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By analysing the forces in legs of the hydraulic scissors lift using symbolic variables, the expressions for stress have 
been derived. Novel Harris hawks optimization algorithm had been used in order to get the optimal values of variables that 
present geometrical characteristics of the cross section of the hydraulic scissors legs, for the given scissors lift. By 
connecting the optimal cross sections across the length of the scissors lift legs, optimal geometric shape of the scissors lift 
legs had been acquired, and displayed in this paper. 
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1. INTRODUCTION

Lifting platforms that employ the scissors 
mechanism are very commonly used in various situations 
where it is needed for load that contains objects, people, or 
both at the same time to be transferred across the vertical 
plane. They can be installed permanently in which case 
they cannot be easily moved to different locations without 
disassembling them. There are also mobile lifting 
platforms with scissors mechanism where the mechanism 
is installed on some kind of carts or trailers. 

The mechanism itself is consisted of one pair of 
beams on each side that are connected in the middle, 
making one pair of scissors. Multiple pairs of scissors can 
be stacked on top of each other which enables the platform 
to be lifted to higher altitude with shorter beams. 

Lifting is usually accomplished by hydraulic or 
pneumatic cylinders that are connected to the beams of the 
scissors mechanism, so the whole mechanism can be 
illustrated as presented in figure 1. 

Figure 1: Ilustration of the lifting platform with scissors 
mechanism 

By elongating the hydraulic or pneumatic 
cylinder, the angle between the beams changes which, as 
one end of each beam is fixed, leads to platform changing 
the altitude and load being lifted. 

During the design process of any piece of 
machinery or mechanism, the goal is to achieve the best 
performance and stability, while lowering the amount of 
material used for construction. That is a good practice 
because, not only it makes the final product cheaper, but it 
makes it lighter which reduces the dead load, hence the 
energy needed for the mechanism to work is lower. 

The dead load reduction can be accomplished by 
using the optimal geometrical shape of the beams, and the 
optimal shape can be derived using different optimization 
methods. 

In papers [1] and [2] the kinetic analysis of 
hydraulic scissor lifts with a single set of scissors is being 
represented, while in the article [3] more general 
expressions were derived for lifting platforms with 
multiple sets of scissors stacked on each other. Using 
similar mathematical model, kinetic analysis will be done 
in such way that it can be used as starting point for the 
optimization algorithm. 

Optimization represents a process where the most 
superior values of the parameters (variables) are obtained 
based on the given constraint functions, for the observed 
objective function. [4] There are many optimization 
methods that can be used for sucessfully completing this 
task. In past decades, many new p-metaheuristic methods 
have been developed, and one of them, the novel Harris 
Hawk optimization method that was purposed in the 
article [5], will be used for performing the optimization. 

2. HARRIS HAWK OPTIMIZATION
Harrison hawk optimization, described in detail in 

the article [5] is metaheuristic, population based 
optimization method. Its creation is inspired by the 
specific ways Harris hawks hunt in groups. 

Initial population in this method is consisted of 
randomly generated positions of hawks in set boundaries 
which represent hunting area. The best solution in each 
iteration represents the prey which escapes within the 
searching area. Based on prey’s energy, hawks change the 
way they attack the prey. Energy of the prey represents the 
value of the objective function for the values of parameters 
that are being stored inside of the prey’s location. 

As the hawks hunt the prey, the location of the 
hawks evolves through the iterations until the set number 
of iterations has been completed following this rule: 
𝑋𝑋(𝑡𝑡 + 1) =  �

𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)− 𝑟𝑟1|𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)− 2𝑟𝑟2𝑋𝑋(𝑡𝑡)| 𝑞𝑞 ≥ 0.5
(𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)− 𝑋𝑋𝑚𝑚(𝑡𝑡)) − 𝑟𝑟3�𝐿𝐿𝐿𝐿 + 𝑟𝑟4(𝑈𝑈𝐿𝐿 − 𝐿𝐿𝐿𝐿)� 𝑞𝑞 < 0.5 (1) 

…where the 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) represents location of random hawk 
in the previous iteration t, 𝑋𝑋(𝑡𝑡) represents the location of 
each hawk in iteration t, 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) is the location of the 
prey in the iteration, LB and UB are limits of the searching 
area, q is the chance for hawks to choose each perching 
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strategy, and 𝑋𝑋𝑚𝑚(𝑡𝑡) is the average position of all hawks in 
the current iteration. 

