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Abstract: Free vibration problem of double-tapered cantilever beam with tip mass and 
elastically restrained root was solved efficiently and accurately by building a compact structure of 
algebraic equations, based on central finite difference method. Exact differential governing 
equation and boundary conditions were discretized by central finite differences applied upon grid 
points along the beam. Influence of support rigidity on mode shape function was discussed in term 
of discretized boundary equation. Boundary value problem was transformed in an appropriate 
matrix form, suitable for development of computational algorithms and solving with MATLAB 
routines. For a comparison purpose, a finite element method analysis was conducted in ANSYS. 
Testing cases were set up for numerous values of non-dimensional stiffness and mass parameters. 
Presented model yielded natural frequencies that were in a very good agreement with the results 
obtained from finite element simulation. 

 
1. INTRODUCTION 

  
The extensive study of free bending vibration of non-uniform flexible beams started back 

few decades ago [1-5]. Since then, the issue of natural frequencies in bending vibrations of non-
uniform flexible beams with various boundary conditions was studied in numerous cases and by 
different approaches and methods [6-21]. Yet, a fast-growing industry and infrastructure 
development force the mechanical and civil engineers to response promptly to new challenges in 
structural design with efficient but acceptably accurate solutions. At the same time, real-life tasks 
with their complexity usually impose the use of numerical approaches. Survey upon available 
literature revealed the fact that the finite difference method (FDM) was not employed as often as it 
deserved to be. AL-Sadder and AL-Rawi [22] used FDM for static large-deflection analysis of non-
prismatic cantilever beams subjected to different types of continuous and discontinuous loadings, 
while Awrejcewicz et al. [23] studied regular and chaotic dynamics of the uniform Euler-Bernoulli 
beams and used FDM and finite element method (FEM) to verify the reliability of the obtained 
results. 

This paper presents a detailed workflow of the FDM application to the eigenvalue problem 
of double-tapered beam in bending vibration. Presented approach yields a numerical scheme 
suitable for development of computational algorithms. 
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2. MODEL DESCRIPTION AND GOVERNING EQUATION 
 

The model of double-tapered cantilever beam with tip mass and elastically restrained root 
considered herein is depicted in Fig.1. The motion under consideration is a free bending vibration of 
the beam in its symmetry plane xy. Transverse and axial displacements at supported end are fully 
restrained, while rotational restraint is elastic and presented by rotational spring with constant 
stiffness k. A lumped mass M is attached at the free end of the beam. The beam has a rectangular 
hollow cross-section with constant width B and wall thickness δ, while height H(x) and width B(x) 
linearly decrease towards its free end. Consequently, we have beam mass per unit length m(x) and 
the flexural rigidity EI(x) varying along length L, where E is Young’s modulus of elasticity and I(x) 
is the cross-sectional moment of inertia about an axis normal to x and y and passing through the 
center of the cross section. The beam height and width in its root (x=0) are denoted as H0 and B0, 
while the free end height and width (x=L) are denoted as HL and BL. 

 
Fig.1. a Double-tapered cantilever beam with elastic support and tip mass b Cross-section 

 
Analysis relies on Euler-Bernoulli beam theory, i.e. on the assumption that the rotatory 

inertia of the differential element and shear effects are negligible. The partial differential equation 
of motion for the free vibration of beams in bending, according to Euler-Bernoulli beam theory, is 
well known [24] 
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After differentiation, expanded form of Eq. (1) is 
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Free vibration is harmonic, so the transverse displacement of the beam can be expressed in 
the form 
(3)  ( , ) ( ) cos( ),  0y x t CY x t x Lω ϕ= − ≤ ≤   
where C is amplitude, Y(x) is a mode shape function, ω is circular natural frequency and φ is a 
phase angle. Inserting Eq. (3) into Eq. (2) and dividing through by Ccos(ωt-φ), we obtain the 
differential eigenvalue problem for Euler-Bernoulli non-uniform beam in bending 
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In this case, the height and width of the double-tapered beam cross-section at the position of 
the differential element are as follows 
(5)  0( )H x H xη= − ; 0( )B x B xµ= −  
where 0( )LH H Lη = −  is non-dimensional height decrement and 0( )LB B Lµ = −  is non-dimensional 
width decrement. Therefore, the cross-sectional area becomes 
(6)  [ ][ ] 0 0( ) ( ) ( ) ( ) 2 ( ) 2 2 ( 2 )A x B x H x B x H x H x B xδ δ δ η µ δ= − − − = − + − −   
and the mass per unit length, where ρ is material density, has the form 



