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Abstract - Joint estimation of states and time-varying parameters of 
linear state space models is of practical importance for fault diagnosis 
and fault tolerant control. Previous works on this topic haven’t consid-
ered joint estimation of linear systems in presence of outliers. They can 
significantly make worse the properties of linearly recursive algorithms 
which are designed to work in the presence of Gaussian noises. This 
paper proposes two kinds of strategies of joint parameter-state robust 
estimation of linear state space models in presence of non-Gaussian 
noises. Both possible cases are considered, joint robust estimation 
algorithm in case of parameter-independent matrices as well as in case 
of parameter-dependent matrices. Because of their good features in 
robust filtering, the modified and extended Masreliez-Martin filters 
represent a cornerstone for realization of the robust algorithms for 
joint state-parameter estimation of linear time-varying stochastic 
systems in presence of non-Gaussian noises. The good features of the 
proposed robust algorithms for joint estimation of linear time-varying 
stochastic systems are illustrated by simulations. 
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I. INTRODUCTION 

It is well known that is very difficult to determine a 
large number of physical parameters which are integral part 
of complex systems. Despite the fact that many system 
parameters are available with some reasonable accuracy, a 
large number of parameters are known within a certain 
range, while some parameters are entirely unknown because 
manufacturers consider these data as proprietary infor-
mation [1]. Precise knowledge of system parameters and 
states is crucial for successful realization of many control 
techniques. 

Joint estimation is of great practical importance for fault 
diagnosis and fault tolerant control. The main challenge is 
the detection and isolation of incipient faults in the pres-
ence of modeling uncertainty and noise [2]. Inclusion of 
unknown parameters in the state vector allows easy imple-
mentation of the estimation algorithm, because the problem 
of parameters estimation in this case is solved using the 
standard filtering theory.  

On the other side, there is no such solution available for 
linear systems in presence of non-Gaussian measurements. 
The presence of outliers can destroy the good features of 
linearly recursive algorithms which are designed for estima-
tion in the presence of Gaussian noises. Huber's theory of 
robust statistics is crucial for the algorithm design [3].  

This paper proposes two kinds of strategies to estimate 
the state and parameter jointly. Firstly, it is considered joint 
robust estimation of a linear stochastic systems with param-
eter-independent matrices. The second class of systems 
considered in this paper is a linear state space system with 
matrices which are parameter dependent. Conventionally, 
the robust estimation algorithms in these cases are based on 
the modified and extended Masreliez-Martin filters.  

The designed estimators consider both robustness 
against noises and sensitivity to all possible faults. The 
good features of the proposed robust algorithms are illus-
trated through simulations. 

II. JOINT ESTIMATION ALGORITHM IN CASE OF 
PARAMETER-INDEPENDENT MATRICES 

The first class of systems considered in this paper for 
joint estimation of states and time-varying parameters is in 
the form of: 

( 1) (k) ( ) (k) ( ) (k) ( ) ( )x k A x k B u k C k w k               (1) 

( ) (k) ( ) (k) ( ) ( )y k D x k k e k                                    (2) 

where ( ) nx k R  and ( ) pk R   are unknown state and 

parameter vectors, respectively. When the system has all 
possible sensor and component faults (this is the most 
common situation), the system model is described as (1)-
(2). Component faults and sensor faults are described math-
ematically as follows, see Fig. 1: 

( ) (k) ( )Cf k C k                                                           (3) 

( ) (k) ( )Sf k k                                        (4) 

 
Fig. 1. Open-loop system with component and sensor faults 

The component fault represents the case when some 
condition changes in the system, rendering the dynamic 
relation invalid, for example a leak in a pneumatic cylinder 
[4]. Generally speaking, the actual outputs of the system 
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( ) (k) ( )Sy k D x k  are not directly accessible, and sensors 

are then used to measure the system output. 

