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Abstract  
  

This paper deals with the quasi-static response analysis of planar parallel-connection flexure 
hinge mechanism. The flexure hinges are discretized by using the pseudo-rigid-body method. 
According to this approach, the elastic properties of the flexure hinges are modelled by 
introducing the springs of appropriate stiffnesses in the joint elements with three degrees of 
freedom which connect the light rigid segments. The mass of the flexure hinges is neglected due 
to their dimensions with respect to the rigid body. The small in-plane deformations of the flexure 
hinges was analyzed.  The displacements of the arbitrarily selected point of the rigid body are 
obtained in the symbolic form. The proposed algorithm is universal, so the mechanism with the 
arbitrarily selected number, type or orientation of flexure hinges should be analyzed. The 
symmetric corner-filleted flexure hinge and circular flexure hinge were used in numerical 
example. The obtained results are more accurate than the results of similar methods from 
literature. Furthermore, the proposed method is numerically more efficient than the above 
mentioned similar methods. 
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1. Introduction  
 
The quasi-static analysis of the planar parallel-connection flexure hinge mechanism will be 
considered here. The concept of parallel-connection means that the rigid body is connected with 
the fixed end by n  flexure hinges. Note that all of this hinges are rigidly connected on the left 
end with the fixed end and with the rigid body on the right hinge end. Also, it is supposed that the 

flexure hinge # i  1, ,i n     is rotated by angle  1, ,i i n    relative to the horizontal axis, 

as shown in Fig. 1. 
The pseudo-rigid-body method, whose basic assumptions are set in the references [1, 2], will be 
used. In the above mentioned references, the pseudo-rigid-body method was used for the quasi-
static and modal analysis of a planar serial flexure-hinge mechanism. Here the using of this 
method will be extended to the planar parallel-connection flexure hinge mechanism.  



S. Šalinić, A. Nikolić, Quasi-static response of planar parallel-connection flexure hinges mechanisms 

2 

 
Fig. 2 Planar parallel-connection flexure hinges mechanisms 

 
The goal of this paper is to make a universal algorithm for quasi-static analysis of the above 
mentioned mechanism in a symbolic form. The obtained numerical results will be compared with 
the results from the reference [3]. 
 
2. The discrete model of the flexure hinge 
 

Here, the flexure hinge, as the base of the flexure hinge mechanism, will be discretized by 
using the pseudo-rigid-body method. The exact shape of the flexure hinge is shown in Fig. 2(a). 
The total length of the hinge is L, the width b is constant and the thickness of the hinge changes 
according to the law t(x), where x (0≤x≤L) represent the axial coordinate. 

The discretized model of the flexure hinge is shown in Fig. 2(b). This model consist of two 
light rigid segments of length L/2 which are connected by a joint element with three degrees of 
freedom, two relative translations (   and  ) in the transverse and axial direction and one 

rotation (  ) about the axis perpendicular to the plane of hinge movement. The springs of the 

stiffnesses 
1Lk , 

2Lk  and Rk  which corresponds to the displacements  ,    and  , 

respectively, are placed in joint element.  
According to the references [1, 2], the above spring stiffnesses should be obtained as: 
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where f  is the shear correction factor,   is the Poisson’s ratio and compliance coefficients 

aC , ,b tC  and ,b rC  should be obtained by using the Castigliano’s second displacement theorem 

[4] in the following manner: 
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whereas E  is the Young’s modulus. 
 

 
Fig. 2 Discretization of the flexure hinge: (a) exact model, (b) rigid segment model. 

 
 

3. Planar parallel-connection flexure hinges mechanism 
 

Fig. 1 shows the planar parallel-connection flexure hinge mechanism which consist of n  
flexure hinges # i  ( 1, ,i n  ) which connect rigid body with the fixed end. The pseudo-rigid-
body model of the considered mechanism formed on the basis of the above described 
discretization procedure of the flexure hinge is shown in Fig. 3. Two kinds of coordinate frames 
are used here, the inertial coordinate frame Oxyz and the coordinate frames Oiξiηiζi ( 1, ,i n  ) 
which are fixed to the flexure hinges in the undeformed state. 
The vector of relative translations in the joint element Ji (i=1,…,n) 

 0
T

i i i   u                                                                                                      (8) 
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 should be obtained as: 

 1
0, ,i i p i
 u R u δd                                                                                                      (9) 

where 

 0
T

p x y  u                                                                                                      (10) 

is the vector of displacements of the arbitrarily selected point P relative to the inertial coordinate 

frame Oxyz, 3 3R δ  is the skew-symmetric matrix associated with the rotation vector 

 0 0 ,
T δ                                                                                                      (11) 

, , 0
T

i i x i yd d   d                                                                                                      (12) 

represent the position vector of point Ji  relative to the selected point P, and 

0,

cos sin 0

sin cos 0

0 0 1

i i

i i i

 
 

 
   
  

R                                                                                         (13) 

is the coordinate transformation matrix from the inertial coordinate frame Oxyz to the fixed 
coordinate frame Oiξiηiζi. 

