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Abstract—Differential eigenvalue problem of stepped 
column with lumped mass at the top was analysed by finite 
difference method. Exact differential governing equation 
and boundary conditions were discretized with central 
differences applied upon grid points along the column. 
Boundary value problem was transformed in an 
appropriate and compact structure of algebraic equations 
written in matrix form, suitable for development of 
computer routines. For a comparison purpose, a finite 
element method analysis was conducted in ANSYS. 
Presented model gave natural frequencies that were in a 
very good agreement with the results obtained from finite 
element simulation.
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I. INTRODUCTION

Being frequently utilized as a part of many 
engineering structures, the beams with varying cross-
section were extensively investigated during past decades.
One group of non-uniform beams are the ones with 
continuously variable cross-section, i.e. tapered beams, 
whose free bending vibration was researched by many 
authors [1-5]. On the other hand, there is another type of 
non-uniform beams with step changes of cross-sections, 
such as multi step shaft parts, columns in civil 
engineering, etc. Published researches on free bending 
vibration of stepped beams with various types of supports 
are numerous. For example, S. Naguleswaran [6,7] used 
analytical method and continuity of deflection, slope, 
bending moment and shearing force to calculate the 
frequencies of beams with up to three step changes in 
cross-section. Li et al. [8] developed a finite element with 
generalized degrees of freedom for the dynamic analyses
of beams and plates with cross-section varying in a 
continuous or discontinuous manner. Qiao et al. [9]
presented analytical method for investigating free flexural 
vibrations of non-uniform multi-step Euler–Bernoulli 
beams with any kind of support configurations and 
carrying an arbitrary number of single-degree-of-freedom 
and two-degree-of-freedom spring–mass systems. 

Koplow et al. [10] found an analytical solution for the 
dynamic response of a discontinuous beam with one-step 

change. Jaworski and Dowell [11] considered the 
accuracy and convergence of the Rayleigh–Ritz method, 
component modal analysis, and the finite element method 
in the free vibration analysis of a multiple-stepped 
cantilevered beam. Yet, the demand for shorter time for 
design force the mechanical and civil engineers to act
promptly to the new challenges in structural design with 
some efficient but acceptably accurate solutions. In 
another words, real-life structural design tasks, with are 
becoming more complex, usually impose the use of some 
numerical approaches. Engineers mostly use finite 
element method (FEM) to solve everyday tasks, but it is 
mostly used for case studies. On the other hand, finite 
difference method (FDM) allows to obtain also 
approximate but wider solutions. Survey upon available 
literature revealed the fact that FDM was not utilized as
often as it deserves to be. AL-Sadder and AL-Rawi [12] 
used FDM for static large-deflection analysis of non-
prismatic cantilever beams subjected to different types of 
continuous and discontinuous loadings. Awrejcewicz et al. 
[13] studied regular and chaotic dynamics of the uniform
Euler-Bernoulli beams and used FDM and finite element
method (FEM) to verify the reliability of the obtained
results. This paper presents a detailed workflow for
development of the FDM scheme for the eigenvalue
analysis of the stepped column with lumped mass at its
top in transverse bending vibration. Presented approach
gives a numerical scheme, which is suitable for
development of computational algorithms. Such codes
enable engineers to obtain natural frequencies of the
stepped column for various design cases, i.e. input
parameters, quickly but with acceptable accuracy.
Presented approach can be extended to cases with any
number of step changes in cross-section and with elastic
support. Accuracy of the obtained results is verified by
FEM analysis and the results are in a very good
agreement.

II. MODEL DESCRIPTION AND GOVERNING EQUATION

The case being considered, a three-segment stepped 
column with lumped mass M at its top, is presented in 
Fig.1.



Fig. 1 The model of three-segment stepped column with lumped mass at 
the top and its cross-sections

Analysis is based on Euler-Bernoulli beam theory, i.e. 
on the assumption that the rotatory inertia of the 
differential element and shear effects are negligible. The 
partial differential equation for the free vibration of 
beams in bending, according to Euler-Bernoulli beam 
theory, is well known [14]
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Free vibration is harmonic, so the transverse 
displacement of the beam can be expressed in the form