Energy of the prey is modelled in the way that it 
decreases through iterations, as the prey, mostly rabbit gets 
more and more tired as it is being chased by the hawks. If 
the value of the energy of the prey is less than 1, it means 
the rabbit is weak enough for hawks to attack it. This 
means that the optimization algorithm switches from the 
phase of exploration to the phase of exploitation. The 
energy of the prey is being calculated using the following 
rule: 

𝐸𝐸 = 2𝐸𝐸0 �1 −
𝑡𝑡
𝑇𝑇
� (2) 

In the equation (2), 𝐸𝐸0 is the number that 
randomly changes its value in the interval (-1,1), t is the 
number of the current iteration, while T is the total number 
of iterations. Different phases of the optimization process 
are being illustrated in the figure 2. 

Figure 2: Different phases of Haris Hawks optimization 
algorithm [6] 

The source code provided with the article [5] is 
consisted of four scripts written in MathWorks Matlab 
programming languages: main.m, initialization.m, HHO.m, 
Get_Fuctions_details.m. 

The “main.m” script is the script where the number 
of members of initial population (number of hawks) is 
being defined, the name of the object function that is 
addressing the function with the exact name from the 
“Get_Function_details.m” file, as well as the total number 
of iterations the optimization algorithm is supposed to 
complete. This script is the script that starts the 
optimization process, and it calls all other scripts and 
functions.The first script that is being called is the 
“Get_Function_details.m” script which contains all the 
needed information about the object function: lower and 
upper boundaries of the searching area, the dimension of 
the problem, and it calculates the value of the object 
function. This is the file that is usually being modified for 
the purpose of performing custom optimization. 

When the needed parameters are defined as output 
from the previous script, the script “HHO.m” is being 
called. Input for this script contains all of the previously 
defined variables: number of members of the initial 
population, total number of iterations, limits of the 

searching area, as well as the value of the object function. 
This script first calls the “initialization.m” script which 
then creates the initial population following the rules 
defined in previous steps, after which the optimization 
process begins. The initial population evolves through 
iterations until the maximum number of iterations is 
completed. The outputs from the “HHO.m” are the 
“Rabbit_Location” (optimal values of the optimized 
variables) and the “Rabbit_Energy” (value of the object 
function for the values of optimized variables). Illustration 
of the algorithm is shown in the figure 3. 

Figure 3: Illustration of the source code of the HHO 
algorithm: N – number of hawks, T – total number of 

iterations, F – name of the function, ub, lb – boundaries of 
the searching interval,  dim  –  dimension  of the problem,  

fobj  –  value of the object function, t - current iteration 

3. KINETIC ANALYSES
In order to perform the optimization, it is required 

to define the object function as well as the constraints, 
which is why it is necessary to perform kinetic analyses. 
Since these platforms usually carry the load that often can 
be humans, the speed of lifting is usually not high, so 
dynamic changes of load in the components of the 
platform can be neglected, therefor the platform can be 
observed as static structure. 

The structure of the platform is consisted of two 
legs of equal length, AC and AB, hydraulic cylinder GH 
that is usually placed in the plain behind the mechanism 
itself, but for the purpose of performing the kinetic 
analyses it can be represented as shown in the figure 1. 
Cylinder is connected to the leg AB over pin support G 
which is placed on a distance a from the pin E, and it is 
connected to the leg BD over the pin H that is placed on a 
distance b from the pin G, forming the triangle GEH. The 
ends of the legs, A and D are fixed with pin supports, 
while B and C are connected to pinned collar on smooth 
rod which enables them to move in horizontal direction as 
the platform is lifting or lowering. The angle between the 
leg AC and ground is labelled as the angle 𝛼𝛼, the angle 
EGH is labelled as the angle 𝜑𝜑, while the angle GHE is 
labelled as the angle 𝛽𝛽. Since the pin E is located in the 
middle of both legs, the angle GEH equals 2𝛼𝛼. On the 
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horizontal metal sheet CD the load T is being placed on 
distance 𝑙𝑙𝑓𝑓 from the pin C. 