Sensors are the most important components for flight 
control and aircraft safety due to its roles in flight control 
and navigation. Any sensor fault must be detected as early 
as possible to prevent serious accident. To diagnose incipi-
ent faults, a fault diagnosis systems have to be made robust 
against modeling uncertainty and noise [5]. The general 
form of parameters changing of the stochastic linear system 
is ( 1) ( ) ( )k G k k     in which G  is a priori known 

nonsingular matrix which is convenient for inclusion of a 
priori information on the phenomenon which is identified. 
The stochastic process ( )k  is zero-mean white noise with 

covariance matrix ( )k . Input and measured output vector 

of the system are ( ) mu k R and ( ) ry k R , respectively, 

while (k)A , (k)B , (k)C , (k)D  and (k) are known, in 

general case, time-varying matrices with appropriate di-
mensions. It is assumed that the process noise is zero-mean 
Gaussian white noise ( ) : (0, ( ))w k Q kΝ , in which ( )Q k  is 

the covariance matrix. The measurement noise ( )e k  has 

non-Gaussian distribution with approximately normal dis-
tribution classes: 

 1 2( ) : ( ) (1- ) ( ) ( )p e p e p e p e    P                         (5) 

in which the probability density ( )p e  represents a mixture 

of primary probability density 1 1( ) : (0, ( ))p e R kΝ  and 

contaminating probability density 2 2( ) : (0, ( ))p e R kΝ  

where contamination degree   is in range 0 1  , while 

1( )R k  and 2 ( )R k  are covariance matrices of primary and 

contaminating term in non-Gaussian distribution (5), re-
spectively. 

An obviously easy approach to the joint estimation of ( )x k  

and ( )k  for system (1)-(2) is to consider 

the extended system: 

(k) (k) B( )
( 1) ( ) (k) ( )

0 0

A C k
z k z k u k

I


   
      

   
          (6) 

 ( ) (k) (k) ( ) ( )y k D z k e k                                      (7)                                                                 

or in a more compact form: 

( 1) (k) ( ) B( ) (k) ( )z k F z k k u k                                (8) 

( ) (k) ( ) ( )y k H z k e k                                                   (9) 

in which block matrices are  (k) (k) (k)H D  , 

B( ) (k) 0
TT Tk B    , 

(k) (k)
(k)

0

A C
F

I

 
  
 

, extended state vector is 

( ) ( ) ( )
TT Tz k x k k     and ( ) [ ( ) ( )]T T Tk w k k  de-

notes extended disturbance vector, where ( ) : (0, ( ))k N k   

with ( ) ( ( ), ( ))k diag Q k k   . 

Since extended system (8)-(9) is still a linear system, the 
Masreliez-Martin filter [6] is applicable to the joint estima-
tion of ( )x k  and ( )k . Our goal is to derive the robust algo-

rithm for joint state and parameter estimation of stochastic 
linear systems in the presence of outliers which maintains a 
low sensitivity in appearance of outliers. For the class of ε-
contaminated distributions of probabilities, the nonlinear 
transformation of prediction error ( )   (Huber’s function), 
is obtained as: 

 ( ( )) min ( ), sgn( ( ))k k k k    ,                            (10) 

and its derivative: 

' 1 ( ) ,
( ( ))

0 .

k k
k

otherwise


 
 

 


                                          (11) 

in which k is appropriately defined parameter of Huber’s 
function, see Fig. 2.  

 

Fig. 2. Huber’s function and its derivative 

The originally proposed Masreiliez-Martin filter include 
the member in the a posteriori covariance matrix 

 '

P [ ( )]E k

   which is not easy to determine in practical 

conditions [6]. In order to improve its applicability, the 
realization of ' [ ( )]k   is introduced instead the mem-

ber  '

P [ ( )]E k

  . Intense simulations justified such inter-

ventions. Because of its good features in robust filtering, 
such modified Masreliez-Martin filter is used as a basis in 
formulating the joint state and parameter estimator of linear 
stochastic systems, as follows: 
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ˆ ˆ( 1) (k 1) ( 1 1) B( 1) (k 1)

( 1) ( 1) ( 1 1) ( 1) ( 1)

( ) ( ) ( ) ( 1) ( ) ( )

ˆ( ) ( ) ( ) ( ) ( 1 1)

ˆ ˆ( ) (k 1) ( 1 1) B( 1) ( 1)

ˆ(k 1) ( 1 1) ( )

