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Abstract: The fault-tolerant control problem of a hydraulic servo actuator in the presence of actuator faults is studied utilizing adaptive
dynamic programming. This task is challenging because of unknown system dynamics, uncertain disturbances or unmeasurable system
states of such highly nonlinear systems in real applications. The aim is to achieve asymptotic tracking and actuator faults compensation
by minimizing some predefined performance index. The discrete-time algebraic Riccati equation is iteratively solved by the adaptive
dynamic programming approach. For practical reasons, adaptive dynamic programming techniques and fault compensation are integrated
to iteratively compute an approximated optimal fault-tolerant control using real-time input/output data without any a priori knowledge
of the system dynamics and unmeasurable states. As a result, a fault-tolerant control of hydraulic servo actuator is then designed
based on adaptive dynamic programming via output feedback. Also, the convergence analysis of a data-driven fault-tolerant control is
theoretically shown as well. Finally, intensive simulation results are given to prove the validity and merits of the developed data-driven
fault-tolerant control strategy.

Keywords: adaptive dynamic programming; fault-tolerant control; hydraulic servo actuator; unknown dynamics; actuator
faults

1. Introduction

As the core of the contemporary control theory, optimal
control has received wide attention from researchers and
manufacturers during the last few decades. Werbos [1]
first suggested ADP, a valuable approximation method, as
an appropriate tool for solving optimal control tasks in
nonlinear systems. In the past few years, many ADP-
based methods have been well developed for discrete-time
nonlinear systems [2–4], data-based control systems [5],
intelligent systems [6, 7] and unknown nonlinear systems
subject to various constraints [8,9] or faults with the actuator
[10, 11].

With the rapid development of modern technologies,
systems are becoming more and more complex and
extensive. For this reason, the need for controlling
complex systems has been increasing lately. As a result,

unavoidable system faults can affect product quality, damage
equipment or harm humans. It is well known that in
existing engineering systems, the system components, such
as actuators and sensors, may be severely damaged due
to sudden faults that occur individually or simultaneously
during operation, causing severe disasters [12, 13]. From
all types of faults, actuator faults significantly contribute
to reducing control system performance. In addition, the
actuators may suffer from faults during long-term operations
owing to hardware ageing and other factors. Therefore, it is
crucial to develop FTC approaches to handle such faults and
keep the acceptable performance of the control system [14].

It is well known that there are passive and active FTC
schemes. Passive FTC is a robust control technique in
terms of a priori given set of faults. Passive FTC consists
of two parts: a feedback control, which is exclusively
controlled by a performance controller, while uncertainties
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Figure 1. The general structure of the data-driven
FTC scheme.

of the model and different disturbances are controlled by
the controller’s robustness. Hence, passive FTC schemes
are entirely restricted when handling significant faults.
In contrast to that, active FTC schemes have a more
vital ability to tolerate faults, which accomplish stability
and requested performances by actively tuning control
techniques according to the decision of a fault diagnosis
unit. There are various methods for operating active FTCs,
such as fault accommodation, fault compensation or fault
reconfiguration. FTC has extensive usage and crucial
importance in different research areas, particulary in the
intelligent manufacturing industry. FTC is a progressive
regulation method that provides secured work of the system
in the case of component or parameter faults [15–17]. The
general structure of the data-driven FTC systems is shown
in Figure 1.

Recently, data-driven FTC has become one of the most
vibrant research areas. A new online fault detection
and isolation strategy based on the multi-model concept
for aircraft jet engines is considered in [18], in which
the linearization of nonlinear dynamics was performed on
a set of linear models [19]. The fault detection and
isolation problem of nonlinear systems using a symbolic-
based linear multi-model concept is discussed in [20]. The
intelligent optimal control strategy for unknown discrete-
time nonlinear systems is discussed in [21, 22]. This control
strategy is ADP based iterative algorithm [23,24] belonging
to machine learning for solving the appropriate Hamilton-
Jacobi-Bellman (HJB) equation, which is very complicated
to solve directly.