When disassembled, directions of the forces in the 
pins of individual components can be assumed as it is 
represented in the figure 4. 

Based on the assumed directions of forces in 
figure 3, system of equations can be formed. 
Static equations for the member DE: 

Σ𝑋𝑋𝑟𝑟 = 0: 𝑋𝑋𝐷𝐷 = 0 (3) 
Σ𝑌𝑌𝑟𝑟 = 0:𝑌𝑌𝐷𝐷 − 𝑇𝑇 + 𝑌𝑌𝐶𝐶 = 0 (4) 
Σ𝑀𝑀𝑟𝑟(𝐷𝐷) = 0:𝑌𝑌𝐶𝐶𝐿𝐿 − 𝑇𝑇𝑙𝑙𝑓𝑓 = 0 (5) 

Static equations for the member AC: 
Σ𝑋𝑋𝑟𝑟 = 0:𝑋𝑋𝐴𝐴 − 𝐹𝐹𝑐𝑐𝑟𝑟𝑐𝑐 cos(𝛼𝛼 + 𝜑𝜑) + 𝑋𝑋𝐸𝐸 = 0 (6) 

Σ𝑌𝑌𝑟𝑟 = 0:𝑌𝑌𝐴𝐴 − 𝐹𝐹𝑐𝑐𝑟𝑟𝑐𝑐 sin(𝛼𝛼 + 𝜑𝜑) + 𝑌𝑌𝐸𝐸 − 𝑌𝑌𝐶𝐶 = 0 (7) 

Σ𝑀𝑀𝑟𝑟(𝐸𝐸) = 0: −
𝑌𝑌𝐴𝐴𝐿𝐿

2
+ 𝐹𝐹𝑐𝑐𝑟𝑟𝑐𝑐 sin(𝜑𝜑) 𝑎𝑎 −

𝑌𝑌𝐶𝐶𝐿𝐿
2

+
𝑋𝑋𝐴𝐴 sin(𝛼𝛼)

2
= 0 

(9) 

a) 

b) 

c) 

d) 
Figure 4:Free body diagram of the lifting platform: a) 

horizontal metal sheet, b) leg AC, c) leg BD, 
d) triangle GEH

Static equations for the member BD: 
Σ𝑋𝑋𝑟𝑟 = 0: − 𝑋𝑋𝐷𝐷 + 𝐹𝐹𝑐𝑐𝑟𝑟𝑐𝑐 cos(𝛼𝛼 + 𝜑𝜑) − 𝑋𝑋𝐸𝐸 = 0 (10) 

Σ𝑌𝑌𝑟𝑟 = 0: − 𝑌𝑌𝐷𝐷 + 𝐹𝐹𝑐𝑐𝑟𝑟𝑐𝑐 sin(𝛼𝛼 + 𝜑𝜑) − 𝑌𝑌𝐸𝐸 + 𝑌𝑌𝐵𝐵 = 0 (11) 

Σ𝑀𝑀𝑟𝑟(𝐸𝐸) = 0: 
𝑌𝑌𝐵𝐵𝐿𝐿

2
+
𝑌𝑌𝐷𝐷𝐿𝐿

2
− 𝐹𝐹𝑐𝑐𝑟𝑟𝑐𝑐 sin(𝛽𝛽) 𝑏𝑏 +

+
𝑋𝑋𝐷𝐷𝐴𝐴 sin(𝛼𝛼)

2
= 0

(12) 

Solutions of this system of nine equations are: 

𝐹𝐹𝑐𝑐𝑟𝑟𝑐𝑐 =
𝐿𝐿𝑇𝑇

2𝑎𝑎 sin (𝜑𝜑)
(13) 