(7)  0 0( ) 2 ( 2 )m x H x B xρδ η µ δ= − + − −   
The cross-sectional moment of inertia is 
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 After finding the needed derivatives out of Eq. (8) and inserting them and Eq. (7) into Eq. 
(4), we obtain a fully expanded differential governing equation for the beam under consideration 
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3. BOUNDARY CONDITIONS  
 

The solution Y(x) of Eq. (9) must satisfy two boundary conditions at each end. To obtain 
equations of boundary conditions in term of displacement y(x,t), we recall the displacement 
relations to bending moment M(x,t) and shearing force Q(x,t) from mechanics of materials 
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At the supported end, the displacement function y(x,t) has a zero value, while its slope 
outcomes from a  ratio between bending moment and stiffness of the rotational spring 
(11)  (0, ) 0y t =   
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Assuming that moment of inertia of attached mass M about an axis normal to x and y is 
negligible, two boundary conditions for free end are as follows 
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All boundary conditions written in term of mode shape function Y(x) and its derivatives are 
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where I0=I(x=0) and IL=I(x=l) are cross-sectional moments of inertia at the root and free end of the 
beam, respectively. 
 
 
4. DISCRETIZATION OF BOUNDARY VALUE PROBLEM BY CENTRAL FINITE 
DIFFERENCES 
 

Fig. 2 shows central finite difference grid scheme where the length of the beam L is equally 
divided by n+1 grid points into n segments with length /s L n∆ = . To apply the method, there are 
three fictitious grid points added to the scheme, one before the root grid point and two after free-end 
grid point. 



 
Fig.2. Central finite difference grid used for discretization of boundary value problem  
 
Central finite difference approximations for derivatives of shape function Y(x) for grid point 

i are as follows 
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4.1 Governing equation 

 
Inserting Eqs. (19-22) into the governing equation Eq. (9) and putting x=i·Δs, we obtain  

(23)   

3 3

2 1 1 2

3 2 3 2

2 1 1 2

2 2 4

1 1

( 2 )( 2 ) ( 4 6 4 )

3 ( 2 ) 3 ( 2 )( 2 ) ( 2 2 )

12 ( ) (2 )( 2 ) 24 ( ) ( 2 ) 0;  1, ...,

i i i i i

i i i i

i i i i

E BH B H Y Y Y Y Y

E s H BH H B H Y Y Y Y

s E H B H Y Y Y s H B Y i n

δ δ

µ η µ δ η δ δ

ηδ µ η η ρδω δ

− − + +

− − + +

− +

− − − − + − + +

+ ∆ − − + − + − − − + − + +

+ ∆ + + − + − ∆ + − = =

  
     

Eq. (23) represents a system of n linear algebraic equations, with discreet values of shape 
function at the grid points positions Yi as unknowns. Furthermore, by introducing the expressions 
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and parameter 2 4( )sλ ω= ∆ , we rewrite Eq. (23) in more condensed form 
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4.2 Boundary conditions 

 
By inserting Eqs. (19-22) into Eqs. (15-18), we establish the expressions for fictitious grid 

points displacements in terms of displacements of real grid points at the boundaries. Hence, this will 
enable their elimination from the system later on. Those expressions are 
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4.3 Characteristic equation 

 
Converting the constituent differential equations through discretization, we combine them 

and form the algebraic eigenvalue problem. In fact, by insertion of boundary conditions (26-29) into 
Eqs. (25) we eliminate fictitious displacements Y-1, Yn+1 and Yn+2, which yields a set of n algebraic 
equations with Yi, i=1,…,n as unknowns and λ as a parameter. Boundary conditions affect the form 
of equations for first two and last two grid points only, while equations for all other internal grid 
points retain general form presented by Eqs. (25). We introduce following expressions 
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and write the system of equations in the following form 

(31)  

[ ]{ }

{ }

{ }

1 1 1 1 1 1 1 1 2 1 1 3 1

1

2 2 2 1 2 2 2 2 2 2 3 2 2 4 2

2

2 1 1 2

1
1 : 6 2 ( ) (4 2 ) ( )

1
2 : (4 2 ) 2(3 ) (4 2 ) ( )

1
3 2 : ( ) (4 2 ) 2(3 ) (4 2 ) ( )i i i i i i i i i i i i i i i i i

i

i P R T P Q Y P Q R Y P Q Y Y
S

i P Q R Y P R Y P Q R Y P Q Y Y
S

i n P Q Y P Q R Y P R Y P Q R Y P Q Y Y
S

λ

λ

λ
− − + +

= − − − − + − + + =

= − − − + − − + − + + =

= ÷ − − − − − + − − + − + + =

{ }1 1 3 1 1 1 2 1 1 1 1 1 1 1

1

2 1

1
1 : ( ) (4 2 ) (5 2 ) (2 )

