In the second stage, the 
obtained input signal, by using a minimum variance 
controller and a stochastic reference, is used to generate a 
new data set. Adaptive input design for the ARX models 
has been discussed in [4]. 

In many practical cases, constraints on the 
fluctuation of input and/or output signals are very 
important [8]. For example, in the industrial production, 
product quality must be within certain limits (constraints 
on the fluctuation of the output signal). 

If the constraint is related to the variance of the 
output signal, it is shown that the experiment design is D–

optimal and that the input signal is generated using a 
minimum variance controller together with an external 
stochastic signal [8].  

This paper considers the optimal experiment design 
for output error (OE) models. There is a constraint on the 
output power. When the corresponding noise is modelled 
as the Gaussian stochastic process, it is demonstrated in 
[9] that the presence of feedback is very important. Here,
those results, using the Fisher information matrix, are
extended on the case when the measurement noise is non-
Gaussian. Justification of this approach was confirmed in
practice [10]. Namely, in measurements there are rare,
inconsistent observations with the largest part of
population of observations (outliers). The presence of
outliers can considerably degrade the performance of
linearly recursive algorithms based on the assumptions
that measurements have a Gaussian distribution.
Therefore, synthesis of robust algorithms is of primary
interest. The synthesis is based on Huber’s theory of
robust statistics [10]. Simulation results have shown that
the proposed robust output error (OE) parameter
estimation algorithm, based on the minimization of a
robust criterion, will give more accurate results in relation
to the conventional linear estimation algorithm, based on
the recursive least squares (RLS) method.

It is shown that the optimal input signal can be 
obtained by a minimum variance controller whose 
reference is a white noise sequence with known variance. 
In order to be able to implement the algorithm, adaptive 
approach is applied. A direct adaptive minimum variance 
controller is used. The algorithm has two stages. In the 
first stage, the process parameters are estimated. In the 
second stage, based on thus obtained parameters, it is 
formed the minimum variance controller that generates the 
input signal of the process by which the identification is 
made. Because the reference signal is in the form of white 
noise, parameter estimation is consistent. The paper’s 
results are supported by simulations. 
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2. ROBUST IDENTIFICATION ALGORITHM
FOR OE MODELS

The general form of the OE model is

1
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where ( )u k , ( )y k  and ( )e k  are input, output and 

stochastic noise, respectively. Polynomials 1( )A q−  and 
1( )B q− have the form: 
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where iq− , i N∈ denotes the backward shift operator i.e. 

( ) ( )iq x k x k i− = − , while ( 1, , )ib i m=  and ( 1, , )ia i n=   

are unknown parameters. 

Practical and theoretical studies have shown that in 
a stochastic model of the system there are some 
observations that are inconsistent with the largest part of 
the population (outliers) [10], and that is why the 
disturbance (measurement noise) ( )e k in the model (1) is a 

non-Gaussian. Hence, the probability density function of 
the disturbance belongs to approximately normal 
distribution class: 

{ }1 2( ) : ( ) (1 ) ( ) ( )p e p e p e p eε ε ε= = − +P     (3) 

in which  

2
1 1( ) (0, ),p e σN 2

2 2( ) (0, )p e σN , 2 2
2 1σ σ . 

In other words, the probability density function ( )p e  

represents a mixture of normal (Gaussian) distributions 

where 2
1σ  and 2

2σ  denote variances. The parameter 

0 1ε≤ <  is called the degree of contamination.    

Let us introduce an auxiliary model 
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or in the following form: 
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Since true values of parameters ( 1, , )ia i n=   and 

( 1, , )ib i m=   are unknown, the output of the auxiliary 

model is calculated using estimates of parameters: 
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Let ˆ( )kθ  be the estimated vector of parameters, and ( )kϕ  

be the observation vector at the moment k : 
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At the moment k , before the estimate ˆ( )kθ  is known, the 

prediction of the model is: 

ˆˆ ( ) ( 1) ( )T
My k k kθ ϕ= − .                       (8)

The problem of identification of the system described by 

(1) can be considered as the task of finding the vector θ̂ ,
such that the mean square criterion:

{ }2ˆ) ( )( E kθ ε=J , ˆ( ) ( ) ( )Mk y k y kε = −        (9) 

is minimized, where {}E ⋅ represents the mathematical 

expectation operator and ( )kε  is the prediction error. 

