# Komprativna anliza lokalne i bočne stabilnosti kao funkcije ograničenja pri optimizaciji kutijastog preseka glavnog nosača mosne dizalice

Goran Pavlović<sup>1)</sup>, Milomir Gašić<sup>2)</sup>, Mile Savković<sup>2)</sup>, Nebojša Zdravković<sup>2)</sup>

<sup>1</sup>Kneginje Milice 26/27, Trstenik <sup>2</sup>Mašinski fakultet Kraljevo, Univerzitet u Kragujevcu, Dositejeva 19, 36000 Kraljevo,

Srbija

*Rezime:* U radu je razmatran problem optimizacije kutijastog poprečnog preseka glavnog nosača mosne dizalice sa šinom postavljenom iznad vertikalnog lima. Kriterijumi čvrstoće nosača, lokalne i bočne stabilnost upotrebljeni su kao funkcije ograničenja. U komparativnoj analizi prikazan je i uticaj tehnologičnosti na dobijene rezultate optimizacije. Smanjenje mase nosača postavljeno je kao funkcija cilja a kao metodologija upotrebljen je metod Lagrange-ovih množilaca. Uporedni rezultati optimizacije pokazuju kako se menjaju optimalne geometrijske vrednosti kutijastog poprečnog preseka zavisno od primene domaćeg standarda ili eurokoda. Na osnovu komparativne analize rezultata optimizacije i izvedenih rešenja date su preporuke koje su od značaja za projektante prilikom izrade dizalica.

*Ključne reči:* mosna dizalica, optimizacija, čvrstoća, lokalna stabilnost ploča, bočna stabilnost.

# 1. UVODNA RAZMATRANJA

Izbor optimalnog dimenzija i geometrijskih parametara nosećih konstrukcija, koji utiču na smanjenje mase i troškove izrade, je predmet istraživanja mogih autora, bez obzira dali se radi o dizalicama ili konstrukcijama uopšte ([1-6], ([10-13]). U ovom radu izvršena je analitička metoda optimizacije i ona daje funkcionalne zavisnosti rezultata optimizacije koji bliže definišu uticaj pojedinih parametara na smanjenje mase.

Pri optimizaciji kutijastog nosača mosne dizalice, kao funkcija ograničenja najčešće se zadaju granični napon i deformacija. Međutim, odgovarajući standardi i propisi ([7-9], [14]) definišu i kriterijume lokalne i bočne stabilnosti kao funkcija ograničenja, pa su u ovom radu i oni uključeni u proces optimizacije.

U radu je izvršena optimizacija geometrijskih parametara poprečnog preseka glavnog nosača mosne dizalice za slučaj postavljanja šine iznad vertikalnnog lima. Definisani su optimalni parametri za sve tri funkcije ograničenja i data je njihova komparativna analiza. Dobijeni rezultati daju značajan doprinos za konstruktore prilikom projektovanja sandučastih nosača mosnih dizalica.

# 2. MATEMATIČKA FORMULACIJA OPTIMIZACIONOG PROBLEMA

Zadatak optimizacije, bez obzira na postavljene kriterijume, je definisanje geometrijskih parametara poprečnog preseka nosača, kao i njihovog međusobnog odnosa, koji daju njegovu minimalnu površinu. Opšta matematička formulacija, za ovako definisan optimizacioni problem detaljn je prikazana u [16]. U radu je izvršena optimizacija za ograničenje prema kriterijumu čvrstoće (1.1), bočne stabilnosti (1.2) i lokalne stabilnosti (1.3):

$$g_1 = \sigma_{r1} - \sigma_{k1} \le 0, \qquad (1.1)$$

$$g_2 = \sigma_{r2} - \sigma_{k2} \le 0, \qquad (1.2)$$

$$g_3 = \sigma_{r3} - \sigma_{k3} \le 0, \qquad (1.3)$$
gde je:

 $\sigma_{ri}, \sigma_{ki}$ - računski i kritični napon za sva tri navedena kriterijuma.

Lagranžova funkcija definiše se sada na sledeći način:

$$\Phi = A + \lambda_1 \cdot g_1 + \lambda_2 \cdot g_2 + \lambda_3 \cdot g_3, \qquad (2)$$

$$\frac{\partial \Phi}{\partial b} = 0; \frac{\partial A}{\partial b} + \lambda_1 \cdot \frac{\partial g_1}{\partial b} + \lambda_2 \cdot \frac{\partial g_2}{\partial b} + \lambda_3 \cdot \frac{\partial g_3}{\partial b} = 0, \quad (3.1)$$

$$\frac{\partial \Phi}{\partial h} = 0; \frac{\partial A}{\partial h} + \lambda_1 \cdot \frac{\partial g_1}{\partial h} + \lambda_2 \cdot \frac{\partial g_2}{\partial h} + \lambda_3 \cdot \frac{\partial g_3}{\partial h} = 0, \qquad (3.2)$$

$$\frac{\partial \Phi}{\partial \lambda_i} = 0; \Rightarrow g_i = 0, \ i = 1, 2, 3, \ \frac{\partial \Phi}{\partial \lambda_2} = 0; \Rightarrow g_2 = 0, \ (3.3)$$

$$\sum_{i=1}^{J} \lambda_i \cdot \left( \frac{\partial g_i}{\partial b} \cdot \frac{\partial A}{\partial h} - \frac{\partial g_i}{\partial h} \cdot \frac{\partial A}{\partial b} \right) = 0$$