1
: (2 4 2 )

i

n n n n n n n n n n n n n n n

n

n n n n n n n

n

i n P Q Y P Q R Y P R Q Y P R Y Y
S

i n PY PY PY Y
S J

λ

λ

− − − − − − − − − − − − − −

−

− −

= − − − − − + − − − − =

= − + =
+

 

Previous form is convenient to formulate the eigenvalue problem as a matrix equation 
(32)  λ=AY Y   
i.e. 
(33)  ( ) 0λ =nA - I Y   
where A is a diagonal matrix, In is a unit matrix of size n, λ is an eigenvalue and Y is a column 
matrix of displacements that form mode shape. Nontrivial solutions exist if and only if the 
determinant of the coefficients is equal to zero, which finally leads to characteristic equation 
(34) [ ]( ) det 0λ∆ =n= A - λI   

Finding the roots λi, i=1,…,n of Eq. (34) we find natural frequencies of the beam 
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5. NUMERICAL EXAMPLE AND COMPARISON WITH FINITE ELEMENT MODEL 

 
To investigate the accuracy of results obtained by FDM, a calculation is carried out through 

numerical example with following parameters: L=3m, HL=0.1m, BL=0.1m, H0=0.2m, B0=0.2m, 
δ=0.005m, ρ=7850kg/m3, E=2.1·1011N/m2. The length of the beam is divided by n=100 grid points. 



As it is more convenient to analyze the results in terms of relations of the quantities rather than in 
terms of themselves, we introduce the following stiffness and mass non-dimensional ratios 
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and where m is the self-mass of the beam. Hence, the expressions (30) derived from boundary 
conditions now become 
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Numerical calculations within FDM approach were carried out by MATLAB software 
routines. On the other hand, we used a FEM analysis and ANSYS software to verify the results. 

 The numerical investigation was conducted in a manner where the value of stiffness ratio 
was gradually increased while mass ratio took values r=0.5;1.0;1.5;2.0 repeatedly for each instance 
of stiffness ratio. Fig. 3 shows first three mode shapes and natural frequencies of the tapered beam 
in FEM analysis for the case where non-dimensional ratios take values q=7.0 and r=1.0 
(highlighted fields in Table1). 

 

 
Fig. 3 First three mode shapes and natural frequencies from ANSYS for q=7.0 and r=1.0 

 
Table 1 shows the results for the first three natural frequencies obtained by both FDM and 

FEM analysis and corresponding relative deviations (columns Δ1, Δ2, Δ3). A comparison between 
the results obtained by presented FDM approach and FEM analysis reveals very good agreement. 
Relative deviation for fundamental natural frequency does not exceed 1%, while for the second and 
third frequency it is about 2% and 7%, respectively. Since the effects of rotary inertia and shear 
deformation are neglected in the Euler–Bernoulli beam theory, the Euler–Bernoulli model always 
overestimates the natural frequency of free vibration [25]. Fig. 4 shows the dependencies of first 
three natural frequencies on various boundary conditions in terms of non-dimensional stiffness and 
mass ratios q and r.  Increasing the value of stiffness ratio q makes the boundary condition at the 
root of the beam progressively approaches the clamped support type, which results in higher natural 
frequencies. Simultaneously, as expected, higher values of ratio between tip-mass and self-mass of 
the beam r make natural frequencies decrease. 

 

 
Fig.4. Influence of boundary conditions on natural frequencies 



Table 1 First three natural frequencies obtained by FDM and FEM with relative deviations 

  
f 1 f 2 f 3 

q r FDM [Hz] FEM [Hz] Δ1 FDM [Hz] FEM [Hz] Δ2 FDM [Hz] FEM [Hz] Δ1 

0.25 

0.50 4.58 4.54 0.80% 60.90 60.32 0.97% 216.86 206.09 5.22% 
1.00 3.56 3.53 0.86% 57.51 57.01 0.89% 213.70 203.17 5.18% 
1.50 3.01 2.98 0.88% 56.22 55.74 0.86% 212.58 202.13 5.17% 
2.00 2.66 2.63 0.90% 55.53 55.07 0.84% 212.01 201.60 5.16% 

0.50 

0.50 6.16 6.11 0.80% 62.70 62.04 1.06% 218.56 207.53 5.31% 
1.00 4.77 4.73 0.86% 59.40 58.82 0.98% 215.42 204.62 5.28% 
1.50 4.03 4.00 0.88% 58.14 57.59 0.95% 214.30 203.59 5.26% 
2.00 3.56 3.53 0.89% 57.47 56.94 0.94% 213.73 203.06 5.26% 

1.00 

0.50 8.00 7.93 0.81% 65.79 65.00 1.22% 221.71 210.18 5.49% 
1.00 6.16 6.11 0.85% 62.61 61.90 1.15% 218.59 207.30 5.45% 
1.50 5.20 5.15 0.86% 61.41 60.73 1.12% 217.49 206.27 5.44% 
2.00 4.58 4.54 0.87% 60.78 60.11 1.11% 216.92 205.75 5.43% 