𝑌𝑌𝐷𝐷 = 𝑇𝑇 −
𝑇𝑇𝑙𝑙𝑓𝑓
𝐿𝐿

(14) 

𝑌𝑌𝐶𝐶 =
𝑇𝑇𝑙𝑙𝑓𝑓
𝐿𝐿

(15) 

𝑋𝑋𝐸𝐸 = 𝐹𝐹𝑐𝑐𝑟𝑟𝑐𝑐 cos(𝛼𝛼 + 𝜑𝜑) (16) 
𝑋𝑋𝐴𝐴 = 0 (17) 

𝑌𝑌𝐴𝐴 =
2
𝐿𝐿
�𝐹𝐹𝑐𝑐𝑟𝑟𝑐𝑐 sin(𝜑𝜑) 𝑎𝑎 −

𝑌𝑌𝐶𝐶𝐿𝐿
2
� (18) 

𝑌𝑌𝐸𝐸 =
2𝐿𝐿𝑌𝑌𝐶𝐶 + 𝐹𝐹𝑐𝑐𝑟𝑟𝑐𝑐(sin(𝛼𝛼 + 𝜑𝜑) 𝐿𝐿 − 2𝑎𝑎 sin(𝜑𝜑)) 

𝐿𝐿
(19) 

𝑌𝑌𝐵𝐵 =
𝐿𝐿(𝑌𝑌𝐷𝐷 + 2𝑌𝑌𝐶𝐶) − 2𝑎𝑎 sin(𝜑𝜑) 𝐹𝐹𝑐𝑐𝑟𝑟𝑐𝑐

𝐿𝐿
(20) 

…where L represents the horizontal projection of the 
length of the platform leg A, and 𝐹𝐹𝑐𝑐𝑟𝑟𝑐𝑐  is the force withing 
the hydraulic cylinder. 

The mass of the scissors lift itself was not 
accounted in the previous system of equations because, as 
it is stated in the article [3], the weight of the scissors lift 
itself can be added to the active load: 

𝑇𝑇 = 𝑄𝑄 ⋅ 𝑔𝑔 +
𝑚𝑚𝑝𝑝 ⋅ 𝑔𝑔

2
=

2𝑄𝑄 + 𝑚𝑚𝑝𝑝

2
⋅ 𝑔𝑔 (21) 

For the purpose of this paper, the mass of the scissors lift 
will be neglected. 

4. OBJECT FUNCTION AND CONSTRAINTS

It was assumed that for the scissors platform legs
would be used a beam with the cross section that is shown 
in figure 5. 

Figure 5: The cross section of the beam: t – thickness of 
the box, h – height of the box, g – width of the box 

By knowing the shape of the cross section, the 
geometrical properties and the load in each point across 
the length of the legs, the diameter of pins A, B, C, D, E, 
G and H can be calculated. Considering that the attack 
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force on the pins is making shear stress within it, the 
diameter of the minimal diameter of the pin can be 
determined in the following way: 

𝑑𝑑 = �
4 ⋅ 𝐹𝐹𝑠𝑠

𝑚𝑚 ⋅ 𝜋𝜋 ⋅ 𝜏𝜏𝑟𝑟𝑑𝑑𝑝𝑝
;𝑑𝑑0 = 𝑑𝑑 + 0.1 (cm) (22) 

…where d is the diameter of the pin, m is the number of 
shear surfaces, 𝜏𝜏𝑟𝑟𝑑𝑑𝑝𝑝 is allowed shear stress in the pin for 
the given material, and 𝐹𝐹𝑠𝑠 is the shear force that is 
attacking the pin, and it is equal to: 

𝐹𝐹𝑠𝑠 = �𝑇𝑇(𝑧𝑧)2 + 𝐴𝐴(𝑧𝑧)2 (23) 
Putting the pins in the beam that makes a leg of the 

scissors lift platform weakens the beam, so the cross 
section at those places have the shape that is represented in 
figure 6. 

Figure 6: The weakend cross section of the beam 

4.1. Object function 
The goal of the optimization is to find the optimal 

ratio between the height and width of the cross section of 
the beam for the given static load. In order for that to be 
accomplished, the shear stress, normal stress and 
combined stress in the beam should not exceed the 
allowed values for the material from which the beam was 
made, but it should be close to that limit. 