Pošto su  $\lambda_1, \lambda_2, \lambda_3 \neq 0$ , dobija se:

1. 
$$\frac{\partial A}{\partial b} \cdot \frac{\partial g_1}{\partial h} = \frac{\partial A}{\partial h} \cdot \frac{\partial g_1}{\partial b} \wedge g_1 = 0$$
 (4)

2.  $\frac{\partial A}{\partial b} \cdot \frac{\partial g_2}{\partial h} = \frac{\partial A}{\partial h} \cdot \frac{\partial g_2}{\partial b} \wedge g_2 = 0$  (5)

3. 
$$\frac{\partial A}{\partial b} \cdot \frac{\partial g_3}{\partial h} = \frac{\partial A}{\partial h} \cdot \frac{\partial g_3}{\partial b} \wedge g_3 = 0$$
 (6)

<sup>\*</sup> Kontakt adresa autora: Kneginje Milice 26/27, Trstenik

# 3. FUNKCIJE CILJA I OGRANIČENJA

#### 3.1. FUNKCIJA CILJA

Za ove funkcije ograničenja, funkciju cilja je površina poprečnog preseka sandučastog nosača [16], pri čemu su parametri optimizacije (h,b) (Sl. 1), dok su vrednosti debljina zidova  $t_1$  i  $t_2$  usvojene saglasno preporukama proizvođača dizalica [15].



Slika 1 Sandučasti poprečni presek glavnog nosača mosne dizalice

Vektor zadatih parametara je:

 $\vec{x} = (M_{cv}, M_{ch}, Q, L, k_a, ...)$ (7) gde su:

-  $M_{cv}$  i  $M_{ch}$  momenti savijanja u vertikalnoj i horizontalnoj ravni,

- Q - nosivost dizalice,

- L- raspon dizalice,
- k<sub>a</sub> dinamički koeficijent opterećenja dizalice u horizontalnoj ravni, [9].

Funkcija cilja, glasi:

$$A(h,b) = f(h,b) = \frac{2}{s} \cdot (e \cdot b \cdot h + h^2), \qquad (8)$$

gde je:  $e = t_1/t_2$  - odnos debljine limova na pojasu i rebru,  $s = h/t_2$  - odnos visine i debljine lima na rebru, k = h/b - odnos visine i širine nosača.

Koristeći rezultate dobijene u [16] geometrijske karakteristike su:

$$I_x = \beta_x^2 \cdot h^2 \cdot A, \ W_x = \alpha_x \cdot h \cdot A, \tag{9}$$

$$I_{y} = \beta_{y}^{2} \cdot b^{2} \cdot A ; W_{y} = \alpha_{y} \cdot b \cdot A , \qquad (10)$$

$$S_{nx} = \gamma_x \cdot h \cdot A, \tag{11}$$

$$\beta_{x}^{*} \cong \frac{1}{2} \cdot \sqrt{\frac{k+3 \cdot e}{3 \cdot (e+k)}}, \ \alpha_{x}^{*} \cong \frac{k+3 \cdot e}{6 \cdot (e+k)}.$$
(12)

$$\beta_{y}^{*} \approx \frac{1}{2} \cdot \sqrt{\frac{3 \cdot k \cdot f^{2} + e}{3 \cdot (e+k)}}, \ \alpha_{y}^{*} = \frac{3 \cdot k \cdot f^{2} + e}{6 \cdot (e+k)}.$$
(13)

$$\gamma_x \approx \frac{k+2 \cdot e}{8 \cdot (e+k)} \,. \tag{14}$$

# 3.2. FUNKCIJE OGRANIČENJA

#### 3.2.1. Kriterijum čvrstoće

Funkcija ograničenja prema kriterijumu čvrstoće glasi:

$$g_1(h,b) = \frac{M_{cv} + c \cdot A}{\alpha_x \cdot h \cdot A} + \frac{M_{ch} + k_a \cdot c \cdot A}{\alpha_y \cdot b \cdot A} - \sigma_{k1} \le 0 \quad (15)$$

gde je:

 $\sigma_{k1} = f_v / v_1$  - kritični napon prema JUS-u,

 $\sigma_{k1} = f_y / (v_1 \cdot \gamma_m)$ -kritični napon prema Eurokodu,

 $\gamma_m = 1, 1 \,$  - glavni faktor otpora,

 $v_1 = 1,5$  - stepen sigurnosti za I slučaj opterećenja, c - koeficijent specifične težine nosača.