Since the identification criterion (9) gives same weights to 
all residuals, these sporadic large observations (outliers) 
will have a significant influence on resulting parameter 
estimates. To achieve robustness we will consider the 
robust M-estimation criterion [10]: 

[ ]{ }) ( , )( E kθ ε θ= ΦRJ     (10) 

in which Φ  represents a robust loss function: 

*( ) log ( )pΦ ⋅ = − ⋅ .         (11) 

By using Huber's min-max approach, it is possible to find 

the least favorable probability density function *( )p ⋅  on a 

class of approximately normal distributions (3): 
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where kε is the Huber function parameter. 

The empirical robust criterion on the observed 
interval, obtained from the relation for sufficiently large k, 
has the form: 

{ }
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1
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t
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θ ε
=
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Expanding ( )k θJ  in the vicinity of the preceding 

estimate ˆ(k 1)θ −  in Taylor series, one obtains: 
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where 

( )
lim 0
x

O x

x→∞
= .    (15) 

By minimizing the expression (14), it is obtained: 
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A recursive form of the robust criterion (13) can be 

obtained as ˆ(k 1)θ θ= −  

1( ) ( 1) ( ) ( ( ))k kk k kθ θ ε−= − +ΦJ J . (17) 

By differentiating the last relation twice one can obtain: 

2 2 '
1( ) ( 1) ( ) ( ( )) ( ) ( )T

k kk k k k kθ θθ θ ε ϕ ϕ−∇ = − ∇ +ΨJ J  (18) 

where '( ) ( )Ψ ⋅ = Φ ⋅ , 1 1( ) : R RΨ ⋅ → . 

Furthermore, the following assumptions will be used: 

a) The estimate ˆ(k)θ is in the vicinity of the estimate

ˆ(k 1)θ −

b) The estimate ˆ(k 1)θ − is optimal at the instant k-1.

After replacing θ  with ˆ(k 1)θ −  in the relation (18), one 

can obtain: 

2 2
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From the assumption a) it follows 

2 2ˆ ˆ( (k)) ( (k 1))k kθ θθ θ∇ ≅ ∇ −J J  (20) 

Based on this, the relation (19) takes the form 
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1
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Based on the assumption a) it also follows 

( )ˆ ˆ(k) (k 1) 0O θ θ− − = (22) 

By introducing the notation 2 ˆ(k) ( (k 1))kR k θ θ= ∇ −J  from

relations (16) and (21)  one can obtain: 

( )1ˆ ˆ ˆ(k) (k 1) (k) (k 1)kR k θθ θ θ
−  = − − ∇ − J (23) 

'(k) (k 1) ( (k)) ( ) ( )TR R k kε ϕ ϕ= − +Ψ (24) 

From the assumption b) it follows 1
ˆ( (k 1)) 0kθ θ−∇ − =J . 

Based on this condition, and if ˆ(k 1)θ θ= −  is put in the 

relation (25), one obtains: 

ˆ( (k 1)) ( ( )) ( )kk k kθ θ ε ϕ∇ − = −ΨJ  (25)

Finally, based on relations (23) - (25), using the notation 
1

(k) (k)P R
−

=  and applying the matrix inversion lemma, 

one can obtain the definitive form of a recursive 
algorithm: 
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The function defined by the relation (29) is the Huber 
function [10]. It is derived for a class of distributions (3). 
It is shown on Figure 1. 

Figure 1: Nonlinear function of residuals 
a) Huber’s function
b) Derivative of Huber’s function

3. OPTIMAL INPUT DESIGN FOR OE MODELS

Further, we will consider a special case of the model (1): 
1

1 1
1 1

( ) ( ) ( ) ( 1) ( )
( ) ( )

b q b
y k u k e k u k e k

A q A q

−

− −
= + = − + .     (31) 

In this case the parameters 1b  and ( 1, , )ia i n=  are 

estimated. 