Many ADP based FTC approaches have been developed

in recent years, in which actuator faults represent the most
frequent faults. To operate with actuator gain and bias
faults, the ADP method is employed to create a sliding-
mode FTC algorithm [25]. In [26], a guaranteed cost
FTC technique based on actor-critic networks is studied
for highly complicated nonlinear systems with actuator
efficiency loss. Estimated actuator faults from a fault
observer is developed in [27] to derive FTC scheme for
a class of nonlinear systems based on ADP. An adaptive
fuzzy FTC method is developed in [28] for a strict-feedback
nonlinear system.

A large number of hydraulic servo actuator (HSA) driven
machines often operate with large loads in harsh and
mostly outdoor environments. External influences affect
that the HSA parameters cannot be determined accurately.
As a result of unknown dynamics, high nonlinearities,
unmeasurable states and high-quality control of HSA has
always been a challenge in research. Moreover, changes in
operating conditions during work, such as oil temperature,
bulk modulus, fluctuating supply pressure and pipe volume,
will lead to parameter changes that reduce existing control
performance. The mentioned facts make challenging
problems in achieving high-quality HSA control, which is
unachievable without knowledge of the exact HSA model
[29, 30].

ADP is an efficient method for achieving high HSA
optimal controller performance by relying on adaptive
control, optimal control and reinforcement learning [22,31–
34]. ADP is a data-driven control approach that can ensure
the stability of a feedback-controlled system [31]. In the
presence of unknown system dynamics and unmeasurable
states, ADP approaches based on measured input/output
data from linear systems, also known as output feedback,
are of significant importance. One key advantage of using
output feedback approaches is that no understanding of
HSA dynamics is required. This indirect method creates
a series of suboptimal controllers for an unknown HSA
model, which with further iterations lead to the optimal
control strategy. Since nonlinear systems may be accurately
described by linear models with online estimated dynamics,
this increases the practical value of control strategies [35,
36]. Furthermore, measuring the entire HSA state vector
directly is not practical in actual implementations and would
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need very costly instruments for measuring. Therefore,
it is more practical when using control algorithms that
employ state reconstruction approaches instead of taking
direct measurements of the states [31].

ADP-based FTC for HSA is recommended as a result
of the discussions above. The controller learns to account
for unknown HSA dynamics, disturbances and faults in
order to provide expected performances from the measured
input/output data. ADP, state reconstruction and output
feedback are used to iteratively solve FTC. After identifying
the unknown HSA model, the algebraic Riccati equation
(ARE) can be solved iteratively. To fulfill the criteria of
the persistent excitation condition, some exploration noise
should be introduced to control input to assure consistency
of approximations and get unique solutions in every iteration
step [37]. Application of ADP-based control methods makes
data collecting for the discrete-time HSA model simpler than
for the continuous-time model. As a result, the discretized
HSA model’s state vector may be reconstructed using the
collected input and output data, allowing the implementation
of ADP-based FTC control.

Here, a real-time fault compensation procedure based
on ADP to enable optimal control of faulty HSA system
is considered in this paper. When actuator faults
occur, a ADP-based control algorithm may be biased
or incapable of performing optimal control. This issue
is fixed by reconfiguring the ADP controller using fault
compensation. The Lyapunov theory provides a reliable
guarantee for a closed-loop control system with actuator
faults. Despite the classical ADP approach, the control
action is no longer necessary in the proposed control
procedure, which efficiently decreases the computational
burden. The approach under consideration is divided into
two parts: an ADP-based optimal control and a real-time
fault compensation. Thus, it can be very suitably and easily
applied to solve fault-tolerant control problems.

The remaining parts of this paper are arranged as follows.
Section 2 discusses the difficulty of modeling HSA with
uncertain dynamics. In Section 3, the FTC based on ADP
is presented. The results of the simulation demonstrate the
applicability and efficacy of the ADP-based FTC for the
HSA in the face of total uncertainty in the model in Section
4. The final observations are provided in Section 5.
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Figure 2. The HSA configuration.