Zamenom parcijalnih izvoda jednačine (8):

$$\frac{\partial A}{\partial b} = \frac{2}{s} \cdot e \cdot h; \quad \frac{\partial A}{\partial h} = \frac{2}{s} \cdot (e \cdot b + 2 \cdot h); \tag{4.1}$$

u (4), uz odgovarajuće transformacije, dobija se:

$$\frac{M_{cv} + c \cdot A}{M_{ch} + k_a \cdot c \cdot A} \approx \frac{M'_{cv}}{M'_{ch}},$$
(16)

Za opšti položaj opterećenja mosne dizalice (slika 2), odnos  $(M'_{cv}/M'_{ch})$  prikazan je na slici 3.



Slika 2 Operećenje glavnog nosača mosne dizalice



**Slika 3** Arpoksimacija jednačine (16)- a) funkcija  $M_{cv}^{*}/M_{ch}^{*}$  b) funkcija  $M_{cv}^{*}/M_{ch}$  za L = 25m c)

funkcija  $M_{cv}/M_{ch}$  za L=10m

Na osnovu toga, može se zapisati:

$$\frac{M'_{cv}}{M'_{ch}} = \frac{1}{k_a} \cdot \frac{R}{R_h} = \frac{1}{k_a} \cdot c_1 \,. \tag{17}$$

$$\check{C} \text{lan } c_1 \text{ glasi [11]:}$$

$$c_1 = \frac{\psi \cdot Q + m_o + K \cdot Q^{\alpha}}{Q + m_o + K \cdot Q^{\alpha}}, \qquad (18)$$

gde je: K - koeficijent uticaja pogonske klase na masu kolica,  $\psi$  - koeficijent dinamičkog uticaja u vertikalnoj ravni,  $\alpha$  - koeficijent uticaja mase opterećenja na masu kolica,  $m_o$  - the assumed mass of the trolley in the first approximation.

Korišćenjem relacija (4.1), (16) and (17), dobija se optimaln vrednost odnosa k po ovom kriterijumu:

$$k_{1} = \sqrt{\frac{e \cdot \alpha_{y}}{\alpha_{x}} \cdot \frac{M'_{cv}}{M'_{ch}}} = \sqrt{\frac{e \cdot \alpha_{y}}{\alpha_{x}} \cdot \frac{c_{1}}{k_{a}}}.$$
 (19)

Koristeći dobijenu zavisnost, funkcija cilja može se zapisati u sledećem obliku:

$$A_{1}(h) \geq \frac{M_{cv}/\alpha_{x} + M_{ch}/\alpha_{y} \cdot k_{1}}{\sigma_{k1} \cdot h - c/\alpha_{x} - k_{a} \cdot c/\alpha_{y} \cdot k_{1}}.$$
 (20)

#### 3.2.2. Bočna stabilnost limova

Provera stabilnosti nosača na bočno izvijanje izvršena je saglasno srpskim standardima [8]. Postupak određivanja optimalnog odnosa za *k* detaljno je prikazan u [16], pri čemu je dobijena funkcija cilja prema kriterijumu bočne stabilnosti:

$$A_{2}(h) \geq \frac{K_{1} \cdot M_{cv} \cdot k_{2}^{2} \cdot f(h) + K_{2} \cdot M_{ch} \cdot k_{2} \cdot h^{2}}{\sigma_{k_{2}} \cdot h^{3} - K_{1} \cdot c \cdot k_{2}^{2} \cdot f(h) - K_{2} \cdot k_{a} \cdot c \cdot k_{2} \cdot h^{2}}, \quad (21)$$

gde je:

$$K_{1} = \frac{2 \cdot \gamma_{x}}{\beta_{x}^{2} \cdot \beta_{y}^{2}}, \quad K_{2} = \frac{0.9}{\alpha_{y}} \quad \text{konstante,}$$
$$f(h) = a \cdot m^{2} + g \cdot m \cdot \beta_{y} \cdot \frac{h}{k_{2}} + d \cdot \beta_{y}^{2} \cdot \frac{h^{2}}{k_{2}^{2}}. \quad (22)$$

#### 3.2.3. Lokalna stabilnost limova

Provera lokalne stabilnosti pojasnog i vertikalnog lima izvršena je prema standardima [14] i to: stabilnost pojasnog lima širine  $b_1$  debljine  $t_1$  (Sl. 4), vertikalnog lima iznad podužnog ukrućenja (dužine a, visine  $h_1$  i debljine  $t_2$ ) i stabilnost vertikalnog lima ispod podužnog ukrućenja (dužine a, visine  $h_2$  i debljine  $t_2$ ).

Takođe, vrši se provera segmenta pojasnog lima izloženog dejstu normalnog napona pritiska u xpravcu, čije su dimenzije: dužina a=2h, širina b<sub>1</sub> i debljine t<sub>1</sub>. Ovaj kriterijum je ispunjen ako je zadovoljen uslov lokalne stabilnosti:

$$g_{3}(h,b) = \frac{M_{cv} + c \cdot A}{\alpha_{x} \cdot h \cdot A} + f \cdot \frac{M_{ch} + k_{a} \cdot c \cdot A}{\alpha_{y} \cdot b \cdot A} - \frac{\sigma_{k3}}{v_{1}} \le 0, \quad (23)$$

gde je:  $\sigma_{k3} = \kappa_x \cdot f_y / \gamma_m$ -kritični napon,  $\kappa_x$ - redukcioni faktor.



