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Abstract: Intensive research in the field of mathematical modelling of the pneumatic cylinder has shown 
that its mathematical model is nonlinear and that a lot of important details cannot be included in the 
model. Selection of the model and the identification method have been conditioned by the following facts:  

a) The nonlinear model of the system can be approximated by a linear model with time-variant 
parameters  

b) There is the influence of the combination of heat coefficient, unknown discharge coefficient and 
change of temperature on the pneumatic cylinder model. Therefore it is assumed that the 
parameters of the pneumatic cylinder are random (stochastic parameters) 

c) In practical conditions, observations have a non-Gaussian distribution. 

Due to the abovementioned reasons, it is assumed that the pneumatic cylinder model is a linear stochastic 
model with variable parameters.  The Masreliez-Martin filter (robust Kalman filter) was used for 
identification of parameters of the model. For the purpose of increasing the practical value of the filter, 
the some heuristic modifications were performed. The behaviour of the new approach to identification of 
the pneumatic cylinder is illustrated by simulations. 
Keywords: pneumatic actuator, stochastic model, time-variant parameters, non-Gaussian distribution, 
robust filter 

 
1 INTRODUCTION 

Since pneumatically driven systems have a 
lot of distinct characteristics of energy-saving, 
cleanliness, simple structure and operation, and 
high efficiency and are suitable for working in a 
harsh environment, they have been extensively 
used for many years in robot driven systems and 
industrial automation [1]. 

However, the problem with complex 
nonlinear models, such as the pneumatic servo 
cylinder, is that it is difficult to choose the large 
number of physical parameters involved in the 
model. Although a lot of parameter values are 
known a priori with reasonable accuracy, a large 
number of parameters are only known within a 
certain range, and some are even completely 
unknown. This may be due to manufacturing 
tolerances, or due to the fact that manufacturers 
do not provide parameter values because they 
consider them as proprietary information. 

Furthermore, it is extremely difficult to 
accurately acquire some system parameters (such 
as component dimensions, internal leakage 
coefficients, static and dynamic friction forces, 
etc.) because the mentioned parameters cannot be 

directly measured or calculated. This causes a 
great difficulty in system modelling and control. 

The consequence of these problems is that 
the theoretical model is often not useful for 
quantitative analysis of the pneumatic servo-
system behaviour. 

The purpose of this paper is to use the 
theory and findings of system identification to 
obtain a mathematical model, so that the 
controller can be designed on the basis of the 
model. 

Östring et al. [2] identified the behaviour 
of an industrial robot in order to model its 
mechanical flexibilities, while Johansson et al. [3] 
used a state-space model to identify the robot 
manipulator dynamics. Assuming most 
parameters in pneumatic servo system do not 
change during operation, Shih and Tseng [4] 
performed the identification offline and adjusted 
servo-control before the operation accordingly. 
Furthermore, they investigated the impact of 
different parameters (sampling time, order model, 
different supply pressures, etc.) in the 
identification process. 

The mentioned references consider the 
linear models of the pneumatic cylinder which are 
ad hoc adopted, without considering justification 
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of such an approach. It is necessary to notice the 
following details: 

i. The pneumatic cylinder is a nonlinear 
system (presence of friction force) 

ii. There is a significant influence of the 
combination of the heat coefficient, 
unknown discharge coefficient and 
change of temperature on the behaviour 
of the pneumatic cylinder [5]. The 
mentioned influences cannot be easily 
included in the cylinder model and have 
random character. 

On the other hand, recent research has 
shown that the nonlinear model of the system can 
be approximated by a linear system with time-
variant parameters [6].  In this paper it is assumed 
that the parameters of the pneumatic cylinder 
model change randomly. The change of 
parameters is described by the random walk 
method, where the corresponding noise is 
modelled as the Gaussian stochastic process. The 
output error (OE) method is used as the 
identification algorithm. It is assumed that the 
measurement noise is non-Gaussian. Justification 
of this approach was confirmed in practice [7]. 
Namely, in measurements there are rare, 
inconsistent observations with the largest part of 
population of observations (outliers).  Therefore, 
synthesis of robust algorithms is of primary 
interest. 

