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Abstract - Analysis of dynamics of the fluid transmission line in the time 
domain requires considerable simplification of models which are used in 
the frequency domain. The paper compares the results of simulation of 
two such approximations. The first one is based on spatial discretization 
of a pipeline into segments with lumped parameters. Electro-hydraulic 
analogy is used for development of the model. The second approach is 
based on modal approximation. Each single-resonance mode of pipeline 
dynamics is described by the second order transfer function. Viscosity 
effect is described by the linear friction model. The bond graph tech-
nique is used in both cases for presentation of the model. Out of four 
causal possibilities, the case with mixed boundary conditions - flow rate 
and pressure as inputs is observed. The influence of the number of 
segments/modes and frequency of the input signal on the system re-
sponse is analyzed. 
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I. INTRODUCTION 

In a lot of applications there is a need for modelling flu-
id transmission lines (FTL) and fluid transmission net-
works. In fluid power control systems, reasons for spatial 
distribution of parameters can be different [1]. Due to 
constructionally reasons, inefficient volumes usually occur 
between the pump and the valve, or between the valve and 
the actuator. The dynamics of these long transmission 
lines may lead to undesired oscillations. Therefore, the 
analysis of dynamics of the whole system must also take 
into account the dynamics of lines. 

Physical variables which describe these systems depend 
not only on the time coordinate but on the spatial coordi-
nate as well. Hence, they are described with partial diffe-
rential equations, i.e. with infinite-order models in the 
complex domain. For frequency domain analysis, such 
models can be used without any simplifications for differ-
ent boundary conditions. However, certain simplifications 
are necessary for time domain analysis and simulation. 
Numerous approximation techniques are encountered in 
literature: method of characteristics, direct numerical 
methods, discrete methods, quasi-method of characteristics 
[1-3]. This paper presents the results of simulation of two 
models: one is discrete, based on the division of non-
homogenous fields ( ),(),,( txQtxp ) into segments with 

homogeneous fields ( )(),( tQtp ) of all physical variables 

[4], and the other is obtained by modal approximation 
[5,6]. The first model uses electro-hydraulic analogy, and 
the second one is obtained by using rational transfer func-
tions with analytical determination of the modal coeffi-

cients. 

Depending on the adopted assumptions, viscous and 
heat transfer effects, pipeline models range from lossless, 
through linear up to dissipative models [1-3]. This paper 
uses the linear friction model of the rigid, circular pipe 
with laminar, Hagen-Poiseuille flow, without heat transfer. 

In order to easily notice the effects of involving dynam-
ics of the transmission line in hydraulic control systems it 
is desirable to use the modular model of a single pipeline 
section which can easily be included or omitted from the 
model of the entire system. That is why the bond graph is 
used for presentation of both models [7]. The bond graph 
allows connection of pipeline models with the models of 
other components in fluid power control systems. 

For one-dimensional distributed parameter models of a 
single pipeline, schematically shown in Fig. 1a, there are 
four causal possibilities: symmetric boundary conditions 
with pressure inputs ( ba PP , ) or flow rate inputs ( ba QQ , ) 

and mixed boundary conditions with ( ba QP , ) or ( ab QP , ) 

as inputs. The last causal combination ( ab QP , - inputs, 

Fig. 1b) is used in this paper. This combination corres-
ponds to long transmission lines between the valve and the 
actuator. 

 
a) Schematic view of fluid transmission line 

 
b) Models causality 

 
Fig.1. Fluid transmission line 

II. DISCRETE MODEL APPROXIMATION 

In this approach, the pipeline is observed as a cascade 
network of lumped elements (Fig. 2), where dynamics of 
each of them is described by common (linear or nonlinear) 
differential equations. The number of lumped elements 
depends on the frequency band of interest. The length of 
each segment should be much smaller than the shortest 
wavelength of interest. 
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Fig.2. A cascaded network representing a transmission line 

Practically, we need to do a model of a one segment and 
then serially connect those models into the model of long 
transmission line. Electro-hydraulic analogy is used for 
modelling. The segment is described by the so-called  - 

circuit or T - circuit [1,8]. In both cases, the same ele-
ments are used: the capacitor (fluid compressibility), the 
coil (fluid inertia) and the resistor (friction). The differ-
ence is in the way of connecting those elements. It should 
be noted that when the segment cascade is made, regard-
less of whether we use a  or a T model, there are blocks 
inside the model that periodically repeat (Fig. 3) [4]:   

 
Fig.3. Segment's bond graph model that repeat periodically 

The parameters SSS RIC ,,  are the segment capacitance, 

inertance and resistance respectively. 

The models of end elements (1-st and n-th elements) in 
the cascade in Fig. 2 depend on the model causality, i.e. 
the environment in which the pipeline model is used. The 
 interface presented in Fig. 4 is used for the causality 
shown in Fig. 1b. 