Slika 4 Prikaz pojasnih i vertikalnih limova

Redukcioni faktor glasi:

$$\kappa_x = c_e \cdot \left(\frac{1}{\lambda_x} - \frac{0.22}{\lambda_x^2}\right) \le 1 \text{ za } \lambda_x > 0,673, \qquad (24)$$

 $\kappa_x = 1 \text{ za } \lambda_x \leq 0,673$ ,

gde je:  $\lambda_x$  - bezdimenzioni koeficijent vitkosti.

$$\lambda_x = \sqrt{\frac{f_{yk}}{K\sigma \cdot \sigma_e}} , \qquad (25)$$

$$c_e = 1,25 - 0,12 \cdot \psi_e, \ c_e \le 1,25 \ , \tag{26}$$

 $\psi_e$ -koeficijent odnosa napona u odnosu na makisimalni napon pritiska,  $K\sigma$ -koeficijent izvijanja [16]. Referentni napon  $\sigma_e$  glasi:

$$\sigma_{e} = \frac{\pi^{2} \cdot E}{12 \cdot (1 - \nu^{2})} \cdot (t_{1} / b_{1})^{2}.$$
(27)

U preseku *I* verikalne dijafragme se postavljaju na rastojanju 2*h*, tako da ovaj odnos uzima vrednost:  $\alpha_e = a/b_1 = 2 \cdot h/(f \cdot b) > 1$ .

Takođe, koeficijent  $\psi_e$  uzima sledeću vrednost:

$$\psi_{e} = \frac{\sigma_{2}}{\sigma_{1}} = \frac{\frac{c_{1}}{k_{a}} \cdot \frac{\alpha_{y}}{\alpha_{x}} - f \cdot k}{\frac{c_{1}}{k_{a}} \cdot \frac{\alpha_{y}}{\alpha_{x}} + f \cdot k},$$
(28)

gde je:

 $v_1 = 1,5$  - koeficijent faktorisanog opterećenja za I slučaj opterećenja,  $\sigma_1, \sigma_2$ - naponi usled faktorisanog opterećenja.

Za prosečne vrednost, ovaj odnos se može približno napisati i izrazom:

$$\psi_p \approx 0.83 - 0.06 \cdot k$$
, (28.1)

pa se uz odgovarajuće transformacije dobija:

$$c_p \approx 1.15 + 0.0072 \cdot k$$
, (26.1)

$$K\sigma_p = \frac{8,2}{1,88 - 0,06 \cdot k},$$
(29)

Komprativna anliza lokalne i bočne stabilnosti kao funkcije ograničenja pri optimizaciji kutijastog preseka glavnog nosača mosne dizalice

$$\sigma_e = \frac{\pi^2 \cdot E}{12 \cdot (1 - v^2)} \cdot \left(\frac{e \cdot k}{s \cdot f}\right)^2, \qquad (27.1)$$

$$\lambda_{xp} \approx \frac{Ko}{\sqrt{K\sigma_p}} \cdot \frac{s \cdot f}{e \cdot k} \,. \tag{25.1}$$

Na Sl. 6 vidi se da je vrednost za koeficijent  $\kappa_x = 1$ , pri čemu je uzeta pogonska klasa 2, S235JRG2 :



Slika 6 Prikaz koeficijenta izvijanja

Primenom metode Lagranževog množitelja, za kriterijum bočne stabilnosti, korišćenjem odgovarajućih parcijalih izvoda (6) i relacija (8) i (23) dobija se:

$$k_3 = \sqrt{\frac{e \cdot \alpha_y}{f \cdot \alpha_x} \cdot \frac{c_1}{k_a}} \,. \tag{30}$$

Iz ovog izraza može se dobiti optimalna vrednost parametra k za pojasni lim. Koristeći dobijene zavisnosti iz funkcije ograničenja prema ovom kriterijumu, funkciju cilja glasi:

$$A_{3}(h) \geq \frac{M_{cv} / \alpha_{x} + f \cdot M_{ch} / \alpha_{y} \cdot k_{3}}{\sigma_{k_{3}} \cdot h - c / \alpha_{x} - f \cdot k_{a} \cdot c / \alpha_{y} \cdot k_{3}}.$$
(31)

Provera lokalne stabilnosti vertikalnog lima vrši se u polju 1 i 2 (slika 7).



Slika 7 Prikaz vertikalnog lima

Pored dejstva normalnog napona u *x* pravcu, javlja se i normalni napon u *y* pravcu usled pritiska točka kolica.

Posmatra se slučaj kada se pored vertikalnih dijafragmi na sredini raspona, u presku *I*, koristi i jedan red horizontalnih postavljenih na rastojanju od  $(0, 25 \div 0, 33) \cdot h$ . Posmatra se polje 1 i 2.