The minimal area of the cross section, or the 
minimal moment of inertia can be calculated, but the 
question that remains is if the cross section should have 
higher height or width, and by how much should one 
dimension be larger than the other. The optimization 
algorithm such as HHO can help in the search for the 
answer to the question. 

Since the load of the beam changes along its length, 
the optimal height and width of the profile in the cross 
section changes accordingly. The thickness t, on the other 
hand, will be taken as constant in every point of the 
beams. 

In order to perform the optimization, appropriate 
object function must be set within the code. Considering 
the expressions for calculating the shear 𝜏𝜏 and normal 
stress  𝜎𝜎 are: 

𝜎𝜎(𝑧𝑧) = 𝜎𝜎𝑀𝑀(𝑧𝑧) + 𝜎𝜎𝐴𝐴(𝑧𝑧) =
𝑀𝑀(𝑧𝑧)
𝐼𝐼𝑥𝑥(𝑧𝑧) 𝑦𝑦𝑚𝑚𝑟𝑟𝑥𝑥(𝑧𝑧) +

𝐴𝐴(𝑧𝑧)
𝑆𝑆(𝑧𝑧)

(24) 

𝜏𝜏(𝑧𝑧) =
𝑇𝑇(𝑧𝑧) ⋅ 𝑆𝑆𝑥𝑥(𝑧𝑧)
𝐼𝐼𝑥𝑥(𝑧𝑧) ⋅ 𝑡𝑡

(25) 

…the combined stress can be calculated with the following 
expression: 

𝜎𝜎𝑢𝑢(𝑧𝑧) = �𝜎𝜎(𝑧𝑧)2 + 3 ⋅ 𝜏𝜏(𝑧𝑧)2 (26) 

…where the variables are: 
- 𝜎𝜎𝑀𝑀(𝑧𝑧),𝜎𝜎𝐴𝐴(𝑧𝑧) – normal stress from the bending

moment and axial force at the point z;
- 𝜏𝜏(𝑧𝑧) – shear stress from the shear force at the

point z;
- 𝑀𝑀(𝑧𝑧),𝑇𝑇(𝑧𝑧),𝐴𝐴(𝑧𝑧) – bending moment, shear force

and axial force at the point z;
- 𝑆𝑆𝑥𝑥(𝑧𝑧), 𝐼𝐼𝑥𝑥(𝑧𝑧), 𝑆𝑆(𝑧𝑧) – the first moment area,

moment of inertia and area of cross section at the
point z:

𝑆𝑆𝑥𝑥(𝑧𝑧) = 𝑔𝑔(𝑧𝑧)𝑡𝑡
ℎ(𝑧𝑧) − 𝑡𝑡

2
+ 𝑡𝑡 �

ℎ(𝑧𝑧)
2

− 𝑡𝑡�
2

−
𝑑𝑑0(𝑧𝑧)2

4
𝑡𝑡 

(27) 

𝐼𝐼𝑥𝑥(𝑧𝑧) = 2 ⋅ �
𝑔𝑔(𝑧𝑧)𝑡𝑡3

12
+ 𝑔𝑔(𝑧𝑧)𝑡𝑡 �

ℎ(𝑧𝑧) − 𝑡𝑡
2

�
2

+
𝑡𝑡(ℎ(𝑧𝑧) − 2𝑡𝑡)

12
−
𝑡𝑡𝑑𝑑0(𝑧𝑧)3

12
� 

(28) 

𝑆𝑆(𝑧𝑧) = 2𝑡𝑡(𝑔𝑔(𝑧𝑧) + ℎ(𝑧𝑧) − 2𝑡𝑡 − 𝑑𝑑0(𝑧𝑧)) (29) 
Since the optimization algorithm searches for the 

optimal values of the variables in such way that the object 
function has minimal value, and the combined stress in 
this situation should as high as it is allowed, then the 
optimization algorithm has to minimize this function: 

𝜎𝜎𝑢𝑢(𝑧𝑧) = −�𝜎𝜎(𝑧𝑧)2 + 3 ⋅ 𝜏𝜏(𝑧𝑧)2. (30) 

4.2. Limits of the searching area 
The cross section of the beams has a shape of a 

box, as presented in the figure 5 and the figure 6. 
Considering that the thickness of the wall of the box is 
constant across the length of the beam, the only two 
variables are height and width of the box. 

