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Abstract 
  

This paper presents an approach to the free vibration analysis of planar serial flexure-hinge 

compliant mechanisms basing on a pseudo-rigid-body method with 3-DOF (degrees of freedom) 

joints. The considered type of compliant mechanisms contains rigid links interconnected by 

flexure hinges. It is assumed that the flexure hinges undergo small in-plane deformations. Also, 

the masses of flexure hinges are ignored with respect to the masses of rigid links.  Two lateral and 

one rotational springs with corresponding stiffnesses are placed in each joint in the pseudo-rigid-

body model of the considered type of compliant mechanisms. The circular hinge type of flexure 

hinges is considered.  Theoretical considerations are accompanied by a numerical example. In the 

numerical example a RRR compliant micro-motion stage is analyzed. The influence of the spring 

stiffnesses determined based on various flexure hinge compliance equations available in the 

literature on the vibration frequencies of the compliant mechanism is studied. Also, the 

comparison of accuracy in the determination of vibration frequencies of the compliant mechanism 

between the proposed pseudo-rigid-body method and the classical pseudo-rigid-body method 

(with one-DOF revolute joints) is given. 
 

Key words: flexure hinge, pseudo-rigid-body method, compliant mechanism, RRR compliant 

micro-motion stage, frequencies 

 

 

1. Introduction 

 

In this paper the dynamic analysis of planar compliant mechanisms with flexure hinges of 

various shapes (circular notched, corner filleted, parabolic etc.) is considered. It is assumed that 

the elastic deformations of the flexure hinges are small.  In the literature, for this purpose, various 

approaches were used. So, the finite element method was used in [1-4]. On the other hand, the 

compliance matrix method in combination with the Newton-Euler equations of motion was 

applied in [5,6] . Finally, the pseudo-rigid-body model (PRBM) method [7] was used in [8-11].   
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The PRBM method approach from [7] is based on the use of one degree of freedom (1-DOF) 

joint (revolute joint) with a corresponding rotational spring of a stiffness Rk  (see Fig.1(b)). This 

type of the PRBM will be denoted by 1-PRBM. Moreover, in [12] it is proposed a new PRBM 

method denoted by 3-PRBM that uses a 3-DOF joint with two lateral springs of stiffness 1Lk  and 

2Lk  as well as one rotational spring of a stiffness Rk (see Fig.1(c)). In Fig. 1, the quantities  , 

 , and   represent, respectively, one relative angular and two linear joint displacements. 

 

 
 

Fig. 1. Pseudo-rigid-body models of a flexure hinge with transverse symmetry axis 

 

The stiffnesses of the springs shown in Fig. 1 are calculated as follows (see, for details, [12]): 
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where aC  is the axial compliance of the flexure hinge, ,b tC  is the bending translatory 

compliance of the flexure hinge, ,b rC  is the bending rotary compliance of the flexure hinge,   is 

the Poisson’s ratio, F  is the shear correction factor ( 6 / 5F   for the rectangular cross-

section). The expression for the stiffness 2Lk  in Eq. (2) holds for the short flexure hinges with 

max( , ( )) 5b t x L  where b  is the constant out of plane width and ( )t x  is the variable thickness of 

the flexure hinge (see Fig. 1). For the case of long flexure hinges with max( , ( )) 5b t x L  one has 

that: 
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Note that the compliance coefficients aC , ,b tC , and ,b rC  may be determined by using the 

Castigliano’s second displacement theorem (see [2, 13] ) as follows:        
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where E  is the Young’s modulus as well as by using the finite element analysis [19, 20] and by 

the integration of linear differential equations of beams [14]. The closed form symbolic 

expressions for the compliance coefficients defined by Eqs. (5)-(7) can be found in [2,14-16]. 

 

 

2. Determination of natural frequencies of a planar serial flexure-hinge mechanism 

 

Figure 2 shows a planar serial compliant mechanism composed of flexure hinges 

(# )( 1, , )i i n  and the rigid links ( )( 0,1, , )iV i n . Note that the rigid link 0( )V  is fixed. The 

flexure hinges are positioned in the horizontal plane Oxy  of the inertial reference frame Oxyz  in 

which the rigid links are performing planar motion. Without loss of generality, it is assumed that 

adjacent rigid links are connected by the circular notched type of flexure hinges (see Fig. 3). As a 

rule, the gravity is ignored in the dynamic analysis of compliant mechanisms so that in the further 

consideration gravity is not considered.  Taking this fact into account, in absence of active 

external forces applied to the rigid links the flexure hinges are undeformed in the equilibrium 

configuration of the compliant mechanism. 