The Masreliez-Martin filter is the natural 
frame for realization of the described algorithm. 
The model in the state space in which the process 
noise has a Gaussian distribution, and the 
measurement noise has a non-Gaussian 
distribution corresponds to the adopted model for 
the pneumatic cylinder. 

 
2 MODELLING OF A PNEUMATIC SERVO 

SYSTEM 

The system under consideration consists of 
an electro-pneumatic position control servo drive 
and a pneumatic actuator with a load as shown in 
Fig. 1. 

Applying Newton’s second law to the 
forces on the piston, the resulting force equation 
is 

( )a a b b e f e extA P A P my y F y k y F            (1) 

where aP and bP  denote the pressure of the 

chamber a  and b , respectively, m denotes the 
total mass of the piston and the load referred to 
the piston, y  is the piston displacement, e is the 

nonlinear viscous friction coefficient, ek denotes 

the load spring gradient; and extF denotes the load 

force disturbance on the piston. The term fF  in 

equation (1) describes the summing nonlinear 
effects of static and Coulomb friction forces of 
the system. 

 

Fig. 1 Schematic representation of the valve 
controlled  asymmetric  piston 

 

Pressure dynamics in the chambers, 
for ,i a b , is given by [5]: 

1( ) ( , , ) ( ) ( , , )i
i i i i

dP
t g P y y t h t P y u

dt
             (2) 

in which: 

( )
( , , )

( )
i i

i i
i

PV y
g P y y

V y
                                          (3) 

and  

1( , , ) ( )sgn( )
( )

S
i i i

i

RT
h t P y Wf P u

V y
                      (4) 

where 
 
R is the universal gas constant,W is a spool 
constant, ST is ambient absolute temperature. 

If the state variables and the input 
variables are defined as 

1x y , 2x y , 3 ax P , 4 bx P , 1u (valve input) 

2 extu F (external disturbance) then a completely 

nonlinear model of the pneumatic servo-system, 
can be written as: 
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Uncertain heat coefficient ( )t  depends on 

the actual heat transfer occurring during the 
process. As it can be seen from [5], ( )t takes 

values between 1 and 1.3997. 
Uncertain bound parameter ( )t , which 

takes values between 0.075 and 1.3297 (see [5]), 
is used to characterize the combination of the heat 
coefficient ( )t , the unknown valve discharge 

coefficient ( )dC t  and the variation of the 

temperature ( )t . Thus, ( )t  is generally 

expressed by: 

( ) ( ) ( ) ( )dt t C t t                                         (6) 

 
Since uncertain heat coefficient ( )t and 

uncertain bound parameter ( )t , are only known 

in the certain range, it can be considered that their 
changes have random character. Since mentioned 
uncertain coefficients are involved (directly or 
indirectly) in the state variables, previous analysis 
has justified the assumption that the system is 
considered as stochastic. 
                     

3 STOCHASTIC MODEL OF THE 
PNEUMATIC ACTUATOR 

The previous section shows that the 
mathematical model of the pneumatic cylinder in 
nonlinear and that it is not possible to include a 
large number of important details in the model. 
The natural way of solving this problem is to 
apply the identification theory. In that case the 
following problems arise: 

 Type of the model (linear, nonlinear, 
deterministic, stochastic) 

 Nature of disturbance (uniformly  
constrained, stochastic) 

The following three facts have conditioned 
the choice of the model: 

a) Recent research has shown that the 
nonlinear model of the system can be 
correctly approximated by a system with 
time variant parameters [6] 

b) A more detailed analysis of the 
pneumatic cylinder model described in 
the previous section shows that the 
combination of heat coefficient, 
unknown discharge coefficient and 
change of temperature influences the 
model of cylinder [5]. Those influences 
are random and therefore it is assumed 
that the parameters of the pneumatic 
cylinder are random. 

c) Practical and theoretical research has 
shown that in a stochastic model of the 
system there are some observations that 
are inconsistent with the largest part of 
the population (outliers) [7], and that is 
why the disturbance in the model 
(measurement noise) is non-Gaussian. 

The mentioned reasons lead to the 
assumption that the model of the pneumatic 
cylinder is a stochastic linear model with time 
variant parameters. 