Polje 1: Ovaj kriterijum je ispunjen ako je zadovoljen uslov lokalne stabilnosti:

$$\left(\frac{\left|\sigma_{sd_{1,x}}\right|}{f_{b,Rd_{1,x}}}\right)^{e_{1,x}} + \left(\frac{\left|\sigma_{sd_{1,y}}\right|}{f_{b,Rd_{1,y}}}\right)^{e_{1,y}} - \left(\kappa_{1,x}\cdot\kappa_{1,y}\right)^{6} \cdot \left(\frac{\left|\sigma_{sd_{1,x}}\cdot\sigma_{sd_{1,y}}\right|}{f_{b,Rd_{1,x}}\cdot f_{b,Rd_{1,y}}}\right) \le 1.$$
(32)

Naponi u tački 1 u pravcima x i y, kritični naponi pritiska i odgovarajući koeficijenti imaju vrednosti:

$$\begin{aligned} \left| \sigma_{Sd1,x} \right| &= v_1 \cdot \left( \frac{M_{cv} + c \cdot A}{\alpha_x \cdot h \cdot A} + f \cdot \frac{M_{ch} + k_a \cdot c \cdot A}{\alpha_y \cdot b \cdot A} \right) \\ \left| \sigma_{Sd1,y} \right| &= v_1 \cdot \frac{\gamma \cdot F_1}{t_2 \cdot l_{1r}}, \\ f_{b,Rd1,x} &= \kappa_{1x} \cdot f_y / \gamma_m, \ f_{b,Rd1,y} = \kappa_{1y} \cdot f_y / \gamma_m \\ e_{1x} &= 1 + \kappa_{1x}^4, \ e_{1y} &= 1 + \kappa_{1y}^4 \end{aligned}$$
Referenting napon  $\sigma_{1e}$  glasi:

$$\sigma_{1e} = \frac{\pi^2 \cdot E}{12 \cdot (1 - \nu^2)} \cdot \left(\frac{t_2}{h_1}\right)^2 = \frac{\pi^2 \cdot E}{12 \cdot (1 - \nu^2)} \cdot \left(\frac{4}{s}\right)^2.$$
(33)

Kako je:

$$\psi_{1p} \approx 0.54 + 0.015 \cdot k ,$$
(34)

može se zapisati:

$$K\sigma_{1p} = \frac{8,2}{1,59+0,015\cdot k},$$
(35)

$$\lambda_{1,p} \approx \frac{Ko}{\sqrt{K\sigma_{1p}}} \cdot \frac{s}{4}.$$
(36)

Na Sl. 8 vidi se da je vrednost koeficijenta  $\kappa_{1x} = 1$ , pri čemu je uzeta pogonska klasa 2, a materijal S235JRG2.Nešto niže vrednosti se dobijaju sa povećanjem vitkosti *s*.



Slika 8 Prikaz koeficijenta izvijanja

Slična analiza je za opterećenje u *y* pravcu, pri čemu je:  $F_1$  - maksimalna sila pritiska točka,  $l_{1r} = 12,15+1,4 \cdot e$  - efektivna dužina raspodele optrećenja prema [16],  $c_{1r}$  - širina preko koje je raspoređena transverzalna sila,  $\kappa_{1y}$  - redukcioni faktor za polje 1:

$$\kappa_{1y} = 1.13 \cdot \left( \frac{1}{\lambda_{1y}} - \frac{0.22}{\lambda_{1y}^2} \right) \le 1 \text{ za } \lambda_{1y} > 0.831, \quad (37)$$
  
$$\kappa_{1y} = 1 \text{ za } \lambda_{1y} \le 0.831,$$

$$\lambda_{1y} = \frac{Ko}{\sqrt{K\sigma_{1y} \cdot a/c_{1r}}} \cdot \frac{s}{4}, \qquad (38)$$

 $K\sigma_{1y} \approx 0.5$  [16].

Na Sl. 9 vidi se da za prosečne i očekivane vrednosti parametara  $\kappa_{1y} = 1$ , pri čemu je uzeta pogonska klasa 2 i materijal S235JRG2.



Slika 9 Prikaz koeficijenta izvijanja

Za ove vrednosti parametara, izraz (34) postaje:

 $\sqrt{\left|\sigma_{Sd1,x}\right|^{2} + \left|\sigma_{Sd1,y}\right|^{2} - \left|\sigma_{Sd1,x} \cdot \sigma_{Sd1,y}\right|} \le f_{y} / \gamma_{m}.$  (39) Ova relacija važi ako je zadovoljen uslov:

 $|\sigma_{sd_{1,x}}| \ge |\sigma_{sd_{1,y}}|$ , odnosno da je leva strana veća od desne,  $f_l(L) \ge f_d(L)$ -slika 10.