The 3-PRBM of the considered compliant mechanism is shown in Fig. 4 where 

( 1, , )iC i n  are the mass centers of the rigid segments, ( 1, , )
iC i nr  are the position vectors 

of the mass centers with respect to the inertial frame Oxyz , 
( )iV
id  and 

( )
1
iV

id  are the position 

vectors of the joints iJ  and 1iJ  , respectively, relative to the mass center iC , 

( 1, , )i i i iO i n     are the flexure hinges local frames fixed to the rigid links  
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( )( 0,1, , 1)jV j n  , respectively. In the equilibrium configuration of the compliant mechanism 

the axes ( 1, , )i i n   make the angles ( 1, , )i i n   with the axis x (see Fig. 4). Note that the 

axes ( 1, , )i i n   coincide with the axial symmetry axes of the undeformed hinges 

# ( 1, , )i i n , respectively.  

 

 

 
 

Fig. 2. A planar serial mechanism composed of rigid links and flexure hinges 

 

 

 
 

Fig. 3. A circular notched flexure hinge 

 

Denoting  by ixu  (displacement of the mass center iC  in the direction of x -axis), iyu ( 

displacement of the mass center iC  in the direction of y -axis), and i (angular displacement of 

the rigid segment ( )iV  in the plane Oxy ) small displacements by which the displacement of the 

rigid segment ( )iV  is described with respect to the equilibrium configuration of the compliant 

mechanism, the relative translatory displacements in the joints ( 1, , )iJ i n  can be written as 

follows (for details see [12] ): 
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where [ 0] ( 1, , )
i

T
J i i i n   u    are the vectors of relative translatory displacements at the 

joints ( 1, , )iJ i n  expressed in the local frames ( 1, , )i i i iO i n   , respectively, (see Fig.1 

(c)), 
( ) ( ) ( )

0i i i
T

V V V
i ix iyd d 

  
d and 

( ) ( ) ( )
1 1 1 0i i i

T
V V V

i i x i yd d  
 
  

d  are the position vectors of the joints 



S. Šalinić, A. Nikolić , Determination of natural frequencies of a planar serial flexure-hinge  mechanism…………  

5 

iJ  and 1iJ   with respect to the mass center of rigid segment ( )iV  in the equilibrium 

configuration of the mechanism, respectively, iΘ  is the skew-symmetric matrix that is formed 

from the components of  the vector [0 0 ]Ti iΘ  in the inertial frame, and 3 3( 1, , )i R i n A  

are the transformation matrices of the coordinates from the inertial frame Oxyz into the local 

hinge frames ( 1, , )i i i iO i n   , respectively, given by: 

cos( ) sin( ) 0 cos sin 0

sin( ) cos( ) 0 sin cos 0 ,

0 0 1 0 0 1

i i i i i i

i i i i i i i
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     
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   

     
   
      

A                                   (10) 

where, based on the small displacements assumption, it is taken that cos( ) cosi i i     and 

sin( ) sini i i    .  

 

 

 

Fig. 4. The pseudo-rigid-body model of the compliant mechanism 

 

Based on the above considerations, the potential energy of the compliant mechanism reads: 
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while the kinetic energy of the mechanism is: 
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where [ 0]
i

T
C ix iyu ur . Introducing the vector of generalized coordinates 1 3[ ]Tnq qq , where  

( 1, , )i ixq u i n  , ( 1, , )n i iyq u i n   , and 2 ( 1, , )n i iq i n   , the expressions for the 

kinetic and the potential energy can be written in the following matrix form: 
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1
,

2

T  q Kq     (14)       

where  3 3n nR M  and 3 3n nR K  are the mass and stiffness matrices of the compliant 

mechanism, respectively, defined as follows:   
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Finally, applying the Lagrange equations of the second kind [17] the differential equations 

describing a free vibration of the compliant mechanism read:   

3 1,n Mq Kq 0     (17)       

where 3 1
3 1

n
n R 
 0   is a zero matrix. The eigenvalue problem [18] corresponding to the 

differential equations (17) reads: 

 2
3 1,n  K M U 0     (18)       

where   is the natural angular frequency determined from the frequency equation: 

 2det 0, K M     (19)       

and U  represents the eigenvector associated with the natural angular frequency   . In addition, 

the natural frequency of the compliant mechanism is calculated as / (2 )f   . 

 

3. A numerical example 

 

A RRR compliant micro-motion stage consisting of three rigid links, 1( )V , 2( )V , and 3( )V ,  

and three identical circular notched flexure hinges, #1 , #2 , and #3 ,  is shown in Fig. 5. Both the 

geometrical parameters of the rigid segments and the flexure hinges are also depicted in Fig. 5. It 

is taken that the compliant mechanism is made of  aluminium alloy 7075 with a modulus of  

elasticity 11 20.717 10 /E N m  , Poisson’s ratio 0.33  , a density 32810 /kg m  , where 

numerical values of the geometric parameters of the flexure hinges and the rigid links  shown in 

Fig. 5 are (see also [19] ):   

1 15.5L mm , 2 19.5L mm , 3 28L mm , 4 8L mm , 5 10.5L mm , 6 27L mm , 

7 31L mm , 1 2 3 0.94t t t mm   , 1 2 3 1.5R R R mm   , 12.7b mm . 
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Fig. 5. The RRR compliant micro-motion stage 