2. HSA model

The HSA under consideration comprises of a servo valve
and a hydraulic cylinder, see Figure 2. Va, pa, Aa and Vb, pb,
Ab are fluid volume, fluid pressure and effective area of the
head and road piston side, respectively. Internal and external
leakage flow are qLi, qLe, forward and return flows are qa,
qb, respectively. Disturbance force is denoted as Fext, load
spring gradient is Ke, while βe is bulk modulus of the fluid.
Supply and tank pressures are pS and p0, respectively. Based
on the component dynamics of the HSA, which consists of
the dynamics of the motion of the piston, the dynamics of
the pressure in the cylinder, and the dynamics of the servo
valve, an analysis of the characteristics of the HSA can be
derived. The HSA model is clearly built on complicated
nonlinear equations that depend on a variety of factors that
are impossible to identify precisely [30].

If the state and input variables are defined as

x(t) =
[
x1(t) x2(t) x3(t) x4(t)

]T
≜
[
y(t) ẏ(t) pa(t) pb(t)

]T
, (2.1)

u(t) = xv(t), (2.2)

the HSA’s nonlinear continuous-time dynamics may be
described in state-space terms as follows

ẋ(t) = f (x(t)) + g(x(t), u(t)) + h(t),

y(t) = η(x(t)),
(2.3)

in which the state dynamics is f (x(t)), the input function is
g(x(t), u(t)), output function η(x(t)) = x1(t), and disturbance
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function h(t), piston displacement is y, xv is the spool valve
displacement, mt is total mass which consists of piston mass
mp and payload mass m.

This nonlinear HSA model will also be treated as
a linearized model whose parameters were acquired
experimentally at various operating points [30]. The
mathematical equations are now more appropriately
represented by means of the load pressure

pL = pa − αpb (2.4)

leading to fewer complicated dynamic equations.
Applying a new state vector

[
x1(t) x2(t) x3(t)

]T
≜[

y(t) ẏ(t) pL(t)
]T

helps us to represent the HSA in a
more succinct manner. The following is the reduced order’s
linearized continuous-time description.

ẋ(t) = Ax(t) + Bu(t), (2.5)

y(t) = Cx(t), (2.6)

where A =


0 1 0
0 −

BC
mt

Aa
mt

0 −Kd Kp

, B =
[
0 0 Kx

]T
,

C =
[
1 0 0

]
, in which BC represents viscous friction

coefficient, while Kd, Kp and Kx are hydraulic cylinder gain,
pressure and valve sensitivity coefficients, respectively, for
more details see [30].

3. Fault-tolerant controller design based on ADP

Let us consider the linear model of HSA with actuator
faults as follows

ẋ(t) = Ax(t) + B (u(t) − fa(t)) , (3.1)

y(t) = Cx(t), (3.2)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rr, fa(t) ∈ Rm,
represent the system state, the control input, the output, the
unknown actuator fault, respectively. A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rr×n are unknown system matrices, assuming that (A, B)

is controllable and (A,C) is observable.
For HSA system (3.1)-(3.2) with fa(t) = 0 the

performance function may be written as follows:

J(x0) =
∫ ∞

0

[
yT (τ)Qy(τ) + uT (τ)Ru(τ)

]
dτ, (3.3)

where x0 ∈ R
n is an initial state, Q = QT ≥ 0, R = RT > 0,

with
(
A,Q1/2C

)
observable.

The objective of the design is to create a linear optimal
control as follows

u = −K∗x, (3.4)

which minimizes performance index (3.3), in which the
optimal feedback gain matrix K∗ is

K∗ = R−1BT P∗, (3.5)

where P∗ = (P∗)T > 0 is a symmetric solution to the well-
known algebraic Riccati equation (ARE) [38]

AT P∗ + P∗A +CT QC − P∗BR−1BT P∗ = 0. (3.6)

It should be noted that this optimal control design is mainly
applicable to low-order simple linear systems. In fact,
for high order large-scale systems, it is usually difficult to
directly solve P∗ from (3.6), which is nonlinear in P.