( , ) ( )cos( ),  0y x t CY x t x l (2)

where C is amplitude, Y(x) is a mode shape function, 
ω is circular natural frequency and φ is a phase angle. If
the bending stiffness I(x) and the unit mass m(x) are 
constant within each segment, we obtain the differential 
eigenvalue problem for Euler-Bernoulli beam in bending
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So, the whole column is considered as system 
consisted of three beams, where each segment has a mode 
shape governing equation and four boundary conditions, 
two conditions per end of segment. Boundary conditions 

at the clamped support are related to deflection and slope 
as follows:

1( 0) 0Y x (4)

1 '( 0) 0Y x (5)

Boundary conditions at the junction of segments 1 
and 2 (point B) are continuity conditions of deflection, 
slope, bending moment and shear force:

1 1 2 1( ) ( )Y x l Y x l (6)

1 1 2 1'( ) '( )Y x l Y x l (7)

1 1 1 2 2 1''( ) ''( )EI Y x l EI Y x l (8)

1 1 1 2 2 1'''( ) '''( )EI Y x l EI Y x l (9)

Similarly, boundary conditions at the junction of 
segments 2 and 3 (point C) are continuity conditions of 
deflection, slope, bending moment and shear force:

2 1 2 2 1 2( ) ( )Y x l l Y x l l (10)

2 1 2 3 1 2'( ) '( )Y x l l Y x l l (11)

2 2 1 2 3 3 1 2''( ) ''( )EI Y x l l EI Y x l l (12)

2 2 1 2 3 3 1 2'''( ) '''( )EI Y x l l EI Y x l l (13)

Boundary conditions for the column top, with fixed 
lumped mass M (point D), are related to bending moment 
and shear force:

3 1 2 3''( ) 0Y x l l l (14)
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III. DISCRETIZATION OF BOUNDARY VALUE PROBLEM BY 
FDM

Fig. 2a shows central finite difference grid scheme 
where the total length of the column L is equally divided 
by grid points into N segments with length /s l N . To 
apply the method, there are three fictitious grid points 
added to the scheme, one before the root grid point and 
two after free-end grid point. Also, there are additional 
fictitious displacements (superscript f) at the junction of 
each pair of adjacent segments as their shape functions 
have different domains (Fig. 2b).

Central finite difference approximations for 
derivatives of shape function Y(x) for grid point n are as 
follows
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Fig. 2 a) Central finite difference grid scheme used for discretization of 
boundary value problem; b) additional fictitious displacements at the 
junction of two adjacent segments.

After conversion of all constituent equations through 
discretization, we combine them and form the algebraic 
eigenvalue problem. In fact, by insertion of discretized 
boundary conditions into discretized governing equation, 
all external fictitious displacements Yf

-1, Yf
N+1, Yf

N+2 and 
internal fictitious displacements Yf

n-2, Yf
n-1, Yf

n+1, Yf
n+2 at

segments’ junctions are being eliminated, which yields a 
set of N algebraic equations with Yn, n=1,…,N as 
unknowns and 2 4s as a parameter. Discretized 
governing equation for mode shape function was written 
for each grid point, where only expressions for junction 
grid points and their adjacent ones differ from a standard 
form of discretized governing equation. The system of 
equations is given as follows.

1 1 2 3 11: 7 4n B Y Y Y Y (20)

1 1 2 3 4 22 : 4 6 4n B Y Y Y Y Y (21)

For grid points within interval n=3 ÷B-2 it reads:

1 2 1 1 24 6 4n n n n n nB Y Y Y Y Y Y (22)

For grid point n=B-1 it reads:

1 3 2 1 1 2 3 1 14B B B B B BB Y Y PY P Y PY Y (23)

For grid point n=B it reads:

1 4 2 5 1 6 7 1 8 2B B B B B BB P Y PY P Y P Y PY Y (24)

For grid point n=B+1 it reads:

2 9 1 10 11 1 2 3 14B B B B B BB PY P Y P Y Y Y Y (25)

For grid points within interval n=B+1 ÷C-2 it reads:

2 2 1 1 24 6 4n n n n n nB Y Y Y Y Y Y (26)

For grid point n=C-1 it reads:

2 3 2 1 1 2 3 1 14C C C C C CB Y Y Q Y Q Y Q Y Y (27)

For grid point n=C it reads:

2 4 2 5 1 6 7 1 8 2C C C C C CB Q Y Q Y Q Y Q Y Q Y Y (28)

For grid point n=C+1 it reads:

3 9 1 10 11 1 2 3 14C C C C C CB Q Y Q Y Q Y Y Y Y (29)

For grid points within interval n=B+1 ÷C-2 it reads:

3 2 1 1 24 6 4n n n n n nB Y Y Y Y Y Y (30)

For grid point n=D-1 it reads:

3 3 2 1 14 5 2D D D D DB Y Y Y Y Y (31)

Finally, discretised equation for end grid point at the 
top of the column is:

2 12 4 2D D D DW Y Y Y Y (32)

The list of condensed expressions from previous 
system of equations is given in Table1.