The Fisher information matrix can be defined as [4]: 

log ( ) log ( )
T

Y

p Y p Y
M E β

β β
β β

  ∂   ∂  =     ∂ ∂     
            (32) 

Based on N measurements, the vector of outputs is 

[ ](1) ( )
T

Y y y N=  . Parameter vector β  has the 

form: 

2 TT
eβ θ σ =                                                          (33) 

where 2
eσ represents the variance of the noise ( )e k , and 

1
T Ta bθ  =    in which 1[ ]T

na a a=  . 

Since N  is large, it is more convenient to work with the 
average value of the Fisher information matrix:  

1
lim

N
M M

N→∞
=     (34) 

We shall principally use the determinant of the average 
information matrix as the design criterion leading to the 
following form of D-optimal criterion: 
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log det M= −J .       (35) 

Minimization of the scalar cost function (35) relies upon 

the calculation of the matrix M . 

Lemma 1. [[11], pp. 232] Let ( ), ,Ω ΡF be a probability 

space. Suppose also that there is a subalgebra 

1F ( )1 ⊆F F . Then

{ }{ } { }
1

E E Eξ ξ ξ=F ▄                          (36) 

Lemma 2. [[8], pp. 244] Let M  be a positive definite 

matrix with unit diagonal elements 1iiM = , 1, ,i n=  , 

then det M  achieves its maximum value for M I=   ▄ 

We will now formulate the optimal input in the form of the 
theorem. 

Theorem 1. Suppose that for OE model (31), the 
following conditions are fulfilled: 

1    Stochastic noise ( )e k  represents a zero mean 

Gaussian mixture with variance 2
eσ , 

2   A constraint on the output is { }2 ( )E y k W≤ ,

(0, )W ∈ ∞ . 

Then the criterion log det M−  achieves its minimum 

value if the system input ( )u k is generated by the 

minimum variance controller which reference is a zero 
mean white noise sequence { }( )kη with probability 

density function 

( )2
1

1 2( )
2

b

Wb
p e

W

η

η
π

−
= ▄   (37) 

Proof: Let us define the residual sequence as: 

1 1( ) ( ) ( 1) ( ) ( 1)M n Mk y k a y k a y k n b u kε = + − + + − − −  (38) 

Since we consider N  observations, the likelihood function 
would be: 

( ) ( )( )1 2
1

( ) (1 ) ( ) ( )
N

k

p Y p y k p y kβ ε ε
=

= − +∏ .         (39) 

After some calculations, according to Lemma 1, the mean 
value of the Fisher information matrix can be expressed 
as: 

2 2
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2 4
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       − ∂ ∂ ∂ ∂ = + +           ∂ ∂ ∂ ∂        
       ∂ ∂ ∂ ∂ + +            ∂ ∂ ∂ ∂        

(40) 

From relations (33), (38), and (40) one can obtain 
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2
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( 1) ( 1) ( 1) ( ) ( 1) 0
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(41)   

where the sub-matrices correspond to the partitioning of 

the parameter vector β into 2
1

TT
ea b σ 

  , in which 2
eσ

represents the variance of Gaussian mixture noise. 

The relation (41) can be written in a form that is more 
compact: 

2
2

0
1

0

0 0 1 2

T

e
e

A B

M B C
σ

σ

 
 

=  
 
  

        (42) 

The following task is to determine elements of the matrix 

M  in the relation (42). 

Step 1 (Determining the matrix A ) 

Let us define 

{ }( ) ( )M M i jE y k i y k j ρ −− −  (43) 

Based on the relation (43) the matrix A can be presented 
in the following form: 

0 1 1

1 0 2

1 2 0

n

n

n n

A

ρ ρ ρ
ρ ρ ρ

ρ ρ ρ

−

−

− −

 
 
 =
 
 
 




   


  (44) 

From relations (4) and (31) it follows: 

1 1( ) ( 1) ( ) ( 1) ( )M n My k a y k a y k n b u k e k= − − − − − + − + (45) 

After multiplying the relation (45) with 
( ), 1, ,My k i i n− =   and applying the mathematical 

expectation operator to the obtained system of n  
equations, one can obtain: 

1V Af Bb= − +               (46) 

where 1[ ]T
na a a=  , 1 2[ ]TnV ρ ρ ρ=  . 