Also, for practical implementation of the control system,
it is easier to realize the data acquisition for the discrete-
time systems compared with continuous-time systems.
Consequently, we transform the continuous-time HSA into
the following discrete-time HSA as follows

xk+1 = Ad xk + Bduk, (3.7)

yk = Cxk, (3.8)

in which Ad = eAh, Bd =
∫ h

0

(
eAτdτ

)
B, where h > 0

is a specific sampling period, assuming ωh = 2π/h is
non-pathological sampling frequency, whose existence is
well known [39]. In other words, the controllability and
observability of the original continuous-time HSA system
is kept after discretization. Namely, if the state, input,
and output vector at the sampled instant kh are xk, uk, yk,
respectively, then (Ad,C) and

(
Ad,Q1/2C

)
are observable

while (Ad, Bd) is controllable.
The ADP-based controller for HSA system is divided

into three components: state reconstruction, critic, and
actor. The state reconstruction establishes a link between the
input and output data and HSA states solving the optimal
control of HSA with unknown dynamics. The controller’s
critic component is designed to estimate the control strategy
based on the input/output data. In order to enhance its
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effectiveness, the controller learns online. At last, the better
control strategy is implemented by the actor.

Minimizing (3.3) can be approximated using the PI
technique if the HSA system is fault-free (i.e., fa = 0).
The control goal is to provide a fault compensation control
strategy for systems (3.1)-(3.2) that experience actuator
faults in order to stabilize the closed-loop system.

Further, the performance index for discretized system
(3.7)-(3.8) is:

Jd(x0) =
∞∑
j=0

yT
j Qdy j + uT

j Rdu j, (3.9)

where Qd = Qh and Rd = Rh. The optimal control low
minimizing (3.9) is

uk = −K∗d xk, (3.10)

where discrete optimal feedback gain matrix is K∗d =(
R + BT

d P∗dBd

)−1
BT

d P∗dAd, in which P∗d is the unique
symmetric positive definite solution to

AT
d P∗dAd − P∗d +CT QC − AT

d P∗dBdK∗d = 0. (3.11)

Since equation (3.11) is nonlinear in P∗d, it is
difficult to directly solve P∗d for high order large scale
systems. Nevertheless, many efficient algorithms have been
developed to numerically approximate the solution of (3.11).
One of these algorithms was developed by Hewer [40], and
is introduced in the form of Lemma 3.1.

Lemma 3.1. Let K0 ∈ R
m×n be any stability feedback gain

matrix and let P j be the symmetric positive definite solution

of the Lyapunov equation(
Ad − BdK j

)T
P j

(
Ad − BdK j

)
+CT QdC + KT

j RdK j = 0,
(3.12)

where K j, j = 1, 2, . . . can be updated as follows

K j =
(
R + BT

d P j−1Bd

)−1
BT

d P j−1Ad. (3.13)

Then, it holds

1. Ad − BdK j is a stability matrix;

2. P∗d ≤ P j+1 ≤ P j;

3. lim
j→∞

K j = K∗d , lim
j→∞

P j = P∗d.

The solution to the nonlinear equation (3.11) is
numerically approximated by iteratively solving Lyapunov
equations (3.12), which are linear in P j, and recursively
updating the control low K j by (3.13) [40]. The sequences
{P j}

∞
j=0 and {K j}

∞
j=0, calculated by this method, converge to

P∗d and K∗d , respectively. Also, a Schur matrix is denoted as
Ad−BdK j for j = 0, 1, . . .. It should be noted that the method
by Hewers is an offline algorithm which is dependent on
system characteristics. To apply this method online for
the HSA model (3.7)-(3.8), it will be constructed an output
feedback ADP-based control method, which does not reliant
on knowing of HSA matrices.

Remark 3.1. For Hurwitz feedback matrix A − BK, K ∈

Rm×n is called stabilizing feedback gain matrix for a linear

system ẋ = Ax + Bu.

Inspired by [41, 42], HSA model (3.7)-(3.8) may be
developed employing inputs and outputs sequences on the
time horizon [k − N, k − 1] In the form of

xk = AN
d xk−N + V(N)ūk−1,k−N ,

ȳk−1,k−N = U(N)xk−N + T (N)ūk−1,k−N ,
(3.14)

where

ūk−1,k−N =
[
uT

k−1 uT
k−2 . . . uT

k−N

]T
,

ȳk−1,k−N =
[
yT

k−1 yT
k−2 . . . yT

k−N

]T
,

V(N) =
[
Bd AdBd . . . AN−1

d Bd

]
,

U(N) =
[
(CAN−1

d )T (CAd)T . . . CT
]T
,

T (N) =



0 CBd CAdBd · · · CAN−2
d Bd

0 0 CBd · · · CAN−3
d Bd

...
...

. . .
. . .

