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Abstract— The paper presents comparative analysis and 
optimization of the geometric parameters of different cross-
sections of crane hook at the critical places. The reduction of 
the cross-sectional area of crane hook is primary goal of this 
research. The selected sections are trapezoidal, elliptic, 
parabolic and their special cases. Criterion of maximum 
permissible stress in the characteristic points of cross-
section is set as constraint function. Some geometric limits 
are taken, too. Stresses are observed according to Winkler-
Bach theory. Optimization procedure is performed by using 
the method of Lagrange multiplier and GRG2 algorithm. 
The obtained results of optimization for different types of 
cross-sections are compared with each other and with the 
geometric values of standard hook solution.

Keywords— Crane hook, Optimization, Stresses, Winkler-
Bach theory

I. INTRODUCTION

Crane hooks are devices for grabbing and lifting loads 
of heavy duty by mean of devices such as crane hoists. 
Crane hooks are highly responsible components that are 
typically used for handling material in industries. It is 
basically a hoisting fixture designed to engage a ring or 
link of a lifting chain or the pin of a shackle or cable 
socket and must follow the health and safety guidelines.

The lifting of material generally occurs on 
construction sites, in factories and other industrial 
situations. Correct lifting can move large objects 
efficiently and reduce manual handling operations. 
Improper design of crane hook lead to disastrous 
accidents.

Optimization is a procedure through which the best 
possible values of decision variables are obtained under 
the given set of constraint functions and in accordance to 
objective function. The most common optimization 
procedure applies to a design that will minimize the total 
mass or any other specific objective.

There are a large number of papers and publications 
who dealing with the problems of optimization and 
analysis of stresses and deformations of crane hooks.

There are many methods for analysis and optimization 
for this type of structure. In the paper [1], optimization
process was performed using by software for design of 

curved beam, for circular, rectangular, triangular, 
trapezoidal, T and I – sections. In [2], for weight 
optimization of lifting hook, GA algorithm was used in 
MATLAB software and analysis was done in ANSYS 
software. Authors in [3] studied Taguchi method that can 
be used for optimization of crane hook. The optimum 
combination of input parameters for minimum Von-
Mises stresses are determined. Similarly to previous, in 
the paper [4], the Von-Mises stresses from FEM method 
are compared with Taguchi L9 orthogonal array for 
specific results.

Authors in the paper [5] discussed on stress analysis 
of crane hook and validation by photoelasticity. These 
results were compared with results from FEM analysis. 
Authors in [6] studied the stress pattern of crane hook in 
its loaded condition, and solid model of crane hook is 
prepared with ABAQUS software. The stress distribution 
pattern is verified for its correctness on an acrylic model 
of crane hook using by Caustic method, and the shape of 
the hook is modified to increase its working life and 
reduce the failure rates.

As can be seen, most of the authors applied FEM 
analysis for these type of structures. Most authors treat 
the problems of optimization and analysis using by FEM, 
in different software packages ([2]-[14]). In [7], 
designing of the hook is done through analytical method 
with different area of cross-sections (trapezoidal,
triangular, rectangular and circular) and are analyzed for 
stresses and deformations through ANSYS software. 
Similarly to previous, for same cross-sections, in [8]
using by CAE software, and the results obtained were 
compared with theoretical analysis. Stress and 
deformation analysis in ANSYS software was performed 
in the paper [9] for different cross-sections such as 
trapezoidal, rectangular and circular. Similar analysis was 
performed in [10], whereby the results from FEM 
analysis were compared with the analytical results. Modal 
and fatigue analysis was taken in consideration, too. 
Fatigue analysis is very important for these types of 
structures. In [11], structural and fatigue analysis using 
by ANSYS Workbench and ANSYS Ncode Designlife 
was performed for trapezoidal cross-section. The 



trapezoidal cross-section is most prevalent in relation to 
other cross-sections. In the paper [12], analysis of crane 
hook with different types of material was carried out for 
crane hook with trapezoidal cross-section.

In addition to the mentioned cross-sections, other 
cross-sections are applied, as shown in papers [13] and 
[14].

Thus, the aim of the work is to analyse and optimize 
the cross-sections of a crane hook using Winkler-Bach 
theory. Having in mind these results, the aim of this paper 
is to define the optimum values of geometric parameters 
of for crane hook, too.

