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Abstract: This paper addresses the issue of modeling of the hydraulic long transmission line. In its base, such model is nonlinear with 
distributed parameters. Since general solution in closed-form for such model in time-domain is not available, certain simplifications 

have to be introduced. The pipeline in the paper has been divided to a cascaded network of  segments so that a model with lumped 

parameters could be reached. For segment modeling, a standard library of bond graphs element has been used. On the basis of models 
with lumped parameters, the effect of the number of segments, pipeline length and effective bulk modulus on the dynamics of long 
transmission line have been analyzed. 
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1. Introduction 

Existence of a long transmission line (LTL) in 

hydraulic systems makes their dynamics significantly 

complex. This is especially emphasized with building 

and mining machines, agricultural machines, 

transportation machines, machine tools and other 

devices where connection between the actuators energy 

source achieved by a long hydraulic line. Physical 

variables, pressure and volumetric flow, featuring the 

energy transfer along the hydraulic line, besides the 

time coordinate, depend on spatial coordinate as well. 

These physical variables’ dependency on spatial 

coordinate conditions spatial distribution cannot be 

neglected in long hydraulic line modeling. Therefore 

they are described with models with distributed 

parameters. Models with distributed parameters are 

described with partial differential equations. Use of 

such a model in analysis of dynamic behavior in time 

domain is not practical because it requires work with 

transcendent transfer functions and their 
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approximations using Bessel functions. 

In this paper, we have used the method of description 

of a long hydraulic pipe with lumped parameters in a 

way that it was divided to n equal segments of Ls length. 

 and T model with lumped parameters have been used 

whose electrical analogies are given in the paper. On 

the basis of equivalent electric circuits, adequate bond 

graphs of these circuits were made and connected into a 

cascade of n segments, which defines the mathematical 

model of the hydraulic pipe. On the basis of the 

mathematical model and simulation, we have analyzed 

the impact of certain parameters on the character of the 

transfer process and its results are given in the paper. 

The paper is organized as follows: Section 2 starts 

from the description of one-dimensional flow of 

compressible viscous fluid through LTL. 

Approximation of this model is then introduced through 

a cascade of small lumped elements described by means 

of common differential equations. For each element, 

there is a corresponding electric circuit, i.e., a bond 

graph model. Based on the models from section 2, 

section 3 gives simulation results for LTL with input 

flow as an excitation variable and a hydraulic orifice at 
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the end of the line. Conclusions are outlined in section 4. 

2. Modeling of Hydraulic Long Transmission 
Line 

One-dimensional flow of compressible, viscous 

fluid through the LTL is represented by a set of 

nonlinear partial differential equations [1]. Applying 

physical principles of mass conservation, Newton’s 

second law and energy conservation leads to 

x

Q

t

p

a

A






 

2
        (1a) 

x

p
Q

dA
g

t

Q

A 




  2

22
sin

1
    (1b) 

That is a pair of quasi-linear hyperbolic partial 

differential equations describing pressure change p and 

volumetric flow rate Q depending on time t and 

distance x along the pipeline. Generally, there is no 

closed-form solution for these equations. The problem 

is particularly expressed in case of turbulent flow 

which introduces stochastic parameters. Models with 

distributed parameters are described by partial 

differential equations and, in the complex domain, 

these models are of infinitesimally high order [2-5]. 

In order to find analytical or numerical solution, 

certain simplifications have to be introduced. One 

approach is based on division of non-homogenous 

fields (P(x, t), Q(x, t)) on segments with homogenous 

fields (P(t), Q(t)) of all physical variables. In other 

words, instead of models with distributed parameters 

we move to the model with lumped parameters. 

Exactly this is the approach used in this study. LTL is 

observed as a cascaded network of small lumped 

elements (Fig. 1) where dynamics of each of them is 

described by common differential equations. 

Each of lumped elements presents spatial 

abstractions of distributed physical properties. Physical 

dimensions of each segment are much smaller than the 

shortest wavelength of interest. Connections between 

lumped elements represent physical constraints on the 

physical quantities associated to the elements [6]. 

Practically, we need to do a model of one segment and  

 . . .1 2 n
 

Fig. 1  A cascaded network representing a transmission 
line. 
 

then serially connect those models into the system 

model (LTL model). 