 
Fig. 3 Discretized planar parallel-connection flexure hinges mechanism 

 
 
By using the equations (8-13), the relative translations in the joint element Ji  reads: 

 , ,cos sin sin cos ,i i i i x i i y ix y d d                                                            (14)                                                  
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 , ,sin cos cos sin ,i i i i x i i y ix y d d                                                          (15)                                                  

and for the relative rotation in the joint element Ji  holds that: 

.i                                                                                                                                (16)              

The above three relations written in a vector form reads:                             

, ,
ii w vw P v                                                                                                                           (17)      

where   
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Now, the total potential energy of the considered planar parallel-connection flexure hinges 
mechanism is obtained by: 
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Furthermore, after using the vector relation (17), the total potential energy becomes: 
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K                                                                                                            (22)      

is the stiffness matrix whose coefficients reads: 
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If we assume that in the arbitrarily selected point P of the rigid body acts the horizontal and 
vertical forces xF  and yF , respectively, as well as the bending moment zM , the vector of 

generalized forces read:  

.
T

x y zF F M   Q                                                                                                        (29) 

By using the principle of virtual work [5], in the equilibrium position of the rigid body holds 
that: 

3 1,  Kv Q 0                                                                                                                   (30) 

so the position vector of the rigid body can be determined as follows: 

1 .v K Q                                                                                                                            (31) 

4. Numerical example 

This numerical example deals with the planar mechanism with two identical parallel flexure 
hinges, as shown in Fig. 4(a). The numerical values of the mechanism parameters are shown in 
Fig. 4(b). Two types of flexure hinges will be considered, the symmetric corner-filleted flexure 
hinge and the circular flexure hinge which are shown in Fig. 4(c) and (d), respectively. 

According to the reference [4] the thickness of the symmetric corner-filleted flexure hinge 
should be obtained by the following function: 
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whereas the function of thickness change of the circular flexure hinge reads: 

   2 2t x t R x R x       .                                                                                       (33) 
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(b) Flexure mechanism parameters: 

 11 22.1 10 [N/ m ],E   0.33,   

 6 / 5,f   0.01 [m],L   

 0.006 [m],h   0.001 [m],t    

 0.002 [m],r  0.006 [m].b    

  

Fig. 4 Planar mechanism with two parallel flexure hinges 

It is also supposed that the transversal force 1[N]yF   and the bending moment 

0.02[Nm]zM    acts on the rigid body in the point P.  The displacements y  and    in the 

point P of the rigid body are shown in Table 1. In the case when the symmetric corner-filleted 
flexure hinges was used, the obtained results are compared to those from reference [3], where the 
analytical method and finite element method (FEM) are used. Here, the results of the FEM 
analysis are considered to be the most accurate. It is obvious that our approach gives more precise 
results than analytical results from reference [3] in the case of determining transversal 
displacements y   in point P.  The obtained results for the angular displacement   are the 
same for both used methods, the our and those analytical from reference [3]. The displacements in 
point P obtained by our approach, in the case when circular flexure hinge was used, are also given 
in Table 1.  

 Symmetric corner-filleted flexure hinge Circular flexure hinge 

Displacements 
in point P 

Our approach 
Analytical 

[3] 
FEM [3] Our approach 

     

[m]y   
72.3628 10   72.359 10   

72.370 10   84.923 10    0.30%   0.46%  

     

[rad]   
69.373 10   69.373 10  

69.945 10  65.349 10    5.75%   5.75%  

     
 

Table 1. Quasi-static response of planar mechanism with two parallel flexure hinges  
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5. Conclusions 
 
The quasi-static response of planar parallel-connection flexure hinges mechanisms based on 
pseudo-rigid-body method approach was discussed in this paper. The parallel flexure hinges, 
which connect rigid body with the fixed end are discretized into the light rigid segments 
connected with the elastic joint elements with three degrees of freedom. The parameters of the 
elastic joint elements are taken from references [1,2]. The displacements of the arbitrarily selected 
point P of the rigid body are determined in the symbolic form. Therefore, the performed quasi-
static analysis is numerically efficient, significantly more than the analytical approach from 
reference [3]. The obtained algorithm is universal, so the mechanism with the arbitrarily selected 
number, type and orientation of flexure hinges should be analyzed. The proposed approach should 
be extended to the planar flexure mechanisms with both parallel and serial connected flexure 
hinges. This will be the subject of further research by the authors. 
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