**Slika 10** Prikaz rezultata analize kritičnih napona u pravcima *x* i *y* 



Naponi u tački 2 u pravcima x i y, kritični naponi pritiska i odgovarajući koeficijenti imaju vrednosti:

$$\begin{aligned} \left|\sigma_{Sd2,x}\right| &= v_1 \cdot \left(\frac{M_{cv} + c \cdot A}{2 \cdot \alpha_x \cdot h \cdot A} + f \cdot \frac{M_{ch} + k_a \cdot c \cdot A}{\alpha_y \cdot b \cdot A}\right), \\ \left|\sigma_{Sd2,y}\right| &= v_1 \cdot \frac{\gamma \cdot F_1}{t_2 \cdot l_{2r}}, \\ f_{b,Rd2,x} &= \kappa_{2x} \cdot f_y / \gamma_m, \ f_{b,Rd2,y} &= \kappa_{2y} \cdot f_y / \gamma_m, \\ e_{2x} &= 1 + \kappa_{2x}^4, \ e_{2y} &= 1 + \kappa_y^4. \end{aligned}$$

Referentni napon  $\sigma_{2e}$  glasi:

$$\sigma_{2e} = \frac{\pi^2 \cdot E}{12 \cdot (1 - \nu^2)} \cdot \left(\frac{t_2}{h_2}\right)^2 = \frac{\pi^2 \cdot E}{12 \cdot (1 - \nu^2)} \cdot \left(\frac{4}{3 \cdot s}\right)^2.$$
(41)

Kako je:

$$\nu_{2p} \approx -(0, 6+0, 01 \cdot k), \qquad (42)$$

može se zapisati:

$$K\sigma_{2p} = 15, 1+1, 8 \cdot k + 0,0978 \cdot k^2, \qquad (43)$$

$$\lambda_{2,p} \approx \frac{Ko}{\sqrt{K\sigma_{2p}}} \cdot (3 \cdot s/4) \,. \tag{44}$$

Na Sl. 11 vidi se promena vrednost za koeficijent  $\kappa_{2x}$ , pri čemu je uzeta pogonska klasa 2, a materijal S235JRG2. Znatno niže vrednosti se dobijaju sa povećanjem vitkosti *s*.



Slika 11 Prikaz koeficijenta izvijanja

Posmatra se dalje anliza opterećenja u y pravcu, pri čemu je:  $l_{2r} = 12,15 + 2 \cdot e \cdot h/s + h/2$  - efektivna dužina raspodele optrećenja prema [14],  $\kappa_{2y}$  redukcioni faktor za polje 2,  $K\sigma_{2y} \approx 1,2$  koeficijent izvijanja, prema [14],  $c_{2r}$  - širina preko koje je transverzalna sila raspoređena ,

$$\lambda_{12} = \frac{Ko}{\sqrt{K\sigma_{2y} \cdot a/c_{2r}}} \cdot \frac{3 \cdot s}{4}, \qquad (45)$$

Na SL. 12 vidi se kako se za prosečne i očekivane vrednosti parametara, menja vrednost za koeficijent  $\kappa_{2y}$ , pri čemu je uzeta pogonska klasa 2, a materijal S235JRG2



Slika 12 Prikaz koeficijenta izvijanja

Za ovako dobijene vrednosti parametara, (34.2) postaje:

$$\left(\left|\sigma_{Sd2,x}\right| / f_{b,Rd2,x}\right)^{e_{2x}} + \left(\left|\sigma_{Sd2,y}\right| / f_{b,Rd2,y}\right)^{e_{2y}} \le 1.$$
 (46)

Da bi se uradila analiza, posmatraće se odnos maksimalnog napona pritiska u ovom polju i maksimalnog napona pritiska koji se javlja.

$$\left|\sigma_{Sd\,2,x}\right| = \psi_2 \cdot \left|\sigma_{Sd\,\max,x}\right| \approx (0,52+0,009\cdot k) \cdot \left|\sigma_{Sd\,\max,x}\right|$$

Sada (34.2.1) postaje:

$$\left(\psi_2/\kappa_{2x}\right)^{l+\kappa_{2x}^4} + \left(\left|\sigma_{Sd2,y}\right| \cdot \gamma_m/(\kappa_{2y} \cdot f_y)\right)^{l+\kappa_{2y}^2} \le 1.$$
 (47)

Za prosečne parametre i variranjem nosivosti i unutrašnje širine može se videti kako se ovaj odnos menja, pri čemu je uzeto s = 160 (SL. 13).



Slika 13 Prikaz rezultata

Na osnovu svega gore pomenutog, moguće je izabrati takve parametre tako da lokalna stabilnost bude zadovoljena. Kako je polje 1 kritično kod ispitivanja lokalne stabilnosti vertikalnih limova, a najveći napon koji se javlja je analogan onom kod pojasnog lima, i pošto faktori  $\kappa_{1x}$  i  $\kappa_{1y}$  uzimaju za očekivane vrednosti odnosa *k* i vitosti *s* vrednost 1, dobija se da se za ovaj kriterijum može uzeti ista kriva, odnosno ograničenje ( $g_3$ ) kao ova dobijena u prethodnom izrazu, a takođe se i optimalna vrednost za *k* po ovom kriterijumu određuje po relaciji (30), kao kod lokalne stabilnosti pojasnog lima, a takođe je i funkcija cilja po relaciji (31).