If either the height or the width of the cross section 
is equal to 2 ⋅ 𝑡𝑡, then the shape of the cross section is not a 
box, but rather a rectangle. In order to keep the shape of 
the cross section a box, the minimal height and width of 
the cross section of the beams should be 2 ⋅ 𝑡𝑡. The lower 
boundary in the script “Get_function_details.m” is defined 
as the vector, and it has the following form: 

𝑙𝑙𝑏𝑏 = [2 ⋅ 𝑡𝑡, 2 ⋅ 𝑡𝑡] (31) 
The maximum values of the height and the width 

are not as important. Lower upper boundary should result 
in faster convergence to the optimal solutions, but this 
should be taken with precaution, because it still has to be 
high enough so the possible optimal solutions would not 
be cut out by setting the upper limit too low. 

4.3. Constrains 
In order to get the shape of the structure that can 

safely endure the given load, normal stress, shear stress, as 
well as combined stress must not exceed the limits for the 
given material. Following that thought, the four limits can 
be set: 

𝑔𝑔1 = �𝜎𝜎(𝑧𝑧)2 + 3 ⋅ 𝜏𝜏(𝑧𝑧)2 − 𝜎𝜎𝑟𝑟𝑑𝑑𝑝𝑝 ≤ 0; (32) 

𝑔𝑔2 =
𝐴𝐴(𝑧𝑧)
𝑆𝑆(𝑧𝑧) − 𝜎𝜎𝑟𝑟𝑑𝑑𝑝𝑝 ≤ 0; (33) 

𝑔𝑔3 =
𝑀𝑀(𝑧𝑧)
𝐼𝐼𝑥𝑥(𝑧𝑧) ⋅

ℎ(𝑧𝑧)
2

− 𝜎𝜎𝑟𝑟𝑑𝑑𝑝𝑝 ≤ 0; (34) 

𝑔𝑔4 =
𝑇𝑇(𝑧𝑧)𝑆𝑆𝑥𝑥(𝑧𝑧)
𝐼𝐼𝑥𝑥(𝑧𝑧)𝑡𝑡

− 𝜏𝜏𝑟𝑟𝑑𝑑𝑝𝑝 ≤ 0. (35)
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Additional two constraints can be applied so the 
width would not be too bigger then height, and the other 
way around. This behaviour can be constrained in the 
following way: 

𝑔𝑔5 =
𝑔𝑔(𝑧𝑧)
ℎ(𝑧𝑧) − 3 ≤ 0; (36) 

𝑔𝑔6 =
ℎ(𝑧𝑧)
𝑔𝑔(𝑧𝑧) − 3 ≤ 0. (37) 

One additional constraint should be applied in the 
places where the pins pass through the beams: 

𝑔𝑔7 = 4 ⋅ 𝑑𝑑0 − ℎ ≤ 0 (38) 

4.4. Source code modification 
The optimal shape of the hydraulic scissors lift legs 

can be acquired by doing multiple optimizations across the 
length of the legs. Each of the legs has been divided into 
three sections and each section is divided into ten 
equidistant subsections, as it is shown in figure 7, where 
the optimization is performed for each of them 
individually. Hence, the leg AC has been divided into 
sections: AG, GE, EC, and the leg DB has been divided 
into sections: DH, HE and EB. 

Figure 7: Graphical representation of the leg AC with its 
subsections 

The fastest way to perform thirty optimizations in a 
row is to write a script that would call the “main.m” script 
which starts the optimization process for different 
locations on the scissor legs. The created “start.m” script 
is erasing content of the files that contain the location and 
energy of the prey, then it resets the counter and enters the 
for loop until the total number of optimizations has been 
completed. The counter provides the needed progression 
of the z parameter (position of the section for which the 
optimization is being performed) through optimizations, 
and it saves the value of the counter in the separate file. 