1.50 

0.50 9.10 9.02 0.81% 68.37 67.45 1.36% 224.57 212.56 5.65% 
1.00 6.99 6.93 0.84% 65.26 64.43 1.29% 221.48 209.70 5.62% 
1.50 5.88 5.83 0.86% 64.09 63.29 1.27% 220.38 208.69 5.60% 
2.00 5.18 5.13 0.87% 63.48 62.70 1.25% 219.82 208.17 5.60% 

2.00 

0.50 9.85 9.77 0.81% 70.53 69.51 1.48% 227.18 214.71 5.81% 
1.00 7.54 7.48 0.84% 67.48 66.54 1.41% 224.10 211.88 5.77% 
1.50 6.35 6.29 0.85% 66.34 65.43 1.39% 223.01 210.87 5.75% 
2.00 5.58 5.53 0.85% 65.74 64.84 1.38% 222.45 210.35 5.75% 

3.00 

0.50 10.82 10.73 0.80% 73.98 72.77 1.67% 231.73 218.44 6.08% 
1.00 8.26 8.19 0.83% 70.99 69.87 1.61% 228.67 215.63 6.05% 
1.50 6.94 6.88 0.84% 69.87 68.78 1.58% 227.59 214.64 6.03% 
2.00 6.10 6.04 0.84% 69.28 68.21 1.57% 227.03 214.13 6.03% 

4.00 

0.50 11.42 11.33 0.80% 76.60 75.24 1.82% 235.56 221.55 6.32% 
1.00 8.70 8.63 0.83% 73.63 72.36 1.76% 232.52 218.76 6.29% 
1.50 7.30 7.24 0.83% 72.53 71.29 1.74% 231.44 217.77 6.28% 
2.00 6.41 6.36 0.84% 71.95 70.73 1.72% 230.89 217.27 6.27% 

5.00 

0.50 11.84 11.74 0.80% 78.66 77.16 1.94% 238.82 224.17 6.54% 
1.00 9.00 8.93 0.82% 75.70 74.30 1.88% 235.79 221.40 6.50% 
1.50 7.55 7.49 0.82% 74.60 73.24 1.85% 234.72 220.42 6.49% 
2.00 6.63 6.57 0.83% 74.02 72.69 1.84% 234.17 219.91 6.48% 

7.00 

0.50 12.37 12.27 0.80% 81.66 79.97 2.11% 244.06 228.34 6.88% 
1.00 9.39 9.31 0.81% 78.71 77.13 2.05% 241.04 225.59 6.85% 
1.50 7.86 7.80 0.82% 77.62 76.07 2.03% 239.97 224.61 6.84% 
2.00 6.90 6.85 0.82% 77.04 75.52 2.02% 239.42 224.11 6.83% 

9.00 

0.50 12.69 12.59 0.79% 83.76 81.93 2.23% 248.06 231.51 7.15% 
1.00 9.62 9.54 0.81% 80.80 79.08 2.17% 245.04 228.76 7.12% 
1.50 8.06 7.99 0.81% 79.71 78.03 2.15% 243.98 227.79 7.11% 
2.00 7.07 7.01 0.82% 79.13 77.48 2.14% 243.43 227.29 7.10% 

10.00 

0.50 12.81 12.71 0.80% 84.58 82.69 2.28% 249.73 232.81 7.27% 
1.00 9.71 9.63 0.81% 81.62 79.85 2.22% 246.71 230.07 7.23% 
1.50 8.13 8.06 0.81% 80.53 78.79 2.20% 245.64 229.10 7.22% 
2.00 7.13 7.07 0.81% 79.96 78.24 2.19% 245.10 228.61 7.21% 

 
6. CONCLUSION 

 
Differential eigenvalue problem of double-tapered cantilever beam with elastically 

restrained root and tip mass was efficiently solved by building a stable and compact structure of 
algebraic equations derived from FDM approach. The results for first three natural frequencies 
revealed very good agreement with the results obtained by FEM simulation in ANSYS.  

After setting up a system of equations out of differential governing equation and boundary 
conditions through the process of discretization, presented numeric model pays back through its 
advantages. Firstly, equations written for all internal grid points that are not affected by discretized 
boundary conditions makes the model compact and convenient for development of software 
routines, e.g. in MATLAB. This feature opens additional possibilities for the research of the model 



behavior in variety of cases with different values of non-dimensional stiffness, mass and taper 
ratios. Therefore, presented approach with FDM provides us an excellent control of system 
parameters in particular engineering applications. 
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