 
1-st element                      n-th element 

Fig.4.  - interface of FTL discrete model  

The model shown in Fig. 3 and Fig. 4 serves for simula-
tion of the model obtained by the discrete method of ap-
proximation. 

 

III. MODAL APPROXIMATION 

The transient processes of single transmission line ca be 
modeled with so called four-pole equation that relates 
signals at the ends of pipelines in the complex domain 
[1,2]: 














































)(

)(

)(cosh

1

)(cosh

)(sinh
)(cosh)(

)(sinh

)(cosh

1

)(

)(

sP

sQ

ss

sZ
ssZ

s

s

sP

sQ

b

a

c

c

a

b    (1) 

where )(s and )(sZc are the propagation operator and 

line characteristic impedance, respectively. Depending on 
geometry of the pipe cross section and included heat trans-
fer and distributed viscosity effects, functions )(s and 

)(sZc  have different forms. For the case of a linear fric-

tion model we have [9]: 
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where L is length of pipe and B is the friction coefficient. 

Since the model (1) represents an infinite-order model, 
it is not suitable for analysis of nonlinear systems in the 
time domain. Using modal approximation [5,6], the sys-
tem (1) can be described as the finite dimensional linear 
system with transfer functions in quadratic modal forms: 
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where )(sTi is transfer function for the i-th mode. For the 

linear friction model and causality presented in Fig. 1b 
)(sTi can be expressed as: 
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where 
22 8)( cisss   (5) 

s is normalized Laplace operator defined and ci is root 

indices. 

This parameter represents the normalized undamped 
natural frequency of the blocked line for losses or the li-
near friction model. nD is the dissipation number and 0Z  

is the pipeline impedance constant [9]. 

Using partitioned flow and pressure biQ  and aiP as state 

variables, modal transfer function can be transformed into 
modal, second order state space equation of the form: 
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where 

2/)2/1()1( 1   ia i
i         (7) 

RIC ,, are pipeline lumped capacitance, inertance and 

resistance respectively. 

Based on the equation (6), the model of the i-th mode 
can be presented by using the bond graph (Fig. 5). 

 
 
Fig. 5. The modal bond graph representation of the i-th mode for the pipeline  

Correction of steady state parameters for the model pre-
sented in the previous figure is necessary because of the 
finite number of modes included in the model. In this 
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paper the following residual matrix coefficient is used for 
truncated modes with natural frequencies well above the 
input frequencies [9]: 


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ssissresss MMM
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where is ssM steady state coefficient matrix and ssiM is 

the transfer function for the i-th mode at the steady state. 

Parallel connection of the modal models presented in 
Fig.  5 and introduction of the correction given by the 
relation (8) lead to the modal model of long transmission 
line shown in Fig. 6. 

 
Fig. 6. The modal bond graph representation of the pipeline with steady state 

correction 

 

The 1-junction and the 0-junction are used for connec-
tion of the modal models. Correction of steady state para-
meters was performed by means of two modulated source 
elements. The source coreS serves for correction of the 

steady state value of pressure aP . The source corfS  

serves for correction of the steady state value of flow rate 

bQ . The model presented in Fig. 6 serves for simulation 

of the model obtained by modal approximation. 

 

IV SIMULATION 

The parameters at which the simulation was performed 
are: 

mxrh
3105  ; mL 16 ; 3

0 /860 mkg ; 

smxv /107.9 25
0

 ; Paxe
9104.1 ; smQ /105.3 34

0
 ,  

Before the beginning of simulation initial conditions for 
all segments/modes have to be set up. It is assumed that 
the system is in steady state before the beginning of the 
transition process. Input flow rate is changing according 
to: 

)01.0()]01.0(sin[)( 0  thtQtQ           (9) 

The results of simulation of discrete and modal models 
for different numbers of segments/modes and for two fre-
quencies ( srad /50 , srad /500 ) are presented in 

Fig. 7. 

Both methods show that at low frequencies the pipeline 
dynamics can be modelled by using one segment/mode or 
it can even be neglected. At high frequencies, in addition 
to the change of gain, the phase lag increases. The results 
of simulation differ at high frequencies and a small num-
ber of segments/modes. With the increased number of 
segments/modes, those differences disappear even at high 
frequencies. 

V CONCLUSION 

The paper presents the results of simulation of two me-
thods of fluid transmission line modelling. Both methods 
practically show similar results at low and high frequen-
cies. At high frequencies, it is necessary to involve a high-
er number of segments/modes. Nevertheless, the modal 
method has the advantage due to easy maintenance and 
higher flexibility of the model. For example, in the dis-
crete method, introduction of a new segment requires 
changes in the models of previous segments. Another 
advantage refers to the speed of simulation. Modal models 
have faster execution at least an order of magnitude than 
discrete models. 
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a) Discrete model 
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b) Modal model

Fig. 7. Simulation results for models with different number of segments  
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