...

0 0 · · · 0 CBd

0 0 · · · 0 0


,

and the observability index is N = max(ρu, ρv) in which
ρu is the minimum integer which guarantees that U(ρu) is
of full column rank and ρv is the minimal integer which
assures that V(ρv) is of full row rank [41]. As a consequence,
U(N) has a left inverse that is expressed as U+(N) =[
UT (N)U(N)

]−1
UT (N). An ADP-based controller with

output feedback can be used to deal with the optimal control
issue of HSA. State reconstruction (3.14) is an essential part
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of this method, which uniqueness is expressed in the form of
Lemma 3.2 [43].

Lemma 3.2. If the system’s observability and controllability

requirements (3.7)-(3.8) are satisfied, the states of HSA are

uniquely obtained as a result of measurable inputs and

outputs as shown below

xk = Θzk, (3.15)

where Θ =
[
Mu My

]
is full row rank, Mu = V(N) −

MyT (N), My = AN
d U+(N), zk =

[
ūT

k−1,k−N ȳT
k−1,k−N

]T
∈ Rq,

in which q = N[dim(u) + dim(y)].

According to (3.12)-(3.13), an online output feedback
learning approach may be implemented in the form of u∗k =

−Kdzk, resulting in a suboptimal feature of the closed-loop
system. The discrete-time model (3.7) is shown below

xk+1 = A jxk + Bd

(
K jxk + uk

)
, (3.16)

where A j = Ad − BdK j. Setting K̄ j = K jΘ and P̄ j = Θ
T P jΘ,

from (3.12) and (3.16) it can be obtained

zT
k+1P̄ jzk+1 − zT

k P̄ jzk

=ϕ1
Kvec(H̄1

j ) + ϕ
2
Kvec(H̄2

j ) −
(
yT

k Qyk + zT
k K̄T

j RK̄ jzk

)
,

(3.17)

in which H̄1
j = BT

d P̄ jBd, H̄2
j = BT

d P̄ jAdΘ, ϕ1
K = uT

k ⊗ uT
k −

(zT
k ⊗ zT

k )(K̄T
j ⊗ K̄T

j ), ϕ2
K = 2

[
(zT

k ⊗ zT
k )(Iq ⊗ K̄T

j ) + (zT
k ⊗ uT

k )
]
.

The rank condition written in the form of Lemma 3.3
ensures the convergence of the online output feedback
learning control [42, 44].

Lemma 3.3. Let us suppose that for a sufficiently large s ∈

Z+ it holds:

rank(Γ) = (dim(u) + dim(z)) (dim(u) + dim(z) + 1) /2,
(3.18)

where

Γ =
[
ηk0 ⊗ ηk0 ηk1 ⊗ ηk1 · · · ηks ⊗ ηks

]
, (3.19)

where k0 < k1 < · · · < ks ∈ Z+ and ηk j =
[
uT

k j, z
T
k j

]T
, j =

0, s, then
(
P̄ j, H̄1

j , H̄
2
j

)
can be uniquely solved based on K̄ j

and measurable online data during the period k ∈ [k0, ks].
Further, K̄ j+1 is obtained as follows

K̄ j+1 =
(
R + H̄1

j

)−1
H̄2

j . (3.20)

To fulfill the condition of persistent excitation, some
exploration noise ek must be included in the input signal
without influencing the convergence of the online learning
phase [45, 46]. Applying the experimental design theory,
a sum of sine waves with different frequencies is added to
the input during the learning phase, which enables persistent
excitation. Note that (3.17) is called policy evaluation,
which is used to uniquely solve P̄ j, and (3.20) is policy
improvement (PI), which is used to update control gain K̄ j+1.
It should be noticed that solving (3.17) rather than (3.12),
completely removes the initial need for precise knowledge of
HSA dynamics. With the formulation for zk in mind, we can
see that the control policy ûk = −K

∗

kzk involves exclusively
the previous measurement of inputs and outputs.

Control law is designed as uk = ûk + f̂a, where
f̂a is the fault compensation term suggested to prevent
performance decline, which can be represented as f̂a,k+1 =

la
(
2ûkR − xT B̂)

)T
. This fault approximation is employed to

online compensate the effects of the actual actuator faults.