Taking into account the physics of the 
problem, it will be assumed that the change of the 
parameters has the form of random walk 

( 1) ( ) ( )k k k                                            (7) 

where the  stochastic process ( )k  is Gaussian 

with the mean value zero and the covariance 
matrix ( )W k . 

The output error method based on systems 
with a reference model will be used as a model 
which describes the dynamics of the pneumatic 
cylinder. 

The output of the model without 
disturbance will be denoted as ( )ny k . The 

dynamics of the model in that case is described as  

1

1

( ) ( ) ( 1) ( ) ( )

( ) ( 1) ( ) ( )
n n n n

m

y k a k y k a k y k n

b k u k b k u k m

     
    

  (8) 

Let us introduce the following vectors  
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1 1( ) [ ( ), , ( ), ( ), , ( )]T
n mk a k a k b k b k           (9) 

0 ( ) [ ( 1), , ( ),

( 1), , ( )]

n n

T

k y k y k n

u k u k m

     

 
                 (10) 

In that case the dynamics of the system 
with disturbance is given by the following 
relation 

0( ) ( ) ( ) ( )Ty k k k k                                    (11) 

The disturbance ( )k  is non-Gaussian and 

includes the presence of outliers. 

The problem with the relation (8) is that 
the values ( )ny k i , ( 1,2, , )i n  cannot be 

measured. Therefore, these values are calculated 
by using the current estimates of the parameters 
 . It results in 

1

1

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( 1) ( ) ( )

ˆ ˆ( ) ( 1) ( ) ( )

n n n n

m

y k a k y k a k y k n

b k u k b k u k m

     

    
 (12)  

the following vectors are introduced 

1 1̂
ˆˆ ˆ ˆ( ) [ ( ), , ( ), ( ), , ( )]T

n mk a k a k b k b k          (13) 

ˆ ˆ( ) [ ( 1), , ( ),

( 1), , ( )]

n n

T

k y k y k n

u k u k m

     

 
                   (14) 

the relation 

ˆˆ ( ) ( ) ( )T
ny k k k                                            (15) 

is obtained. At the moment k , before the estimate 
ˆ( )k is known, the prediction of the model is [8] 

ˆˆ( ) ( 1) ( )Ty k k k                                          (16) 

 
The natural definition of the prediction error is  

ˆ( ) ( ) ( )k y k y k                                              (17) 

Let us assume that the system in the state 
space can be described as  

( 1) ( ) ( ) ( )x k F k x k w k                                 (18) 

( ) ( ) ( ) ( )y k H k x k v k                                     (19) 

where 
  ( ) nx R  , ( ) n nF R   , ( ) nw R    

 1( )y R  , 1( ) nH R   , 1( )v R   

The value ( )x   is the state vector,  ( )y   is 

the system output, and ( )w   and ( )e   are the 

process noise and the measurement noise, 
respectively. It is assumed that the process noise 
is Gaussian (0,W(k)) , where W(k) is the 

covariance matrix, and ( )  is the measurement 

noise which has non-Gaussian distribution. 

In reference [9] Masreliez and Martin 
proposed the robust Kalman filter for the 
mentioned situation. This filter has small 
sensitivity to the presence of outliers in 
comparison with the standard Kalman filter 
deduced for the case when the values ( )w   and 

( )   have Gaussian distribution. 

The originally proposed robust Kalman 
filter [9]  includes two values which are not easy 
to determine in practical conditions. They are the 
scalar transformation ( )T k  as well as the member 

in the a posteriori covariance matrix 

 
0

' ( ( ))fE k  . The mentioned member 

represents Fisher information for the least 
favourable probability density [10] 

'2 ( )
( )

( )

p
I p d

p

 






                                      (20) 

 
In order to increase the practical values of the 
robust Kalman filter [9] the following heuristics 
were performed: 
 

a) For the scalar transformation ( )T k  it has 

been adopted that ( ) 1T k   

b) The member  ' ( ( ))PE k

   was 

approximated by the realization of 
' ( ( ))k   

 
Intense simulations justified such interventions. 
Now the proposed robust Kalman filter [9]  
obtains the following modified form: 
 
ˆ ˆ( ) ( 1) ( 1 1) ( 1)

ˆ( ) [ ( ) ( ) ( 1) ( 1 1)]T

x k k F k x k k P k k

H k y k H k F k x k k

      

