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This paper considers the problem of optimization of the box section of the main girder of the bridge crane for the 

case of placing the rail in the middle of the top flange. Reduction of the girder mass is set as the objective function. The 
method of Lagrange multiplier was used as the methodology for approximate determination of optimum dependences of 
geometrical parameters of the box section. The criterion of strength were applied as the constraint function. The analysis of 
the optimization results and the solutions was the basis for recommendations which are significant for designers during 
construction of cranes. 
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1. INTRODUCTION

The main task in the process of designing the 
carrying structure of the bridge crane is determination of 
optimum dimensions of the main girder box section. The 
mass of the main girder has the largest share in the total 
mass of the bridge crane, so it is very important to perform 
its optimization in order to reduce the total costs of 
manufacturing the whole carrying structure. That is the 
reason why the selection of the optimum shape and 
geometrical parameters which influence the reduction of 
mass and costs of manufacturing is the subject of research of 
a lot of authors ([2], [3], [5], [7], [8], [9], [10], [11], [12], 
[14], [15], [16], [17] and [18]). 

Most authors set permissible stress or two constraint 
functions: permissible stress and permissible deflection as 
the constraint function. 

The analysis of cost structure for manufacturing 
metal structures made in [2], showed that the participation 
of material costs in the total costs is the largest (30-73) %, 
and that the other costs are lower.

Having in mind all the above mentioned results and 
conclusions, the aim of this paper is to define optimum 
values of geometrical parameters of the box girder cross-
section that will lead to the reduction of its mass. 

2. MATEMATHICAL FORMULATION OF THE
OPTIMIZATION PROBLEM 

The task of optimization is to define geometrical 
parameters of the cross section of the girder as well as their 
mutual relations, which result in its minimum area. 

Minimization of the mass corresponds to 
minimization of the volume, i.e. the area of the cross section 
of the girder, where the given boundary conditions must be 
satisfied. The area of the cross section primarily depends on: 
height and width of the girder, thickness of plates and their 
mutual relations. 

The optimization problem defined in this way can be 
given the following general mathematical formulation: 
minimize ( )f X  subject to ( ) 0g ≤X . 
where: 

( )f X  the objective function, 

( ) 0g ≤X  the constraint function, 

{ }1,..., T
Dx x=X  represents the design vector made of D 

design variables. Design variables are the values that should 
be defined during the optimization procedure. 

In this paper optimization for the criterion of 
strenght: 

max 0kg σ σ= − ≤ (1)
where: 

maxσ - the calculation stress, 

kσ - the permissible stress. 
The Lagrange function is defined in the following 

way: 
A gλΦ = + ⋅ (2)
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3. OBJECTIVE AND CONSTRAINT FUNCTIONS

3.1. Objective function 
The objective function is represented by the area of 

the cross section of the box girder (Fig. 1). The paper treats 
two optimization parameters (h, b). The wall thicknesses t1 
and t2 are not treated as optimization parameters for the 
purpose of simplification of the procedure. Their values 
were adopted in accordance with the recommendations of 
crane manufacturers [6]. 
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where: 
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=  - the ratio between thicknesses of plates at the flange 
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plate at the web, 
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= - the ratio between the height and width of the girder. 

Figure 1: The box section of the main girder of the bridge 
crane 

 To know the optimal value of the ratio between the 
height and width of the girder k is of particular significance 
for the designer, especially in the initial design phase. 

The expressions for the moments of inertia around 
the x and y axes are: 
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where: 
1 1

b
f

b
= < - the ratio between the distance of web plates and 

the width of flange plates of the box girder. 
Since the expressions for the moments of inertia (Ix,

Iy) and the section moduli (Wx, Wy) are complex, it is 
common to take approximate values of expressions by 
neglecting the members of the lower order ([8], [16] and 
[18]): 

x xW h Aα= ⋅ ⋅ (9) 

y yW b Aα= ⋅ ⋅ (10) 
where: 

xα , yα - the dimensionless coefficient of the resistance 
moment of inertia for the x and y – axes. 

