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Abstract - This paper considers the identification of output error (OE) 

model, for the case of constrained output variance. The constraint 

plays a very important role in the process industry, in the reduction of 

degradation of product quality. In this paper, it is shown, in the form of 

theorem, that the optimal input signal, with constrained output, is 

achieved by a minimum variance controller together with stochastic 

reference. The key problem is that the optimal input depends on the 

system parameters to be identified. In order to overcome this problem, 

it is the proposed two-stage adaptive procedure 

a) obtaining an initial model using PRBS as input signal 

b) application of adaptive minimum variance controller togeth-

er with the stochastic variable reference, in order to generate 

input signals for system identification 

Theoretical results are illustrated by simulations. 

Key words: System identification, adaptive input design, output error 

model, constrained output variance, minimum variance controller 

I. INTRODUCTION 

The design of controllers is largely based on the use of 

mathematical models that are obtained in the process of 

system identification [1-3]. The main task of the theory of 

identification is the extraction of maximum information 

from the measurements that are available. This requirement 

is realized by optimal experiment design [4-5]. The basic 

approach consists in minimizing the scalar function of Fish-

er information matrix [4]. 

The key problem in the optimal input design is that the 

optimal input depends on the unknown system properties to 

be identified. Namely, the Fisher information matrix typi-

cally depends on system parameters. There are two basic 

approaches to overcome this problem. The first approach is 

based on robust optimal experiment design. In this case the 

procedure is slightly sensitive to the uncertainty of a priori 

information about the system [6-7]. The second approach is 

based on adaptation. One such, two-stage procedure is 

proposed in [8]. In the first stage, in a short time interval, 

the data are collected using PRBS input. Based on these 

data system model is identified, and that is initial model for 

optimal input design. In the second stage, the obtained 

input signal, by using minimum variance controller and 

stochastic reference, is used to generate a new data set. 

Adaptive input design for the ARX models is discussed in 

[9]. 

In many practical cases, constraints on the fluctuation of 

input and/or output signals are very important [10]. For 

example, in the industrial production, product quality must 

be within certain limits (constraints on the fluctuation of the 

output signal). 

If the constraint is related to the variance of the output 

signal, it is shown that the experiment design is D-optimal 

and that the input signal is generated using a minimum 

variance controller together with an external stochastic 

signal [11-12].  

In reference [13], it is discussed the robust identification 

of a pneumatic cylinder, which is modeled as a stochastic 

system with non-Gaussian noise. Input design is based on 

the ideas from model predictive control and a bandlimited 

"1 "f  noise. 

This paper considers the optimal experiment design for 

output error (OE) models. There is a constraint on the out-

put power. It has been shown that the optimal input signal 

can be obtained by minimum variance controller whose 

reference is white noise sequence with known variance. In 

order to be able to implement the algorithm, adaptive ap-

proach was applied. It was used direct adaptive minimum 

variance controller. The algorithm has two stages. In the 

first stage, the process parameters are estimated. In the 

second stage, based on thus obtained parameters, it has 

been formed the minimum variance controller that gene-

rates the input signal of the process by which the identifica-

tion is made. Because the reference signal is in the form of 

white noise, parameter estimation is consistent (the true 

values of parameters are obtained with probability 1). The 

paper’s results are supported by simulations. 

II. OPTIMAL ALGORITHM DESIGN 

In this paper we consider the model 

1

1
( ) ( 1) ( )

( )

b
y k u k e k

F q
   .                   (1) 

In this case the parameters 1b  and ( 1, , )if i n   are es-

timated, where 1 1

1( ) 1 n

nF q f q f q      . 

 

Let us consider the system (1). Based on N measure-

ments of output, the following vector can be formed  
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Using the vector Y , the Fisher information matrix can be 

defined as  
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where E
 

 denotes conditional mathematical expectation 

and N NM R  . Parameter vector   has the form 

2
T

T      .                (4) 

where 

 1 1

TT

nf f b   ,               (5) 

and 2 is the variance of the noise ( )e k .  

In this paper the average value of the Fisher information 

matrix (3) will be used 

 
1

M M
N

 .          (6) 

The following criterion form will be used 

logdetJ M  .                            (7) 

We will now formulate the main result of this paper in 

the form of the Theorem. 

 

Theorem 1. Suppose that for the OE model (1) the fol-

lowing conditions are fulfilled 

1    Stochastic noise ( )e k has a Gaussian distribution 

      with variance 2  and zero mean. 

2   Constraint on the output is 

      2 ( )Ey k W ,  (0, )W   . 

3  2 2( )Ey k  . 

Then the criterion logdet M  achieves its minimum 

value if the system input ( )u k is generated by a minimum 

variance controller which reference is stochastic process 

 ( )k with probability density function 
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Proof: Let us define ( )k as 

1 1( ) ( ) ( 1) ( ) ( 1)M n Mk y k f y k f y k n bu k         . 

(9) 

According to the condition 1  of the Theorem 1, it fol-

lows that 
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From the relation (10) one can obtain 
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After some calculations, the relation (3) can be expressed 

as 
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(12) 

The mean value of the Fisher information matrix has the 

form 
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where 
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From relations (13), (14) and (15), it follows that 
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The relation (16) can be written in more compact form 
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The following task is to determine elements of the matrix 

M  in the relation (17). 