The value of the counter then enters the “main.m” 
script that runs either the “AC.m” or “BD.m” script, 
depending on which leg is being optimized. Those two 
scripts contain geometrical characteristics of the scissors 
lift (such as the position of the hydraulic cylinder, total 
length of the legs, etc.), the formulas derived in the third 
chapter of this paper, and they are being executed before 
the “Get_Function_details.m” script because the values of 
the axial and shear force, and bending moment are needed 
for calculating the levels of stress. The reason why these 
scripts need to be run separately rather than within 
“Get_Function_details.m” script is because it shortens the 

time needed for performing each iteration within the 
optimization process. Considering that there could be 
thousand iterations in single optimization, and that there 
would be thirty optimizations like that one, the creation of 
additional script and placing the calculations of the forces 
and bending moment in it is justified as considerable 
amount of time is being saved. 

The last change in the “main.m” file represents 
adding the two lines of code where each saves the values 
of the prey’s location and energy at the end of each 
optimization, so when the whole process is finished, and 
all thirty optimizations are done, the optimal results for 
each subsection can be found in one text file. 

After applying the purposed changes, the 
illustration shown in figure 3 takes the form represented in 
the figure 8. 

Figure 8: Illustration of the source code with 
modifications applied 

5. RESULTS
For the platform that lifts the 1000 kg of load with 

centre of gravity located on 𝑙𝑙𝑓𝑓 = 0.5 𝑚𝑚 distance from the 
pin D, in the lowest position of the platform, when the 
angle 𝛼𝛼 = 7.5°, and the parameters that define the position 
of the hydraulic cylinder: 𝑎𝑎 = 0.4 ⋅ 𝐴𝐴 m, 𝑏𝑏 = 0.3 m, axial, 
shear, and bending moment diagrams for both AC and BD 
legs are shown in figures 9 and 10.  Diagrams for the same 
platform when it is in the position where 𝛼𝛼 = 75° are 
shown in figure 11 and figure 12. 

By comparing the diagrams, it can be concluded 
that the load in the scissors lift legs is highest in the lowest 
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position of the platform, making it the only relevant 
position of the platform for the optimization. 

The thickness of the walls of the profile is set to 
𝑡𝑡 = 6 𝑚𝑚𝑚𝑚. Boundaries of the searching area, according to 
the equation 37 are: 

𝑙𝑙𝑏𝑏 = [2 ⋅ 0.6, 2 ⋅ 0.6] = [1.2, 1.2] (39) 
𝑢𝑢𝑏𝑏 = [100, 100] (40) 

Figure 9: Static diagrams for the AC platform leg in the 
𝑎𝑎 = 7.5° position 

Figure 10: Static diagrams for the BD platform leg in the 
𝑎𝑎 = 7.5° position 

Figure 11: Static diagrams for the AC platform leg in the 
𝑎𝑎 = 75° position  

Figure 12: Static diagrams for the BD platform leg in the 
𝑎𝑎 = 75° position  

If the material of the scissors legs are being made 
from is structural steel S235, and safety factor is 𝜈𝜈 = 1.50, 
allowed limits for both normal and tangential stress are: 

𝜎𝜎𝑟𝑟𝑑𝑑𝑝𝑝 = 16
𝑘𝑘𝑘𝑘
𝑐𝑐𝑚𝑚2

𝜏𝜏𝑟𝑟𝑑𝑑𝑝𝑝 = 9
𝑘𝑘𝑘𝑘
𝑐𝑐𝑚𝑚2

The number of hawks (size of initial population) 
was set to 𝑘𝑘 = 60, and the maximum number of iterations 
was set to 𝑇𝑇 = 500. These parameters represent the 
needed input information for the optimizer. After the 
optimization process is being completed, optimal values of 
the scissors legs, height and width are being shown in the 
table 1 and table 2. 
Table 1. Results of the optimization process for the leg AC 