Finally, it follows from the relation (46) that: 
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( )
1

1
B Af V

b
= +    (47) 

Step 3 (Determining the scalar C ) 

From the relation (4) one can get the input signal ( )u ⋅ : 

[ ]1
1

1
( 1) ( ) ( 1) ( )M M n Mu k y k a y k a y k n

b
− = + − + + −       (48) 

Scalar C  is defined as: 

{ }2 2
12

1

2 2
1 1 1

2 2
1

1
( 1) ( ) ( 1) ( ) ( ) ( )

( ) ( 1) ( 1) ( 1) ( )

( ) ( ) ( 1) ( ) ( )

M M M n M M

M M M n M M

n M M n M M n M

C E u k E y k a y k y k a y k n y k
b

a y k y k a y k a a y k y k n

a y k n y k a a y k y k n a y k n

= − = + − + + − +

+ − + − + + − − +

+ − + − − + + − 








(49) 

After arranging individual terms of (49), the finally 
expression for the scalar C  is given by: 

{ } ( )2
02

1

1
( 1) 2 T TC E u k aV a Aa

b
ρ= − = + +  (50) 

Since, all elements of the matrix M  (relation (42)) are 
now known, one can obtain: 

( )1
2

1
det det det

2
T

e

M A C B A B
σ

−= ⋅ −      (51) 

Now, it can be shown that: 

( ) ( )2 1 2
0 1

log det

log 2 log det log log .T
e

M

A V A V bσ ρ −

− =

− − − +
    (52) 

In accordance with the condition 2 of the Theorem 1, we 
have 0 ,Wρ =  so the diagonal elements of the matrix A  

are fixed. Based on Lemma 2 it follows that ( )log det A−  

has a minimum value when A  is the diagonal matrix. This 
means that 0, 0i iρ = > , which further gives 0V = . 

Because of this, the third term of the equation (52) has a 
minimum value ( )log W− . We finally get 

{ }
2 2

1
1

2
min log det log e

n

b
M

W

σ
+

− =     (53) 

It is necessary to note that 0, 0i iρ = >  is achieved when 

{ }( )y k  is an uncorrelated sequence. This condition is 

fulfilled if the input signal is chosen in the following form: 

[ ]1
1

1
( ) ( ) ( 1) ( )M n Mu k a y k a y k n k

b
η= + + − + +          (54) 

where ( )kη  is a reference signal that represents white 

noise with variance 2
1W b . The relation (54) represents the 

minimum variance controller for the model (31). This 
theorem is proved. ▄

This result also shows that the optimal input design 
requires knowledge of the true system parameters. In 
practical conditions, however, such a requirement is 
contradictory because the optimal input design is 
performed in order to speed up the identification process. 

In other words, it is impossible that unknown system 
parameters are known a priori. In a real application this 
fact must be handled. In order to overcome this problem a 
two-stage adaptive procedure is proposed: 

A) By using PRBS signal as input, through

initN iterations, the initial model of the process is

determined,

B) After that, through optN iterations, adaptation is

applied for the controller defined in Theorem 1.

In the section devoted to simulations, the 
proposed two-stage algorithm will be compared with the 
open loop system identification algorithm with the PRBS 
input signal. 

4. SIMULATION RESULTS

The proposed two-stage identification algorithm 
is tested on the following OE model: 

1

1 2

0.5
( ) ( ) ( )

1 0.7 0.5

q
y k u k e k

q q

−

− −
= +

− +
     (55) 

The system identification example, is based on 
measured 1000 input-output data points obtained during 
the simulations. The measurement noise ( )e k has non-

Gaussian distribution defined by: 

{ }( ) : ( ) (1 0.1) (0,0.1) 0.1 (0,10)p e p eε = = − +P Ν Ν       (56) 

Figure 2 shows system input and corresponding system 
output when the robust two-stage identification algorithm 
is used. First 200 iterations, the system works in an open 
loop, with PRBS as the input signal. Then it switches 
feedback in the range of iterations 200-1000. 