II. MATHEMATICAL FORMULATION OF THE
OPTIMIZATION PROBLEM

The optimization of crane hook cross-section is based 
on stresses, according to Winkler-Bach theory. The total 
deformations of the fibers in curved beams are 
proportional to the distances of the fibers from the neutral 
surfaces. The strains of the fibers are not proportional to 
these distances because the fibers are not of equal length,
where as in straight beam the fibers are of equal length 
and fibers are of equal length and hence the strains in a 
straight beam, as well as total deformations are 
proportional to the distances of fibers from neutral axis. 
But for bending stresses that do not exceed the elastic 
strength of the material the stress on any fiber in the beam 
is proportional to the strain of the fiber, and hence the 
elastic stresses in the fibers of curved beam are not 
proportional to the distances from the neutral surface. For 
the same reason, neutral axis in a curved beam does not 
pass through the centroid of section.

The optimization problem is defined in following way:

min ( )f X (1)

subject to:

0lg X (2)

and

0jX (3)

where:
( )f X - the objective (target) function

lg X - the constraint function
X - the design vector made of two design variables
j - number of design variables

The objective and constraint functions are presented 
in the next chapters.

Design variables are the values that should be defined 
during the optimization procedure.

Optimization procedure will be performed using by 
the method of Lagrange multiplier and by GRG2 
algorithm.

The Lagrange function is defined in the following 
way:

( ) lf X g (4)

where:
- Lagrange function
- Lagrange multiplier

By using the Lagrange function, along with the 
elimination of parameter , system of equations for 
determination of optimum parameters of hook cross-
section are obtained:

1 2 2 1

( ) ( ) 0l l
l

g gf X f X g
x x x x

(5)

GRG method is based upon elimination of variables 
by using constraints equality. The idea is to convert the 
constraints problem into one without constraints by direct 
substitution. Ms Excel Solver uses GRG2 algorithm for 
optimization of nonlinear problems.

Fig. 1 shows critical place (I-I) for cross-section stress
check of crane hook.

Fig. 1 Crane hook

The objective function is the cross-sectional area of 
crane hook (Fig. 2, Fig. 3 and Fig. 4):

1 2( ) ( ) ( , )f X A X A x x (6)

The vector of the given parameters is:

, , dx Q a (7)

where:
Q - the carrying capacity of crane hook
a - diameter of inner fiber of hook (inner geometric 
parameter of hook)

d - critical stress
The constraint function, subject to stresses, in this 

case has the following form:

max 1
1

1

Q
l d

x

F M h
g

A S R
(8)

or

max 2
2

2

Q
l d

x

F M h
g

A S R
(9)

where:

1 1h r R (10)

2 2h R r (11)
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1 2h h h (12)

1 2
aR (13)

2 2
aR h (14)

1 1cR R e (15)

o cy R r (16)

A

Ar
dA

(17)

QF Q g (18)

max Q cM F R (19)

x oS A y (20)

where:
1R - radius of inner fiber

2R - radius of outer fiber

cR - radius of centroidal axis
r - radius of neutral axis

oy - distance between centroidal axis and neutral axis

QF - axial force

maxM - maximum bending moment

xS - static moment of area

A. Objective function and geometrical parameters for
trapezoidal cross-section
The objective function is represented by the area of

trapezoidal cross-section of crane hook (Fig. 2).

Fig. 2 Trapezoidal cross-section

Geometric relations (Fig. 2) are defined in following 
way:

2

1
o

b
e

b
(21)

1
1

2
oe

A b h (22)

1
1 2

3 1
o

o

ehe
e

(23)

1
12 2ln (1 )

2
o

o o
A

edA a h a hb e e
h a

(24)

(1 )
12 22 ln (1 )

2

o

o
o o

e h
r

ea h a he e
h a

(25)

For 0oe , trapezoidal cross-section becomes 
triangular cross-section:

1

2
b h

A (26)

1 3
he (27)

2 22 ln 1
2

hr
a h a h

h a

(28)

For 1oe , trapezoidal cross-section becomes 
rectangular cross-section:

1A b h (29)

1 2
he (30)

2ln

hr
a h

a

(31)

For 1b h , rectangular cross-section becomes square
cross-section:

2A h (32)

B. Objective function and geometrical parameters for
elliptic cross-section
The objective function is represented by the area of

elliptic cross-section of crane hook (Fig. 3).