### 4 NUMERIČKI PRIKAZ DOBIJENIH REZULTATA

Korišćenjem izraza (19), (22) i (30) dobijaju se optimalna vrednost parametra k prema posmatranim

kriterijumima. Optimalne vrednosti parametra k u funkciji od člana e prikazane su u tabeli 1.

Tabela 1

| е     | 1,2  | 1,3  | 1,4  | 1,5  |
|-------|------|------|------|------|
| $k_1$ | 3,90 | 4,00 | 4,10 | 4,25 |
| $k_2$ | 3,35 | 3,33 | 3,31 | 3,30 |
| $k_3$ | 4,20 | 4,30 | 4,40 | 4,55 |

Izraz (20) predstavlja funkciju cilja dobijenu iz funkcije oraničenja prema kriterijumu čvrstoće i zajedno sa funkcijom cilja (8) može se predstaviti i grafičkim putem. Izraz (20) prikazan je isprekidanom, a izraz (8) punom linijom (Sl. 14 i SL. 15). Vidi se kako se menja položaj presečne tačke u zavisnosti od izbora materijala po domaćem standardu (SL. 14), odnosno eurokodu (SL: 15), gde su usvojene vrednosti parametara L=20 m i Q=12.5 t.



Slika 14 Optimalne vrednosti visine nosača i funkcije cilja prema kriterijumu čvrstoće, prema JUS standardu a S235JRG2. b S275JR. c S355JR



Slika 15 Optimalne vrednosti visine nosača i funkcije cilja prema kriterijumu čvrstoće, prema Eurokodu a S235JRG2. b S275JR. c S355JR

U [16] je prikazano kako se menja ovaj položaj prema kriterijumu bočne stabilnosti.

Izraz (31) predstavlja funkciju cilja dobijenu iz funkcije oraničenja prema kriterijumu lokalne stabilnosti limova i zajedno sa funkcijom cilja (8) može se predstaviti i grafičkim putem, kao u prethodnim slučajevima (Sl. 16).



Slika 16 Optimalne vrednosti visine nosača i funkcije cilja prema kriterijumu lokalne stabilnosti imova a S235JRG2. b S275JR. c S355JR

Za polaznu analizu dobijenih rezultata mogu se usvojiti srednje vrednosti, tako da za S235JRG2 uzima se vrednost s = 210, a za S355JR s = 170. Ostale veličine parametara, u ovoj fazi, su: e = 1,33, f = 0,85,  $\psi = 1,15$ ,  $k_a = 0,1$ ,  $e_k = 2,3m$ ,  $G_k = 15kN$ .

Analiza je sprovedena za pogonsku klasu 2, koja je najčešće zastupljena u praksi. Za nju važe sledeće vrednosti:  $\gamma = 1,05$ ,  $\alpha = 1,20$ , K = 0,08,  $m_o = 1,20$ .

Takođe, preporuka srpskih proizvođača dizalica jeste da minimalna vrednost širine  $b_1$  iznosi  $b_1 > 30 cm$ , odakle se dobija:

$$k \le f \cdot h/30, \tag{48}$$

dok kod stranih proizvođača ova vrednost iznosi  $b_1 > 20 cm$ :

$$k \le f \cdot h/20 \,. \tag{49}$$

Ako se izjednači izraz (8) sa izrazima (19), (22) i (30) dobijaju se zavisnosti parametra k, prema posmatranim kriterijumima:

$$k_1 = F\left(s, e, h, M_{cv}, M_{ch}, \alpha_x, \alpha_y, f_y, k_a\right), \tag{50}$$

$$k_{2} = F(s, e, h, K_{1}, K_{2}, M_{cv}, M_{ch}, \sigma_{k2}, c, k_{a}), \quad (51)$$

$$k_3 = F\left(s, e, f, h, Q, M_{cv}, M_{ch}, \alpha_x, \alpha_y, k_a, f_y\right), \quad (53)$$

pri čemu treba napomenuti da će se zavisnost (50) prikazati posebno za ovaj kriterijum po domaćem propisu (50.1), a posebno po eurokodu (50.2).

Na sledećim slikama biće prikazani dobijeni optimalni geometrijski parametri za karakteristične nosivosti i raspone dvogrednih mosnih dizalica.

Na slikama se vidi da su i kod domaćeg propisa i eurokoda za posmatrane slučajeve optimalan kriterijum čvrstoće.