The coefficient xα  are obtained from the conditions 
of equality of the equation (7) and the expression (9) and 
relation between moment of inertia and section moduli: 
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By repeating the procedure for the section moduli for 
the y – axis, the following values of coefficient are obtained: 
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3.2. Constraint function 
The maximum equivalent stress which occurs in the 

main girder of the bridge crane for the case of placing the 
rail in the middle of the top flange is under the rail (Fig. 1). 
The constraint function according to this criterion is: 

2 2
max ( ) ( )zV zM xM zV zM xM kσ σ σ σ σ σ σ σ= + + − + ⋅ ≤  (13) 

Partial conditions must also be fulfilled: 
z zV zM kσ σ σ σ= + ≤ (14)

xM kσ σ≤ (15)
where: 
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where: 
yf  - the minimum yield stress of the plate material, 

1ν  - the factored load coefficient for load case 1, 

zMσ  - the normal stress due to local bending in the 
longitudinal direction of the girder, 

xMσ  - the normal stress due to transverse bending of the 
web plate. 
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where:
Mcv - the bending moment in the vertical plane, 
c – the coefficient of influence of the dead weight of the 
girder on the bending moment. 

Local bending of the plate and occurrence of a 
biaxial state of normal stresses arise due to the contact 
between the rail and the web plate during passage of the 
trolley. 

The normal stress due to local bending in the 
longitudinal direction of the girder, which is obtained on the 
basis of equality between rail deformations and the web 
plate is: 
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The normal stress due to transverse bending of the 
web plate is: 
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where: 
N - the part of the maximum force of wheel pressure which, 
due to rail rigidity, goes for the plate and depends on the 
ratio 1 1/a b  (Fig. 2), 

2K , 3K  - the dimensionless coefficients, 

1a  - the distance between short vertical stiffeners. 
At the very beginning it is necessary to analyze 

certain ratios of geometrical parameters. 
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Figure 2: Action of the wheel on the rail of the main girder 
of the bridge crane 

Figure 3: The zone of distribution of a part of the maximum 
force of wheel pressure 

As in this case K=2÷3, f<1, it follows that this ratio is 
higher than 1, i.e. it is obtained that 1 1a b> , i.e. the force N 
is taken according to the formula (22). 
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where: 
γ  - the coefficient of the classification class of the bridge 
crane [1], 

1F  - the maximum force of pressure of the wheel on the 
main girder of the bridge crane , 

1oc ≈  - the coefficient which depends on the manner of 
connecting the rail to the flange, 

1ŠI  - the moment of inertia of the rail for its own axis, 

1K  - the coefficient which depends on the ratio 1 1/a b . 
The members of the formula (22) will now be 

analyzed. 
It is seen that this ratio depends both on k and on f. 

As the limit for the expected values of k is known, it is 
necessary to consider the values taken for the parameter f. 

 2 41 k b sf
s b

⋅ ⋅ + ⋅= −
⋅

 (23) 

As f is treated as constant, it is necessary to adopt a 
mean value of it. 

As f depends on the slenderness s, mean values will 
be adopted, so that s = 210 is taken for S235 , s = 170 is 
taken for S355 , and a mean value will be taken for k=2.5. 

The following value of the parameter f is adopted for 
the expected range of values of the width b. 

0.87srf =  - for S355 , 0.88srf =  - for S235 . It is seen that 
these values are approximate. 

Now the ratio 1 1/a b  should be analyzed. 
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For this interval of ratio values, the approximate 
value of the coefficient 1K  can be adopted, and its value 
is 1 0.176K ≈ , where deviations of this value with the upper 
and lower limits are smaller than 5%, [13]. 

The same will now be done for the coefficients 2K  
and 3K . Their dependence is little more complex in relation 
to the previous coefficient. These coefficients depend both 
on the ratio 1 1/a b , and the ratios 1/šb b  and 1 1/z b , where: 
 1 2 5šz h cm= ⋅ +  (25) 
where: 

1z  - the width of the zone of action of the wheel on the rail 
(Fig. 3), 

šh  - the height of the rail, 

šb  - the width of the rail. 
In order to treat the coefficients 2K  and 3K  as 

constant and not variable values (which would considerably 
complicate the model), it is adopted that the rail is of a 
square cross section, where š šh b=  and it is adopted that 

/ 8šb b≈ , as the carrying capacities higher than Q=16t are 
not observed. 

The ratio 1/šb b  is now observed. 
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Taking into account the spans, carrying capacities 
and classification classes that are analyzed in this case, the 
expected values for 1b  will be found in the following range 

1 30 45b cm= ÷ . In that case, the ratio 1 1/z b  is within the 
following limits: 1 1/ 0.456 0.400z b = ÷ , [13]. 