T

T T T T

z k k F z k k k u

P k k F k P k k F k k

K k N k M k P k k H k T k

k T k y k H k x k k

x k k A x k k k u k

C k k N k





       

        

  

      
       

       
 

      
'

' ' '
1

1

2
1

( )

ˆ ˆ( ) ( 1 1) ( ) ( )

( ) ( 1) ( ) ( ( )) ( )

( ) ( ) , , ( )

( ) ( ) ( 1) ( ) ( )

T

r

T

k

k k k k M k k

P k k P k k K k k K k

k diag k k

T k H k P k k H k R k



  



    



    

   

 

    

   (12)                                              

with initial conditions: 0ˆ 0z  and
0

0
0

( ) 0

0 ( )

P x
P

P 
 

  
  

.                                  

In this way, the robust algorithm for the joint states-
parameters estimation of linear stochastic systems has been 
derived. 

 
III. JOINT ESTIMATION ALGORITHM IN CASE OF 

PARAMETER-DEPENDENT MATRI CES 

The second class of systems considered in this paper for 
joint estimation of states and time-varying parameters is in 
the form of: 

( 1) ( ( )) ( ) ( ( )) ( ) ( )x k A k x k B k u k w k                     (13) 

( ) ( ( )) ( ) ( )y k D k x k e k                                             (14)                  

In some cases, the fault (k)pf could be expressed as a 

change in the system parameter, for example a change in 
the thi  row and thj column element of the matrix A , the 

system can then be described as (13)-(14), see Fig. 3. This 
approach is based on the assumption that the faults are 
reflected in the physical system parameters such as friction, 
mass, viscosity, resistance, capacitance, etc. As indicated, 
the linear state space model is often specified up to the 
value of some parameters ( )k . Since matrices A , B  

and D are dependent of parameters ( )k and due to multi-

plying with state vector ( )x k , the system (13)-(14) is non-

linear. Hence, to obtain the parameter estimation recursive-
ly, we shall consequently face with a general nonlinear 
filtering problem: 

 

Fig. 3: Open-loop system with parameter faults in the system 

 
1

1

( ( 1), ( 1), ( 1)) ( 1)
( )

( 1) ( 1)
k

k

f x k u k k w k
z k

g k k


 





      
       

     (15) 

The extended system is given in a more compact form: 

1( ) ( ( 1), ( 1), ( 1)) ( 1)kz k q z k u k k k                 (16) 

( ) ( ( ), ( )) ( )ky k h z k k e k                                     (17) 

Based on extended robust filter [7], the robust algorithm 
for joint estimation of linear systems in case of parameter-
dependent matrices has the following form: 

1

1

ˆ ˆ( 1) ( ( 1 1), ( 1), ( 1),0)

( 1) ( 1) ( 1 1) ( 1)

( 1) ( 1) ( 1)

( ) ( 1) ( ) ( )

ˆ( ) ( ) ( ) ( ( 1), ( ),0)

ˆˆ ˆ( ) ( ( 1 1), ( 1), ( 1 1))

( )

k

T

T

T T T

k

k

z k k q z k k u k k

P k k F k P k k F k

L k k L k

K k P k k H k T k

k T k y k h z k k k

x k k f x k k u k k k

N k



 







     

      

    

 

     

      

  
 

'

1

2
1

( )

ˆ ˆ( ) ( 1 1) ( ) ( )

( ) ( 1) ( ) ( ( )) ( )

( ) ( ) ( 1) ( ) ( ) ( ) ( )

T

T T

k

k k k k M k k

P k k P k k K k k K k

T k H k P k k H k V k R k V k



  





    

   

    

   (18)                                              

 
( ) ( )

( ) , ( ) , ( ) ( ) ( ) , ( )
0 n p r

p

A k F k
F k L k I H k D k H k V k I

I




 
    
  

 
with same initial conditions as in algorithm (12). 