    
  (21) 

( 1) ( 1) ( 1 1) ( 1)

( 1)

TP k k F k P k k F k

W k

      

 
 (22) 
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( ) ( 1) ( 1) ( ) ( )

( 1)

ˆ( ) ( ) ( 1) ( 1 1)

TP k k P k k P k k H k H k

P k k

y k H k F k x k k

    

 

    

 (23) 

It is important to notice that the second 
heuristic modification increases the rate of 
convergence (21)-(23) in the initial iterations. 
Namely, the relations (21)-(23) for the robust 
Kalman filter gain result in: 

 '

( ) ( 1) ( 1 2)

( 1 2) ( ) ( ) ( 1 2)

( ) ( 1) ( ) ( 1) ( )

T

T T T

K k F k P k k

P k k H k H k P k k

k F k H k W k H k 

     
     

   

 (24)  

If ( )k k  , the relation (24) becomes 

( ) ( 1) ( 1 2) ( 1)

( 1) ( 1) ( )

T

T T

K k F k P k k F k

H k W k H k

     

  
         (25)    

It means that the bigger the estimation 
errors, the higher the filter gain and thus the 
higher rate of estimation convergence. 

By comparing the relations (7) and (11) 
with the relations (18) and (19) and taking care 
that the vector 0 ( )k should be replaced with 

( )k and by substituting for the values  

( )F k I , ( ) ( )TH k k , ˆˆ( ) ( )x k k k        (26) 

a recursive algorithm for estimation of time-
variant parameters is obtained in the relation (21)-
(23). 
 

4 ILUSTRATIVE EXAMPLE 

The model of a pneumatic cylinder whose 
time varying parameter vector has the expected 
value: 




0.9131 0.3523 0.1118 0.2318

0.0413  0.0766 0.0115     0.0647
T

   


     (27) 

is considered for the purpose of demonstrating the 
performance of the proposed robust procedure for 
parameters estimation. The  process noise ( )k  

is Gaussian with the zero mean value and the 
covariance matrix  

 ( ) ( ) ( )TW k E k k  , where 




1 2 3 4

5 6 7 8

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
T

k w k w k w k w k

w k w k w k w k

 
           (28) 

If the probability density is denoted as 
2( ) ( , )N Np N m   where m is the mean value, and 

2
N  is the dispersion, then: 

6 8
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6 8
2 6

6 8
3 7

6 8
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( ) (0;2 10 ), ( ) (0;2 10 ),

( ) (0;3 10 ), ( ) (0;2.2 10 ),

( ) (0;2.5 10 ), ( ) (0;2.5 10 ),

( ) (0;2.2 10 ), ( ) (0;3 10 ).
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Figures 2 to 5 show the system output, parameter 
estimates, and mean square error in the case when 
the contamination 0.05  . 

 

Fig. 2 Simulation of the measured output signal of 
the system with the contamination   0.05 

 

Fig. 3 Estimates of the parameter ia  obtained in 

a non-Gaussian noise environment with the 
contamination   0.05 
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Fig. 4 Estimates of the parameter ib  obtained in 

a non-Gaussian noise environment with the 
contamination   0.05 

The simulation results are compared in terms of 
mean square error (MSE), defined by 

 2ˆlog ( ) ( )MSE k k                                (29) 

 

Fig. 5 Mean square error, obtained in a non-
Gaussian noise environment with the 
contamination   0.05 

Remark 1: The presented results have 
shown that the classical Kalman filter is very 
sensitive to the non-Gaussian measurement noise 
presence, as opposed to the proposed robust 
Kalman filter. 

5 CONCLUSION 

The paper considers a new mathematical 
model of the pneumatic cylinder. Change of 
parameters of the model is described by random 

walk. It is assumed that the cylinder is described 
by means of the output error model, where the 
measurement noise is non-Gaussian. Since the 
system is described with a stochastic model with 
variable parameters, the natural frame for 
identification is the Masreliez-Martin filter (the 
robust Kalman filter). Heuristic modifications of 
the mentioned filter which considerably increase 
its practical values were performed. The results of 
this paper can be the starting point for design of 
an adaptive regulator. 
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