For this interval of ratio values, the approximate 
value of the coefficient 2K  can be adopted, and its value 
is 2 0.213K ≈ , where deviations of this value with the upper 
and lower limits are smaller than 5%. The situation is 
similar for the coefficient 3K  and its value is 3 0.149K ≈ , 
[13]. 

These deviations can be tolerated because exceeding 
of stresses up to 10% is tolerated, according to [4]. 

The members of the formula (22) are further 
observed. 



It is now necessary to consider the expressions for 
stresses (18) and (19), which should be written as functions 
of h and b, i.e. the ratio 2

1/N t . 
The following ratio is observed first: 
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By replacing in the expression (22), it is obtained 
that: 
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where: 
2

1 1F F sγ= ⋅ ⋅ (31) 
The expressions (18) and (19) now become: 
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The constraint functions in this case have the 
following forms: 

2 2
11 ( ) ( ) 0zV zM xM zV zM xM kg σ σ σ σ σ σ σ= + + − + − ≤  (34) 

12 0zV zM kg σ σ σ= + − ≤ (35)

13 0xM kg σ σ= − ≤ (36)
By applying the well-known method of Lagrange 

multipliers to the expression (34), it is obtained that: 
11 11g gA A

b h h b
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After rearrangement, it is obtained that: 
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By applying the well-known method of Lagrange 
multipliers to the expression (35), it is obtained that: 
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By applying the well-known method of Lagrange 
multipliers to the expression (36), it is obtained that: 
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Based on the obtained expressions, it is seen that if 
the relations (40) and (42) are fulfilled simultaneously, then 
the equality (38) is also satisfied.  

It is now necessary to solve the previous equations. If 
we start from the simplest equation (42), it is obtained that: 
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The partial derivatives have the following values: 
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By replacing in (43) and using the known relation 
(46), [18]: 

/A A e
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∂ ∂ =
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(46)

it is obtained that: 
6

3 33 2 0e k Kn k e Knσ σ⋅ − ⋅ ⋅ − ⋅ ⋅ = (47)
Solving the equation (47) results in obtaining the 

optimum coefficient of the ratio between the height and 
width of the girder 3kσ  in relation to the partial condition of 
the strength criterion. 

By replacing this value in the constraint equation 
(36), the optimum height 3hσ  in relation to the partial 
condition of the strength criterion is obtained: 
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Let us now observe the equation (40): 
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The partial derivatives have the following values: 
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Further rearrangement results in (55): 
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The constraint equation (35) can be written in the 
form (56): 
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Solving the system of nonlinear algebraic equations 
(56) and (55) results in obtaining the optimum height 2hσ  

and width 2bσ  in relation to the partial condition of the 
strength criterion. 

The principal equation (38) is now observed: 
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The partial derivatives have the following values: 
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By replacement in the previous expression, the 
following equation (64) is obtained:  
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where: 
 4 3 22K K K= ⋅ −  (65) 
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The constraint equation (34) can be written in the 
form (67): 
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Solving the system of nonlinear algebraic equations 
(57) and (67) results in obtaining the optimum height 1hσ  
and width 1bσ  in relation to the partial condition of the 
strength criterion. 

As it can be seen, there are three different solutions. 
In order to analyze which one is the most optimum one, it is 

necessary to have graphical representation of the obtained 
solutions in the same plane. 
4. NUMERICAL REPRESENTATION OF THE RESULTS 

OBTAINED 
The functions (14), (15) and (16) depending on h and 

k, read:  
2 2 2 6 2 6 2 2 6 2 4 2 6 6 3

11 4

6 2 2 2 11 2 7 6 2 2 2 6 2
5 4

( , ) 4 ( ) ( ) 4 ( ) ( ) 24 ( ) ( )

4( ) ( ) 36 ( ) 12 ( ) ( ) ( ) 0
x dop x

cv x x cv cv

f h k e k k Kn h c e k k Kn h K cF e k k k Kn h

e k k sM c k Kn K F e k k h K sM F e k k k Kn h s M k k Kn

α σ α

α α

= + + − + + − + + −

− + + + + − + + − + ≥
 (68) 

 6 3 6 2 6 6
12 3( , ) 2 ( )( ) 2 ( )( ) 12 ( ) ( ) 0x dop x cvf h k e k k Kn h c e k k Kn h K F e k k h skM k Knα σ α= + + − + + − + − + ≥  (69) 

 6 2 6
13 2( , ) ( ) 6 0dopf h k k Kn h K Fkσ= + − ≥  (70) 

These functions will be presented in the k-h plane, 
where it is necessary to fulfil certain boundary conditions: 
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The function (71) relates to the condition of stability 
of the top flange, whereas (72) relates to the technological 
possibilities of manufacturing the box section. 