 

Step 1(Determining the matrix A ) 

Let us define 

 ( ) ( )M M i j
E y k i y k j 


   .                       (18) 

Based on the relation (18) the matrix A can be presented 

in the following form 
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Step 2 (Determining the matrix B ) 

Using an auxiliary model 
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relation (1) can be expressed as 

1 1( ) ( 1) ( ) ( 1) ( )M n My k f y k f y k n bu k e k                                                                                             

(21) 

After multiplying the relation (21) with 

( ), 1, ,My k i i n                (22) 

and applying the mathematical expectation operator to the 

relations (22), one can obtain 

1V Af Bb   ,                     (23) 

where 
1[ ]T

nf f f  , 
1 2[ ]T

nV     . 

Finally, it follows from the relation (23) that 

 
1

1
B Af V

b
  .           (24) 

Step 3 (Determining the scalar C ) 

From the relation (20) one can get the input signal ( )u   

 1

1

1
( 1) ( ) ( 1) ( )M M n Mu k y k f y k f y k n

b
       .  (25) 

From the relation (25), after some calculations one can 

obtain expression for the scalar C  
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1

1
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b
     .               (26) 

Since, all elements of the matrix M  are now known (rela-

tion (17)), one can obtain 
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It follows, from the last relation, that 

   4 1logdet log2 log det logdet TM A C B A B      . 

(28) 

From relations (26) - (28), it follows that 
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If 0, 0i i   , we finally get 

 
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2
min logdet log
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b
M
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


                    (30) 

To achieve that 0, 0i i   , it is necessary that the 

following condition be fulfilled 

i)  ( )y k  is a uncorrelated sequence.  

The condition is fulfilled if the input signal is chosen in the 

following form 

 1

1

1
( ) ( ) ( 1) ( )M n Mu k f y k f y k n k

b
      ,     (31) 

where ( )k  is a reference signal that represents white noise 

with variance 2

1W b . 

The relation (31) represents the minimum variance 

controller for the model (1). This theorem is proved. 
▄ 

The main result of the Theorem 1 is the fact that the 

synthesis of input signals, which induce the predetermined 

output power, is performed by using the feedback. In this 

case the feedback consists of a minimum variance 

controller and stochastic reference. This result also shows 

that the optimal input design requires knowledge of the true 

system parameters. In practical conditions, however, such a 

requirement is contradictory because the optimal input 

design is performed in order to speed up the identification 

process (determination of model parameters). However, the 

result of the theorem has the following important 

implications 

i. what, at the best case, can be achieved by 

using the optimal input signal, 

ii. application of the adaptation philosophy for 

creating a practical algorithm for the optimal 

input design. 

 

III. ADAPTIVE INPUT DESIGN 

In practical conditions, the true parameters of the system 

(1) are unknown. Primarily, let us observe that from rela-

tions (1) and (31), it follows that 

1( 1) ( )My k b k  .                          (32) 

In this paper, the following two-stage procedure will be 

used  

A. By using PRBS signal as input, through 

initN iterations, the initial model of the process is 

determined, 

B. After that, adaptation is applied for the controller 

defined in Theorem 1. 
 

IV. SIMULATION RESULTS 

The proposed two-stage identification algorithm has been 

tested on the following OE model 

1

1 2

0.5
( ) ( ) ( )

1 1.5 0.7

q
y k u k e k

q q



 
 

 
.          (33) 

The system identification example, is based on measured 

1000 input-output data points obtained during the simula-

tions. The measurement noise ( )e k  has Gaussian distribu-

tion, ( ) (0,0.2)Np e N . 

To demonstrate the superiority of the proposed two-stage 

identification algorithm, a comparison with open loop iden-
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tification algorithm, when input signal is PRBS signal, is 

made. 

The simulation results are compared in terms of mean 

square error (MSE), defined by 

 
2

ˆln ( ) ( )MSE k k            (34) 

Figs. 1 to 3 shows parameter estimates, and mean square 

errors in the case where the output variance cannot be 

greater then 0.5W  . 

 

Fig.1. Estimates of parameters 1f  and 2f (solid line: Parameter esti-

mates using adaptive excitation signal, dash-dot: Parameter estimates 

using PRBS, dotted line: True parameter values) 

 

 

Fig.2. Estimate of parameter 
1b (solid line: Parameter estimate using 

adaptive excitation signal, dash-dot: Parameter estimate using PRBS, 

dotted line: True parameter value) 

 

 

 

Fig.3. Mean square error  

 

Based on these figures, it can be concluded that experi-

ment design increases the convergence speed of parameters 

to true values, keeping the given output varianceW . 

Also, through intensive simulations, it is shown that re-

laxation of constraints on output reduces the error of esti-

mated parameters. This conclusion is clearly demonstrated 

in the following figure. 

 

Fig.4. Mean square error for different values of output variance constraint 

W  

V. CONCLUSION 

In this paper the optimal input design for the identifica-

tion of OE model, in the case of constrained output va-

riance, is considered. It is shown, in this case, that the op-

timal experiment is obtained by using minimum variance 

controller and stochastic reference signal. The adaptive 

two-stage procedure for generating the input signal has 

been proposed. The initial model of the process is firstly 

obtained using PRBS input signal, after which the minimum 

variance controller is applied to generate the input signal. 

Simulation results show the superiority of identification 

using adaptive methodology for generating the input signal 

in the relation to the identification of system parameters in 

the open loop using PRBS input. It is also shown that with 

relaxation of output constraints, smaller error of estimated 

parameters is obtained. 
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