What we usually find in literature are two 

single-lump approximations for a short fluid line [7-8]. 

Those two approximations are known as  and T 

circuits. Their electrical analogies are given in Fig. 2. 

Same elements for modeling of the lumped elements 

were used in both models. Using capacitor (C element), 

we model fluid compressibility, using coil (L element) 

we model fluid inertia, and with resistor (R element) we 

model losses due to friction. Difference is in the way 

those elements are connected. In the first case, there are 

two distinctive pressures: P1 on one end and P2 on the 

other end of the segment. Same flow rate Qi is adopted 

along the whole segment length. In the second case, 

there is one distinctive pressure of Pi segment and two 

flows Q1 and Q2 on the segment’s ends. 

Which model is to be used depends on the remaining 

part of the circuit where the given pipeline is located. 

Namely, each segment is connected with the 

surrounding with two energy flows. On one end, the 

energy flow is P1Q1, and on the other P2Q2. This means 

that interaction of segments with the environment can 

be described with four variables. In regard to the 

segment, two values must be independent, and the 

other two dependent, provided that the independent 

values must be on different segment ends. For example, 

it is not allowed for the values P1 and Q1 to be 

independent. Therefore, it is possible to make four 

combinations of independent-dependent variables: 

Q1Q2P1P2, Q1P2Q2P1, P1Q2Q1P2 and 

P1P2Q1Q2. Model of the segment, i.e. the whole 

pipeline, depends on the combination appearing in the 

circuit. It should be noted that when the segment 

cascade is made, regardless if we use  or T model, 

there are blocks inside the model shown in Fig. 3 that 

periodically repeat. 
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(b) T circuit 

Fig. 2  Equivalent electrical analogy of short fluid line. 
 

Pi Pi+1

Qi Qi+1R

C

L

i=1,2,3...  
Fig. 3  Block of LTL model repeating periodically. 
 

Difference in models comprising of  and T 

segments is in the end blocks—interfaces according to 

the remaining of systems symmetric in regard to 

internal blocks. Equivalent electrical circuits of end 

blocks of the cascade with  segments ( interfaces) 

are shown in Fig. 4 and cascades with T segments (T 

interfaces) in Fig. 5. 

Suitable bond graphs of the electric circuits in Figs. 

3-5 are shown in Figs. 6-8 respectively. 

On the basis of drawn causality it can be seen that 

all internal blocks are second rate models. The end 

blocks for the  cascade have integral causality for 

one-junction and arbitrary causality for zero-junctions. 

It is similar with the T cascade where zero-junction 

has integral causality and one-junctions the arbitrary 

one. 

This means that the LTL model can have minimum 

order of (n - 1)*2 + 1 and maximum (n - 1)*2 + 3. For 

example, cascade of n = 5 segments can be minimally 9 

order and maximum 11. Order of the model depends 

on the hydraulic circuit where the given LTL is found. 

In order to avoid the differential causality and reduce 

the numerical problem, recommendation is to use the   
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Fig. 4  LTL model interfaces with  segments ( 

interfaces). 
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Fig. 5  LTL model interfaces with T segments (T 
interfaces). 
 

0:Pi 1:Qi+1

C:C I:L

R:R  
Fig. 6  LTL model bond graph repeating periodically. 
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Fig. 7  LTL model interface bond graph with  segments 

( interfaces). 
 

1:Qi+1

I:L/2

R:R/2

0:Pi+1 1:Q2

C:C I:L/2

R:R/2  
Fig. 8  LTL model interface bond graph with T segments 
(T interfaces). 
 

cascade if the flow is independent value. If pressure is 

independent value, differential causality is avoided 

with use of the T cascade. 

In this study, we observe the response of the system 

on the independent flow change. Diagram of hydraulic 

installation is shown in Fig. 9. 

As a source of excitation, variable flow rate source 

(Q1) is used. LTL is represented as a cascade of n 

segments. At the end of the circuit there is a hydraulic  
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Fig. 9  Schematic of a circuit for LTL simulation. 
 

orifice of constant resistance. Model order is 

determined with 2n + 1. 

3. Simulation Analysis 

On the basis of  model with interface shown in Fig. 

4, behavior of LTL in circuit shown in Fig. 9 is 

simulated. The aim is to analyze the impact of several 

parameters on the transfer process. 