𝑧𝑧 [𝑚𝑚] ℎ [𝑐𝑐𝑚𝑚] 𝑔𝑔[𝑐𝑐𝑚𝑚] 𝜎𝜎𝑢𝑢  �
𝑘𝑘𝑘𝑘
𝑐𝑐𝑚𝑚2� 

0 1.68 1.20 16 
0.0156 1.99 1.59 16 
0.0311 1.79 4.88 16 
0.0467 2.03 4.25 16 
0.0622 2.21 4.39 16 
0.0778 2.41 4.40 16 
0.0933 3.43 2.37 16 
0.1089 2.84 4.25 16 
0.1244 4.63 1.59 16 
0.14 3.54 5.25 16 
0.2022 4.10 2.56 16 
0.2644 2.32 3.40 16 
0.3267 1.64 4.06 16 
0.3889 2.02 5.84 16 
0.4511 2.48 5.96 16 
0.5133 3.45 4.24 16 
0.5756 3.28 6.48 16 
0.6378 3.19 8.77 16 
0.7 4.88 5.98 16 
0.7778 6.88 2.45 16 
0.8556 3.73 7.12 16 
0.9333 3.61 6.38 16 
1 2.88 7.75 16 
1.0889 4.94 2.10 16 
1.1667 2.99 4.24 16 
1.2444 3.85 1.54 16 
1.3222 2.63 1.65 16 
1.4 2.39 1.20 6.32 
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Table 2. Results of the optimization process for the leg BD 

𝑧𝑧 [𝑚𝑚] ℎ [𝑐𝑐𝑚𝑚] 𝑔𝑔[𝑐𝑐𝑚𝑚] 𝜎𝜎𝑢𝑢  �
𝑘𝑘𝑘𝑘
𝑐𝑐𝑚𝑚2� 

0 2.40 1.20 6.32 
0.0778 2.27 2.25 16 
0.1556 3.17 2.39 16 
0.2333 2.81 4.69 16 
0.3111 3.78 3.72 16 
0.3889 3.06 6.93 16 
0.4667 5.36 2.99 16 
0.5444 4.27 5.62 16 
0.6222 3.70 8.28 16 
0.7 6.96 2.60 16 
0.7333 4.31 7.90 16 
0.7667 4.58 4.14 16 
0.8 3.72 8.96 16 
0.8333 3.85 4.40 16 
0.8667 4.41 3.85 16 
0.9 5.10 4.26 16 
0.9333 6.97 2.71 16 
0.9667 5.34 7.48 16 
1 4.49 7.29 16 
1.0444 3.79 8.60 16 
1.0889 5.02 4.45 16 
1.1333 5.36 3.21 16 
1.1778 3.00 8.09 16 
1.2222 3.10 6.00 16 
1.2667 3.21 4.15 16 
1.3111 3.28 5.87 16 
1.3556 2.11 3.70 16 
1.4 1.68 1.20 16 

The values from table 1 and 2, as well as the ratio 
between the height and width of the profile across the 
length of the legs are being visualised in the figure 13 and 
figure 14. 

The three-dimensional models of the scissors lift 
legs AC and BD made using the parameters from tables 1 
and 2 are being shown in figures 15 and 16. 

Figure 13. Visual representation of the values from 
the table 1 

Figure 14. Visual representation of the values from 
the table 2 

a) 

b) 
Figure 15: Three-dimensional model of the scissors lift 

leg AC: a) isometric view, b) cross section view 

a) 

b) 
Figure 16: Three-dimensional model of the scissors lift 

leg BD: a) isometric view, b) cross section view 
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6. CONCLUSION

Comparing the results of the optimization 
represented on graphs displayed in figure 13 and figure 14 
with the static diagrams displayed in figure 9 and figure 
10, it can be concluded that the width of the profile 𝑔𝑔(𝑧𝑧) 
tends to be larger than the height ℎ(𝑧𝑧) as the z gets further 
from the pins in both AC and BD leg. 

Due to the constraint 𝑔𝑔7 in the places where the 
pins pass through the legs, the height of the profile 
increases, while the width is getting shorter. 
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