Fig. 3 Elliptic cross-section

Geometric relations (Fig. 3) are defined in following 
way:

2h c (33)

2
b cA (34)
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TABLE I THE VALUES OF OPTIMUM PARAMETERS FOR TRAPEZOIDAL CROSS-SECTION AND SAVINGS

eo
Method of Lagrange multiplier GRG2 method As (cm2)b1 (cm) h (cm) A (cm2) Saving b1 (cm) h (cm) A (cm2) Saving

0,0 6,081 30,21 91,847 16,43% 6,082 30,205 91,847 16,43% 109,9
0,1 6,056 27,862 92,808 15,55% 6,054 27,874 92,808 15,55% 109,9
0,2 6,006 26,352 94,97 13,59% 6,006 26,352 94,97 13,59% 109,9
0,3 5,948 25,278 97,732 11,07% 5,948 25,279 97,732 11,07% 109,9
0,4 5,887 24,46 100,803 8,28% 5,888 24,457 100,803 8,28% 109,9
0,5 5,826 23,806 104,028 5,34% 5,828 23,798 104,028 5,34% 109,9
0,6 5,766 23,264 107,312 2,35% 5,769 23,255 107,319 2,35% 109,9
0,7 5,708 22,802 110,623 -0,66% 5,709 22,797 110,623 -0,66% 109,9
0,8 5,65 22,401 113,907 -3,65% 5,651 22,397 113,907 -3,65% 109,9
0,9 5,593 22,047 117,151 -6,60% 5,595 22,039 117,151 -6,60% 109,9
1,0 5,538 21,729 120,34 -9,50% 5,54 21,722 120,34 -9,50% 109,9

1,25 5,404 21,058 128,058 -16,52% 5,407 21,049 128,031 -16,50% 109,9
1,5 5,277 20,511 135,283 -23,10% 5,277 20,509 135,283 -23,10% 109,9
2,0 5,036 19,656 148,472 -35,10% 5,037 19,65 148,472 -35,10% 109,9

1e c (35)

2 2
c c

A

dA b R R c
c

(36)

2

2 22 c c

cr
R R c

(37)

For 2b c , elliptic cross-section becomes circular 
cross-section:

2A c (38)

C. Objective function and geometrical parameters for
parabolic cross-section
The objective function is represented by the area of

parabolic cross-section of crane hook (Fig. 4).

Fig. 4 Parabolic cross-section

Relation for parabolic function is:

2
2

4( )
2
a hy x h x

b
(39)

Geometric relations (Fig. 4) are defined in following 
way:
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III. NUMERICAL REPRESENTATION OF THE OBTAINED 
RESULTS

The optimization is done by the method of Lagrange 
multiplier in MathCad software package, using system of
equations (5) and by GRG2 algorithm, using Solver Tool 
in Analysis module from Ms Excel software package.

A. Obtained results for trapezoidal cross-section
Variable parameters are height h and base width b1 of

crane hook cross-section (Fig. 2). Relation eo is constant 
parameter, in first phase of optimization process.

Geometric parameter a was not taken into 
consideration, it was taken as the input parameter, 
according to the standard. This parameter can also be 
subject of optimization.

Input parameters is: FQ=100 kN, a=12,5 cm and σd=8
kN/cm2. The values of relation eo is shown in Table I.

The cross-sectional area of the standard hook profile 
is: As=109,9 cm2 .

Table I shows the results of the optimization (optimal 
values) for taken values of parameter eo,

where:
sA - value of the area of standard hook, [15]

oA - optimal value of the area of hook (Table I, Table II)
The results obtained by both methods are almost 

identical. It is noticeable that the height h of the cross-
section is a quite large.

It can be seen that the smallest area is for triangle 
cross-section, when eo=0, and the largest for rectangular 
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cross-section, when eo=1, which means that the optimal 
cross-section in this case is triangular cross-section.

For optimization problem where parameter eo is 
variable, this value is approximate to zero, which should 
have been expected. In this case, the following results 
were obtained: Ao=91,849 cm2, h=29,884 cm, b1=6,14 
cm, eo=0,00116.

Also, it can be seen that the relation eo>1 began 
unfavorable, because it comes to increase in cross-
sectional area, so as to continue in this analysis will not 
be considered.

For square cross-section, when h=b1, the following is 
obtained: h=b1=11,37 cm, Ao=129,27 cm2,
which is an unfavorable case, too, because the area of 
cross-section is a quite large.

It can be seen that in all cases is a quite large height h
of cross-section (in comparison to standard value). For 
this reason, additional geometrical constraint has been 
introduced, so the results of optimization (using by 
GRG2 algorithm) are as follows, shown in Table II:

TABLE II OPTIMUM PARAMETERS AND SAVINGS FOR TRAPEZOIDAL 
CROSS-SECTION WITH GEOMETRICAL CONSTRAINT AND SAVINGS

eo
GRG2 method

b1 (cm) h (cm) Ao (cm2) Saving
0 14,451 14 101,16 7,95%

0,1 13,022 14 100,27 8,76%
0,2 12,072 14 101,40 7,73%
0,3 11,357 14 103,51 5,81%
0,4 10,829 14 106,13 3,43%
0,5 10,382 14 109,01 0,81%
0,6 10,003 14 112,03 -1,94%
0,7 9,674 14 115,12 -4,75%
0,8 9,382 14 118,21 -7,56%
0,9 9,12 14 121,29 -10,36%
1,0 8,881 14 124,34 -13,14%

Additional geometric constraint is the cross-section 
height hs=14 cm, according to standard [15].