Figure 2: Adaptive input and corresponding output 

C.5



Proceedings of IX International Conference “Heavy Machinery-HM 2017”, Zlatibor, 28 June – 1 July 2017 

V.Stojanovic, N.Nedic, D.Prsic

Simulation results have illustrated significant 
increasing of accuracy in parameter estimates of OE model 
by using the robust identification algorithm in relation to 
the linear identification algorithm with PRBS [-1,1] as an 
input signal. Furthermore, it can be seen that the 
convergence rate of the robust algorithm is further 
increased by using the optimal input design, which further 
increases the practical value of proposed robust procedure.  

Figures 3 and 4 show parameter estimates in the case 
where the output variance cannot be greater then 0.5W = . 

Figure 3: Estimates of parameters 1a  and 2a  

Figure 4: Estimate of parameter 1b  

The simulation results are compared in terms of 
mean square errors (see Figure 5), defined by 

2ˆln E ( ) ( )MSE k kθ θ = − 
 

  (57) 

Figure 5: Mean square errors 

Based on these figures, it can be concluded that 
experiment design increases the convergence speed of 
parameters to true values, keeping the given output 
varianceW . 

5. CONCLUSION

In this paper the optimal input design for robust 
identification of a special case of OE models, in the case 
of constrained output variance, has been considered.  

Simulation results have shown that the proposed 
robust OE parameter estimation algorithm, produces more 
efficient parameter estimates in relation to the 
conventional linear algorithm. 

Also, it is shown, that the optimal input is 
obtained by using the minimum variance controller and the 
stochastic reference signal. The adaptive two-stage 
procedure for generating the input signal is proposed. The 
initial model of the process is firstly obtained using PRBS 
input signal. In the second stage, the optimal input signal 
is generated by the minimum variance controller together 
with the stochastic reference. Simulation results have 
shown the superiority of the robust identification 
algorithm using proposed adaptive methodology for 
generating the optimal input signal. 

ACKNOWLEDGEMENTS 

The authors would like to express their gratitude to 
the Serbian Ministry of Education, Science and 
Technological Development for supporting this paper 
through projects TR33026 and TR33027. 

REFERENCES 

[1] E.Zhang, R. Pintelon, “Identification of multivariable
dynamic errors-in-variables system with arbitrary inputs”,
Automatica, Vol. 82, pp. 69-78, (2017)

[2] A. Janot, P.-O. Vandanjon, M. Gautier, “A revised
Durbin-Wu-Hausman test for industrial robot
identification”, Control Engineering Practice, Vol.48,
pp.52-62, (2016)

[3] M. Zarrop, “Optimal experiment design for dynamic
system identification”, Springer, Berlin, (1979). 

[4] G.C. Goodwin, R.L. Payne, “Dynamic system
identification: Experiment design and data analysis”,
Academic Press, NY, (1977).

[5] C.R. Rojas, J.C. Agüero, J.S. Welsh, G.C. Goodwin,
A. Feruer, “Robustness in experiment design”, IEEE
Transactions on Automatic Control, Vol. 57(4), pp. 860-
874, (2012).

[6] J.S. Welsh, G.C. Goodwin, “Finite sample properties
of indirect nonparametric closed-loop identification”,
IEEE Transactions on Automatic Control, Vol. 47(8),
pp.1277-1292, (2002).

[7] M. Barenthin, H. Jansson, H. Hjalmarsson,
“Applications of mixed H2 and H∞ input design in
identification”, Proceedings of the 16th IFAC World
Congress, Prague, July 3-8 2005, pp. 458-463, (2005).

[8] T.S. Ng, G.C. Goodwin, T. Söderström, “Optimal
experiment design for linear systems with input-output
constraints”, Automatica, Vol. 13(6), pp.571- 577, (1977).

[9] V. Stojanovic, V. Filipovic, “Adaptive input design for
identification of output error model with constrained
output”, Circuits, Systems, and Signal Processing,
Vol.33(1), pp.97-113, (2014)

[10] P.J. Huber, “Robust Statistics”, Wiley, NY, (1981).

[11] A.N. Shiryayev, “Probability”, Nauka, Moscow,
(1989).

C.6