**Slika.** 17 Višekriterijumsko određivanje optimalne vrednosti parametra k za raspon dizalice L=12m, i nosivost Q = 5t



**Slika. 18** Višekriterijumsko određivanje optimalne vrednosti parametra k za raspon dizalice L=12m, i nosivost Q = 16t



**Slika. 19** Višekriterijumsko određivanje optimalne vrednosti parametra k za raspon dizalice L=20m, i nosivost Q = 5t



Slika. 20 Višekriterijumsko određivanje optimalne vrednosti parametra k za raspon dizalice L=20m, i nosivost Q = 16t

# 4 ZAKLJUČAK

U radu su dobijeni analitički izrazi koji definišu optimalne dimenzije kutijastog poprečnog preseka nosača mosne dizalice glavnog sa šinom postavljenom iznad vertikalnog lima. U analizi je korišćen metod Lagranžovih množitelja, gde su kao funkcije ograničenja postavljeni kriterijumi čvrstoće, bočne i lokalne stabilnosti limova. Dobijeni su analitički izrazi za definisanje geometrijskih parametara poprečnog preseka koji daju optimalne vrednosti površine poprečnog preseka. Izvršena je komparativna analiza dobijenih rezultata za različite funkcije ograničenja i definisan postupak za izbor jedinstvenog rešenja. Komparativna analiza obuhvata i uticaj tehnologičnosti na izbor optimalnog rešenja.

Sprovedena procedura omogućava brzo i efikasno određivanje optimalna vrednost geometrijskih parametra prema kritičnoj funkciji za odgovarajuće ulazne podatke i zadata ograničenja.

Pokazana je značajna podudarnost krivih čvrstoće i lokalne stabilnosti limova po eurokodu. Može se uočiti i da je značajan uticaj tehnologičnosti na optimalne vrednosti dobijenih rezultata.

Takođe pokazana je opravdanost primene metode Lagranžovih množitelja jer su dobijeni rezultati optimizacije u analitičkom obliku, koji omogućavaju donošenje zaključaka o uticaju pojedinih parametara i pravcima daljih istraživanja u smanjenju mase.

# ZAHVALNOST

Autori se zahvaljuju Ministarstvu prosvete, nauke i tehnološkog razvoja Srbije na podršci za realizaciju projekta TR 35008.

# **5 LITERATURA**

[1] Farkas J (1984) Optimum design of metal structures. Akademiai KIADO, Budapest [2] Farkas J (1986) Economy of Higher-Strength Steels in Overhead Travelling Cranes with Double-Box Girders. J. Construct. Steel Research 6: 285-301

[3] Farkas J, Jármai K (1997) Analysis and optimum design of metal structures. Balkema, Rotterdam

[4] Farkas J, Jármai K, Snyman JA (2010) Global minimum cost design of a welded square stiffened plate supported at four corners. Struct Multidisc Optim 40:477–489

[5] Gašić M, Savković M, Bulatović R, Petrović R (2011) Optimization of a pentagonal cross section of the truck crane boom using Lagrange's multipliers and differential evolution algorithm. Meccanica. 46(2011) 4:845-853

[6] Gašić M, Savković M, Bulatović R (2011b) Optimization of trapezoidal cross section of the truck crane boom by Lagrange's multipliers and by differential evolution algorithm (DE). Strojniški vestnik – Journal of Mechanical Engineering 57(2011) 4:304-312

[7] JUS M.D1.050 (1968) Standardi za dizalice. Jugoslovenski zavod za standardizaciju, Beograd

[8] JUS U.E7. (1986) Standardi za proračun nosećih čeličnih konstrukcija. Jugoslovenski zavod za standardizaciju, Beograd

[9] Ostrić D, Tošić S (2005) Cranes (Dizalice). Institut za mehanizaciju Mašinskog fakulteta Univerziteta u Beogradu (Institut za mehanizaciju Mašinskog fakulteta Univerziteta u Beogradu), Belgrade

[10] Pinca BC, Tirian OG, Socalici VA, Ardeleadn DE (2009) Dimensional optimization for the strength structure of a traveling crane. WSEAS Transactions on Applied and heoretical Mechanics 4 (4), pp 147:156

[11] Pinca BC, Tirian OG, Josan A, Chete G (2009) Quantitative and qualitative study on the state of stresses and strains of the strength structure of a crane bridge. WSEAS Transactions on Applied and heoretical Mechanics 5 (4), pp 231:241

[12] Savković M (2005) Optimization of Complex Cross Sections of Structures of Autocrane Booms (Optimizacija složenih poprečnih preseka konstrukcija strele autodizalice). (IMK -14- Istraživanje i razvoj) 20-21(1) pp 41:45

[13] Selmic R, Cvetkovic R, Mijailovic R (2006) Optimization of crosssection in structures, monograph. The Faculty of Transport and Traffic Engineering, Belgrade

[14] prEN 13001-3-1 (2010) Cranes - General Design - Part 3-1: Limit States and proof competence of steel structure, EUROPEAN COMMITTEE FOR STANDARDIZATION

[15] Katalozi i projekti izvedenog stanja Srpskih proizvođača dizalica IMK 14 Oktobar, MIN, ILR

[16] Pavlović G, Savković M, Zdravković N (2011) Optimizacija kutijastog poprečnog preseka glavnog nosača mosne dizalice prema kriterijumu bočne stabilnosti. IMK -14- Istraživanje i razvoj br. 41 (4/2011) pp 1:8