IV. SIMULATION RESULTS 

The benefits of the proposed robust algorithms for joint 
estimation of stochastic linear time-varying systems are 
illustrated through intensive simulations. Firstly, joint ro-
bust estimation with parameter-independent matrices is 
considered. These results demonstrate superiority of the 
proposed robust algorithm (12) in relation to the joint esti-
mation algorithms based on widely used Kalman filter and 
Masreliez-Martin filter. Behavior of the algorithms will be 
considered on: 

1
1 1 1

2
2 2 2

3

(k)
( 1) ( ) ( )0.9 0 0.1 1 0

(k)
( 1) ( ) ( )0 0.8 0.5 0.3 1

(k)

p
x k x k w k

p
x k x k w k

p

 
                                 

1
1 1 1

2
2 2 2

3

(k)
( ) ( ) ( )0.2 0 0 1 0

(k)
( ) ( ) ( )0 0.1 0 0 1

(k)

p
y k x k e k

p
y k x k e k

p

 
                                

                              

The features of the proposed robust algorithm are con-
sidered on the model whose time-varying parameter vector 

has expected value  0.96 1.88 2.23
T   . The process 

noise ( )w k  is zero-mean white noise with covariance ma-

trix (k) (0.0015,0.001)Q diag . The covariance matrix of 
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parameters is given by ( ) (0.003,0.003,0.02)k diag  . 

The non-Gaussian distribution of the measured noise is 
given by [3]: 

1 1 1

2 2 2

( ) (1 ) (0;0.005) (0;0.5),

( ) (1 ) (0;0.01) (0;1)

p

p

  
  

     
  

     

Ν ΝP Ν Ν .  (19) 

For the purpose of illustrating estimation quality, mean 
square error (MSE) is used as follows: 

 2ˆln E ( ) ( )MSE z k z k  .                                        (20) 

The system outputs, estimates of states and parameters, 
as well as mean square errors in the case when contamina-
tions have values 1 2 0.1    are shown on Fig.4. 

 

Fig. 4. Mean square errors using robust algorithm (12) 

The presented results have shown that the joint estima-
tion algorithm based on widely-used Kalman filter is very 
sensitive to the presence of non-Gaussian noises, as op-
posed to the proposed robust joint algorithm.  

Following results demonstrate superiority of the pro-
posed robust algorithm (18) in relation to the joint estima-
tion algorithms based on widely-used extended Kalman 
filter and extended Masreliez-Martin filter. Behavior of the 
algorithms will be considered on: 

1 1 1 1

2 2 2 2

( 1) (k) 0 ( ) ( )

( 1) 0 (k) ( ) ( )

x k p x k w k

x k p x k w k

       
               

          (21)  

1 1 13

2 2 2

( ) ( ) ( )(k) 0

( ) ( ) ( )0 0.9

y k x k e kp

y k x k e k

      
       
      

                    (22) 

The features of the proposed robust algorithm are con-
sidered on the model whose time-varying parameter vector 

has expected value  1.01 0.98 0.99
T  . The process 

noise ( )w k  is zero-mean white noise with covariance ma-

trix 5 5(k) (10 ,10 )Q diag   .  The covariance matrix of 

parameters has the form 6 6 6( ) (2 10 ,10 ,2 10 )k diag       . 

The non-Gaussian distribution of the measured noise is 
given by  

1 1 1

2 2 2

( ) (1 ) (0;0.0001) (0;0.01),

( ) (1 ) (0;0.0001) (0;0.01)

p

p

  
  

     
  

     

Ν ΝP
Ν Ν (23) 

The mean square errors in the case when contaminations 
have values 1 2 0.1    are shown on Fig.5. 

 

Fig.5. Mean square errors using robust algorithm (18) 

The presented results have shown that the widely-used 
Extended Kalman filter is very sensitive to the presence of 
non-Gaussian noises, as opposed to the proposed robust 
joint estimation algorithm.  

V. CONCLUSION 

The joint state and parameter robust estimation algo-
rithms for stochastic linear time-varying systems, in pres-
ence of non-Gaussian noises have been proposed. The 
proposed algorithms have been used to solve the joint esti-
mation problem of linear stochastic models where the con-
ventional approaches fails. Because of their good features 
in robust filtering, the modified and extended Masreliez-
Martin filters were used as a basis in formulating the joint 
robust estimator of linear stochastic systems. 
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