The parameters at which the simulation was 

performed are Be = 1.4 × 109 Pa, Qref = 3.5 × 10-4 m3/s, 

d = 1 × 10-2 m,  = 860 kg/m3,  = 9.7 × 10-5 m2/s. 

Before the beginning of simulation, we need to 

define initial conditions for each segment’s flow and 

pressure. It is assumed that volumetric flow rate and 

pressures are in the steady-state regime before the 

beginning of the transition process. 

Figs. 10-12 present relative changes of the flow Q2 

and the pressures P1 and P2 for step increase of the flow 

Q1 and for the pipeline of the same length (L = 16 m). 

Three cases were observed: (a) n = 1, Ls = 16 m; (b) n 

= 4, Ls = 4 m and (c) n = 16, Ls = 1 m (n × Ls = const.). 

The results show the influence of the number of 

segments on dynamics. 

In all three cases the transition process has the 

character of damped oscillations. However, with the 

increase of the number of segments the basic 

harmonics of each value (Q2, P1, P2) are superposed 

with the harmonics of higher frequency. The larger 

number of segments, the higher frequencies in the 

frequency spectrum. These frequencies may lead to 

undesirable oscillations in the system [9]. 

Besides, delay in relation to the excitation value can 

be clearly noticed in the response of values at the other 

end of the pipeline (Q2, P2). 

The following Figs. 13-15 show impact of the 

pipeline length on transfer processes in LTL. In all three 
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Fig. 10  Transient processes for n = 1 and Ls = 16 m. 
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Fig. 11  Transient processes for n = 4 and Ls = 4 m. 
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Fig. 12  Transient processes for n = 8 and Ls = 2 m. 
 

cases,  segments of same length Ls = 2 m are used for 

modeling. Difference is only in the number of 

segments. 

The inertia of the system is increased with the 

increase of the pipeline length. The rise time and 

frequency of oscillations decline, whereas the damping 

ratio and delay increase. Particularly noted is reduction 

of magnitude on pressure P2. 
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Fig. 13  Transient processes for n = 1 and Ls = 2 m. 
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Fig. 14  Transient processes for n = 4 and Ls = 2 m. 
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Fig. 15  Transient processes for n = 8 and Ls = 2 m. 
 

The last parameter which influence on the transfer 

process we are analyzing is effective bulk modulus. In 

previous examples, we assumed that the elasticity of 

hydraulic pipe wall can be neglected. We also assumed 

that there is no entrapped vapor or gas in the fluid.  

Effective bulk modulus can be approximately 

determined using the expression [9]: 
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Fig. 16  Transient processes for Vg/Vt = 0.001. 
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Fig. 17  Transient processes for Vg/Vt = 0.01. 
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Fig. 18  Transient processes for Vg/Vt = 0.1. 
 

where Bc—bulk modulus of hydraulic pipe, Bl—bulk 

modulus of liquid, Vg/Vt—portion of vapor or gas in 

total volume, Bg—bulk modulus of entrapped gas.  

If we assume that Bc = 3.45×1010 Pa, Bl =1.4 × 109 

Pa, Bg =2 × 105 Pa, then transient processes for 

different gas percentage in the fluid look like in Figs. 

16-18 (n = 8, Ls = 2 m). 

Simulation results show that presence of air in LTL 

can have great influence on dynamics. Even with small 
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volume share of air, character of the transfer process 

changes completely. Instead of oscillations, we have an 

aperiodic transfer process and significantly slower 

system response. 

4. Conclusions 

Model of long transmission line is derived by using 

the method of pipeline division on final length 

segments. Inside each of the segments, spatial change 

is abstracted and only the time changes are observed. 

Friction, inertia and compressibility are included in 

the model with use of bond graph elements. 

Simulation shows that accuracy of results depends on 

the number of segments the pipeline is approximated. 

That number depends on the hydraulic circuit where 

the pipeline is located. Practically, the number of 

segments should be chosen depending on the 

frequency of the input signal and dynamics of other 

elements in the system. It results in obtaining a 

mathematical model of finite order which can further 

be reduced to a lower order and still describe the 

transition process correctly. Besides the pipeline 

length, effective compressibility of fluid also greatly 

affects the dynamics. Presence of entrapped vapor or 

gas slows the transfer process and reduces oscillations 

in the system. 
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