TABLE I LIST OF CONDENSED EXPRESSIONS

1 1 1/B EI m 9 2 / (1 )P a a

2 2 2/B EI m 10 (6 2) / (1 )P a a

3 3 3/B EI m 11 (7 5) / (1 )P a a

1 2/a I I 1 (5 7) / (1 )Q c c

2 1/b m m 2 (6 2 ) / (1 )Q c c

2 3/c I I 3 2 / (1 )Q c

3 2/d m m 4 2 / (1 )Q d

1 (5 7) / (1 )P a a
5

4(3 )
(1 )(1 )

cQ
d c

2 (6 2 ) / (1 )P a a 2

6
2 20 2
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IV. NUMERICAL EXAMPLE AND VERIFICATION

Based on the previous system of equations, 
appropriate MatLAB code was written and the 
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characteristic equation was solved. In order to verify the 
applied approach, the FEM analysis is performed by 
using ANSYS software. Circular hollow sections with 
constant and equal wall thickness are taken for segments’ 
cross-sections, therefore the bending stiffness variation is 
done by changing the diameters values. Wall thickness of 
pipes was δ=5[mm] and overall height of column was
l=3000[mm]. In all cases, the diameter of first segment is 
D1=100[mm], while the diameters of second and third 
segment D2 and D3 are varied. All segments have equal 
lengths. For all cases, the lumped mass was M=50kg.

Table 2 shows the results for the first two natural
frequencies obtained by both FDM and FEM analysis and 
corresponding relative deviations. A comparison between 
the results obtained by presented FDM approach and 
FEM analysis reveals very good agreement.

TABLE III COMPARISON OF FDM AND FEM RESULTS

D2
[cm]

D3
[cm]

f1 [s-1] δ1
[%]

f2 [s-1] δ2
[%]FDM FEA FDM FEA

9.50

9.00 4.053 4.047 0.14% 47.095 45.830 2.76%

8.50 4.036 4.041 -0.13% 45.857 44.892 2.15%

8.00 4.014 4.029 -0.36% 44.405 43.728 1.55%

7.50 3.987 4.009 -0.56% 42.711 42.338 0.88%

7.00 3.951 3.978 -0.67% 40.756 40.710 0.11%

9.00

8.50 3.936 3.940 -0.10% 44.495 44.450 0.10%

8.00 3.929 3.930 -0.05% 43.987 43.481 1.16%

7.50 3.891 3.913 -0.57% 41.720 42.283 -
1.33%

7.00 3.857 3.886 -0.74% 39.962 40.843 -
2.16%

6.50 3.813 3.846 -0.84% 37.933 39.170 -
3.16%

8.50

8.00 3.802 3.811 -0.22% 41.953 43.103 -
2.67%

7.50 3.779 3.796 -0.46% 40.641 42.102 -
3.47%

7.00 3.748 3.773 -0.66% 39.083 40.858 -
4.34%

6.50 3.707 3.737 -0.80% 37.256 39.368 -
5.36%

6.00 3.653 3.685 -0.88% 35.148 37.634 -
6.61%

8.00

7.50 3.648 3.655 -0.20% 39.475 41.815 -
5.60%

7.00 3.620 3.637 -0.46% 38.116 40.776 -
6.52%

6.50 3.584 3.607 -0.66% 36.496 39.488 -
7.58%

6.00 3.534 3.561 -0.76% 34.590 37.927 -
8.80%

5.50 3.467 3.496 -0.83% 32.398 36.139 -
9.35%

V. CONCLUSION

Differential eigenvalue problem of the stepped 
column with lumped mass at the top was efficiently 
solved by building a stable and compact structure of 
algebraic equations derived from FDM approach. For 
common engineering needs, the results for first two 
natural frequencies revealed very good agreement with 
the results obtained by FEM simulation in ANSYS. 

Presented approach has great versatility and can be 
utilized to solve an eigenvalue problem for the beam with 
any other type of cross-sectional variation and boundary 
conditions, without any limitations.
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