For optimization problem where parameter eo is 
variable, the following results are obtained: Ao=100,23 
cm2, h=14 cm, b1=13,24 cm, eo=0,08418.

B. Obtained results for elliptic cross-section
Variable parameters are c and b of elliptic cross-

section (Fig. 3).
The results obtained by both methods are identical:

Ao=168,75 cm2, b=11,459 cm, c=9,375 cm.
A special case is circular cross-section, when 2b c ,

and the following is obtained: Ao=170,61 cm2, c=7,369 
cm.

C. Obtained results for parabolic cross-section
Variable parameters are b and h of parabolic cross-

section (Fig. 4).
The results obtained by both methods are almost 

identical, as in the first case: Ao=101,312 cm2, b=5,856 
cm, h=25,952 cm, for method of Lagrange multiplier and 
Ao=101,312 cm2, b=5,856 cm, h=25,949 cm for GRG2 
method.

It can be seen that the optimal value of area is smaller 
than value defined by standard, but it value is similar to 
the values of trapezoidal and triangular cross-section area, 
which are a a quite large.

By introducing additional geometrical constraint 
function, as in the first case, the following is obtained:
A=107,912 cm2, b=11,562 cm, h=14 cm.

IV. CONCLUSIONS

The paper presented optimum dimensions of 
various types of cross-sections of crane hook
(trapezoidal, triangular, rectangular, square, elliptic, 
circular and parabolic cross-sections), subject to stresses 
according to Winkler-Bach theory of cross-section on
their critical place of structure, in the characteristic points,
using the method of Lagrange multiplier and by GRG2 
algorithm. The objective function was minimum cross-
sectional area, whereby given constraint conditions were 
satisfied. Based on the optimization theory and the 
procedure for calculation of cross-section of crane hook,
this paper combines the optimum design philosophy and 
the design of crane hook. The cross-sectional area is 
optimized using by system of equations in MathCad 
software package and making full use of the optimization 
functions in Ms Excel software package.

The optimization task – minimization of the cross-
sectional area was successfully realized, which is seen in 
the comparison of the results obtained with standard 
values.

Justification of application of these methods resulted 
in significant savings in material, about 9 % .

Based on obtained results for trapezoidal cross-
section, it can be seen that with increase in the value of 
ratio eo the value of area increase, too (Table II), while 
for the lower values of ratio eo it gets smaller value of 
area than the one according to standard value, while the 
most optimal value for area is about 9% lower than the 
value of standard one. Rectangular cross-section gives a 
slightly larger area, while this value is a quite large for 
square cross-section.

For triangular cross-section, under given conditions 
and for the observed example, the cross-sectional area is 
not with the lowest value, so that trapezoidal cross-
section is the most optimal for concrete value obtained 
for optimal value of ratio eo.

It can be concluded from obtained results that the 
circle and elliptic cross-sections are not suitable for 
shapes for these structure, because too large cross-
sectional area is obtained.

For parabolic cross-section, by introducing 
geometrical constraint function, the value of area is a
slightly smaller than the one defined by standard. This
cross section gave a slightly larger value for area in 
comparison to trapezoidal cross-section, but it is again 
much more favorable in relation to the square, elliptic or 
circular cross-sections.

The general conclusion is that the most optimal 
shapes for this type of structures are triangular and 
trapezoidal cross-sections. Parabolic cross-section gives a
slightly larger value for area, but obtained results are 
satisfactory. Geometrical constraint is particularly 
important in this analysis. A slightly larger values for 
areas are for the rectangular and square cross-section in 
comparison to parabolic cross-section. The most 
unfavorable shapes are circular and elliptical cross-
sections.
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For further studies and research should include other 
parameters of the hook geometry, which are important for 
reducing its mass. It is necessary to observe and analyze 
the conditions on the characteristic segments of crane
hook. In addition to stress analysis, deformation as well 
as fatigue should be covered. Also, all other potential 
shapes of these structures, as well as materials, should be 
analyzed.

In addition to the analytical solutions, the results can 
be compared with those obtained using by some of FEM
software packages.
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