The optimum point in this diagram will be the lowest 
point that fulfils the above mentioned conditions and 
constraints. 

This will be illustrated through the following 
examples. 

The following diagrams (Fig. 4 – Fig. 7) will show 
how the curves 11f , 12f  and 13f  change depending on the 
classification class and selection of materials according to 

this criterion, where it will be adopted, for illustration, that 
the span is L=20m and the carrying capacity is Q = 12,5t. 

The following initial data will be adopted: e=1.33, 
for S235 : s=210, f=0.88, and for S355 : s=170, f=0.87. 

The diagrams (Fig. 4 and Fig. 5) show how the 
curves 11f , 12f  and 13f  change according to the strength 
criterion, for classification class 1, where it is adopted that 
the base material is S235  (Fig. 4) and S355  (Fig. 5). 

It is seen to which extent the selection of base 
material influences the shapes of the curves 11f , 12f  and 

13f , which is seen from (Fig. 4 – Fig. 7). 
The diagrams (Fig. 6 and Fig. 7) show how the 

curves 11f , 12f  and 13f  change according to the strength 
criterion, for classification class 2, where it is adopted that 
the base material is S235  (Fig. 6), i.e. S355  (Fig. 7). It is 
seen to which extent the selection of base material 
influences the shapes of the curves 11f , 12f  and 13f , as well 
as the change of classification class, which is seen from 
these diagrams. 



It is seen from the previous diagrams that in these 
cases the optimum point according to the strength criterion 
will be in the intersection of the vertical line of the function 
(71) and the function (69). 

The results from the previous examples will be 
shown in Table 1. The solutions were obtained in the 
software package MathCad. 

Figure 4: Comparative analysis of optimum values 

Figure 5: Comparative analysis of optimum values 

Figure 6: Comparative analysis of optimum values 



Figure 7: Comparative analysis of optimum values 
Table 1: Values of optimum parameters 

Material f11 f12 f13 Optimum Cl. class k h(cm) k h(cm) k h(cm) k h(cm) 

S235 2,821 127.05 1.518 83.20 6.184 330.03 2.133 97.26 1
2.806 130.64 1.512 85.49 6.184 344.01 2.133 100.30 2

S355 2.685 98.70 1.457 66.36 5.441 216.62 2.098 79.00 1
2.670 101.40 1.451 68.18 5.441 225.80 2.098 81.47 2

 

5. CONCLUSION 
The paper defined optimum dimensions of the box 

section of the main girder of the bridge crane for the case 
of placing the rail in the middle of the top flange in an 
analytical form, by using the method of Lagrange 
multipliers, according to criterion of strength. 

It was shown that the proper selection of girder 
height and plate thickness can considerably influence the 
reduction in the cross sectional area at the same time 
satisfying all constraint functions. 

The results were obtained in explicit form, which is 
very favourable for discussion of solutions as well as for 
consideration of influences of individual geometrical 
parameters and their ratios. Comparison of the obtained 
results with certain solutions of bridge cranes shows that 
the obtained cross sectional areas are smaller, which 
verifies the optimization results. 

In addition, the usage of the method of Lagrange 
multipliers is justified because the optimization results are 
obtained in analytical form, which allows getting 
conclusions about influences of particular parameters and 
further researches toward mass reduction. 

The results obtained may be of great use to the 
engineer-designer, particularly in the first phase of the 
design procedure when the basic dimensions of the main 
girder of the bridge crane, as its most responsible part, are 
defined. 

The conclusion is that further research should be 
directed toward a multicriteria analysis where it is 
necessary to include additional constraint functions, such 
as: lateral stability, local stability of plates, deflection 
dynamic stiffness, material fatigue, influence of 
manufacturing technology, optimization of the ratio of 
plate thicknesses, types of material, conditions of crane 
operation. 
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