4. Simulation results

Consider the linear HSA (2.5)-(2.6) with actuator fault
fa(t):

ẋ(t) = Ax(t) + B(t) (u(t) − fa(t)) , (4.1)

y(t) = Cx(t). (4.2)

The term fa(t) denotes an unknown additive actuator fault
as:

fa(t) =



0, t ≤ 7 s,

3, 7 s ≤ t ≤ 11 s,

0, 11 s ≤ t ≤ 14 s,

1.5, · sin (0.1π · (t − 14)) 14 s ≤ t ≤ 16 s,

0, 16 s ≤ t ≤ 20 s,

(4.3)

for the purpose of simulation. A comparative view of actual
and estimated actuator fault, made up of a step and sine-type
faults, is shown in Figure 3.
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Figure 3. Fault estimation.

The weight matrices Q and R are set to be identity
matrices, the observability index is N = 3 and the initial state
vector is x0 = [−5, 0, 5] in order to illustrate the effectiveness
of the proposed ADP-based control of HSA while 10−4 is
chosen as the convergence threshold ε.

To illustrate the efficacy of the proposed ADP based FTC,
the system input and output as well as system states of HSA,
without the fault compensation are shown in Figure 4 and
Figure 5.
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Figure 4. Input and output of HSA without fault
compensation.
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Figure 5. States of HSA without fault
compensation.

As a result of the unknown actuator fault, the control law
uk cannot provide system stability. It is clear that for good
trajectory tracking, online compensation of the actuator fault
must be included in the control low.

The system input and output of HSA as well as the system
states under ADP-based control with fault compensation, are
shown in Figure 6 and Figure 7. It is evident that the system
states quickly reach equilibrium once a fault arises, which is
used to learn the fault online.
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Figure 6. Input and output of HSA with fault
compensation.
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Figure 7. States of HSA with fault compensation.

In spite of the existence of system uncertainties and
measurement noises, the tracking capabilities are good. It
can be seen that despite the presence of system uncertainties
and measurement noises, the tracking performances are
good.

Finally, it can be shown that the designed controller has
good flexibility and robustness. In order to further quantify
the results of the comparison of the fault-tolerant controller
using adaptive dynamic programming versus the ADP-based
controller without fault compensation, the following three
performance indices are given:

MS E =
1
N

N∑
i=1

(yd(i) − y(i))2 ,

IAE =
N∑

i=1

|yd(i) − y(i)|,

IT AE =
N∑

i=1

|yd(i) − y(i)|i,

(4.4)

The index MSE is used to evaluate the tracking accuracy.
The index IAE can evaluate the overshoot of the whole
process of the system. The index ITAE is employed to
evaluate the speed of the transient response. The numerical
results of these three indices are shown in Table 1.

Table 1. Numerical results.

Performance
indices

ADP-based
FTC

ADP-based
controller

MS E 0.004 21.254
IAE 12.548 486.018

IT AE 914.515 6.163 · 104

For MSE, the proposed fault-tolerant controller based on
ADP is about 99.98% lower than the ADP-based controller
without fault compensation. For IAE, the proposed
fault-tolerant controller based on ADP control is about
97.42% lower than the ADP-based controller without fault
compensation. Moreover, for ITAE, the proposed fault-
tolerant controller based on ADP is about 98.52% lower
than the ADP-based controller without fault compensation.
As a result, it can be obtained from the three indices in
Table 1 that the proposed scheme can achieve better tracking
performance with smaller tracking error, smaller overshoot
and faster response than the ADP-based controller without
fault compensation.

5. Conclusions

We develop a new data-driven FTC scheme for HSA
with completely unknown dynamics and the presence of
actuator faults based on ADP with an enhanced performance
index. The provided FTC strategy has the primary benefit
of avoiding knowledge of full system dynamics and faults
using output feedback, the state reconstruction method
and adaptive dynamic programming, which is extremely
significant in real-world settings. As a result, data-driven
FTC for discretized HSA was iteratively developed, and very
efficiently ensures online solutions to control HSAs, which
are regarded as highly nonlinear dynamic systems. Future
research may involve event-triggered ADP-based control for
industrial systems in order to reduce the interaction between
the controller and the actuators.
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