 

The eigenvalue problem defined by Eq. (18) for the considered compliant mechanism is 

solved for the following four cases: 

 Case 1. Flexure hinge compliances calculated based on [20]:  
94.143 10 /aC m N  , 8

, 1.561 10 /b tC m N  , , 0.0254 /b rC rad Nm  

 Case 2. Flexure hinge compliances calculated based on [14]:  
91.534 10 /aC m N  , 8

, 4.994 10 /b tC m N  , , 0.0222 /b rC rad Nm  

 Case 3. Flexure hinge compliances calculated based on [2]: 
92.402 10 /aC m N  , 8

, 5.155 10 /b tC m N  , , 0.0204 /b rC rad Nm  

 Case 4. Flexure hinge compliances calculated based on [19]: 
92.415 10 /aC m N  , 8

, 7.190 10 /b tC m N  , , 0.0254 /b rC rad Nm  

In the case of the quasi-static response analysis of the RRR compliant micro-motion stage, in [19] 

it is shown that Case 4 gives the most accurate results when compared to the results obtained by 

the finite element method. So, in our paper, the vibration frequencies of the mechanism obtained 

for Case 4 are taken as the reference values for the calculations of percentage frequency errors for 

the remaining three cases. The percentage frequency errors are calculated as: 

( ) ( 4)
100%, 1,2,3.

( 4)

f Casei f Case
i

f Case


                                             (20) 

The first three frequencies of the RRR compliant micro-motion stage along with the 

corresponding percentage errors are  shown in Table 1. The values shown in Table 1 show the 
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influence of the values of compliances aC , ,b tC , and ,b rC  obtained based on various flexure 

hinge compliance equations on vibration frequencies for the RRR compliant micro-motion stage. 

 

Case 
Natural frequencies ( )if Hz   

1f   2f   3f   

Case 1 
262.003 

(0.12%) 

512.511 

(0.42%) 

2283.16 

(3.87%) 

    

Case 2 
280.037 

(7%) 

546.743 

(7.13%) 

2381.48 

(8.34%) 

    

Case 3 
292.051 

(11.6%) 

569.741 

(11.6%) 

2462.97 

(12%) 

    

Case 4 261.698 510.368 2198.18 

 

Table 1. The lowest three natural frequencies ( 1,2,3)if i   for a RRR compliant micro-motion stage 

obtained for various flexure hinges compliances values 

 

 

Finally, the comparison of accuracy in determination of natural frequencies between our 

PRBM method and the PRBM method based on one-DOF revolute joints for different methods of 

calculation of the values of compliances aC , ,b tC , and ,b rC  is shown in Table 2.  

 

 

Case Method  
Natural frequencies ( )if Hz   

1f   2f   3f   

Case 2 3-PRBM 280.037 546.743 2381.48 

     

 1-PRBM 280.081 547.109 2393.06 

  (0.02%) (0.07%) (0.5%) 

     

Case 3 3-PRBM 292.051 569.741 2462.97 

     

 1-PRBM 292.176 570.736 2496.41 

  (0.04%) (0.17%) (1.4%) 

     

Case 4 3-PRBM 261.698 510.368 2198.18 

     

 1-PRBM 261.844 511.486 2237.25 

  (0.06%) (0.22%) (1.8%) 

 

Table 2. The lowest three natural frequencies ( 1,2,3)if i   for a RRR compliant micro-motion stage 

obtained by two different PRBM methods 

 

The percentage frequency errors appeared in Table 2 are calculated as: 

(1 ) (3 )
100%, 1,2,3.

(3 )

f PRBM f PRBM
i

f PRBM

  
 


                                           (21) 
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4. Conclusions 

 

In this paper a new pseudo-rigid-body model method based on 3-DOF joints has been 

proposed.  The proposed method allows a relatively simple way for the determination of natural 

frequencies of planar serial flexure-hinge compliant mechanisms. Also, our method requires 

much less computational effort for the determination of natural frequencies in comparison to the 

finite element method [2,4] and the method based on compliance matrices and Newton-Euler 

equations of motion [5,6]. All relations are derived in the symbolic form which represents the 

benefit with solving various optimization problems of flexure based compliant mechanisms. The 

considerations in this paper can be easy adapted to study vibration problems of planar compliant 

mechanisms with tree-like and closed-loop multibody structures. In addition, the dynamic 

analysis of tree-like and closed-loop multibody structures using the 1-PRBM method require the 

application of the differential equations of motion with the Lagrange multipliers which is not the 

case if the 3-PRBM method to be used. In this sense the 3-PRBM method is more suitable than 

the 1-PRBM method for dynamic analysis of single-loop and multiple-loop flexure based 

compliant mechanisms. Also, in contrast to the 3-PRBM method, by 1-PRBM method can not be 

taken into account shear effects in the deformations of short flexure hinges because the stiffness 

Rk  is the same for both short and long flexure hinges (see the expression (3)). 
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