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This paper presents the dynamic analysis of  a  rotating cantilever beam with a tip mass by using the rigid segment 
method. The elastic beam is discretized into the number of rigid segments which are interconnected by elastic joint 
elements with three degrees of freedom. The dynamic analysis is performed by  using  absolute coordinates in the frame of  
Euler-Bernoulli beam theory. The critical angular velocity at which instability of the proposed solution occurs is 
determined.  
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1. INTRODUCTION 
Until now, the dynamic behavior of the flexible 

rotating beams has been investigated by many researches. 
The motive for this research lie in the fact that many 
engineering objects should be modelled as a rotating 
cantilever beam. Some of them are light robot arms, 
helicopter rotor blades, turbine blades, satellite linkages, 
etc. Modern industry has a need for machines of high-
speed, increased accuracy and with the lowest possible 
weight. So, the rotational elements are lightweight and 
highly flexible. To ensure the accuracy of the motion of 
such elements, it is necessary to have an efficient control 
algorithm. Therefore, it is important to form a model of the 
flexible rotating beam that is simple and sufficiently 
accurate. The literature that deals with this problem is 
plenty (e.g. see [1-5]). 

In this paper the rigid segment method will be used 
for the dynamic analysis of the flexible rotating cantilever 
beam with a tip mass. The basics about using this method 
in the free vibration analysis of the beams with variable 
axial parameters are described in [6] and [7] in detail. 
Here, this method will be adopted for the using in the 
analysis of the rotating flexible cantilever beam. 

2. THE RIGID SEGMENT MODEL 
Consider a hub beam system, shown in Fig 1. The 

hub is rigid and has the radius OA r= . The flexible beam 
of a length L is rigidly connected to the hub at the point A. 
The beam material has the Young’s modulus E and the 
mass density ρ. Also, the beam cross section area is A, and 
the beam cross section moment of inertia is Iz. A tip mass 
mT is fixed at the free end B of the beam. Let's introduce 
the two coordinate systems that are necessary for the 
rotation analysis of the system considered. The first one is 
the inertial fixed coordinate system Oxyz, and the second 
one is the reference frame Oξηζ whose axis ξ coincides 
with the direction of the undeformed beam. The angle θ 
defines the rotation of the reference coordinate system 
Oξηζ relative to the inertial coordinate system Oxyz. 

 

 
Figure 1: The rotating cantilever beam with a tip mass 

 
Based on [5,6] the beam discretization is performed 

through two steps. At the first step, the beam is divided 
into n  elastic segments which has the length L/n (see Fig 
2(a)). After that, at the second step, all of the introduced 
elastic segments are replaced with two rigid segments of 
the length L/(2n) which are mutually connected by the 
elastic joint elements JEi (i=1,…,n) (see Fig 2(c)). The 
joint element JEi allows three degrees of freedom, that are  
two relative translations in the axial and transverse 
direction, pi and qi, respectively, and one relative rotation 
ri around the axis that is perpendicular to the motion plane. 
As mentioned above, the joint element JEi is elastic, so the 
cylindrical and spiral springs are placed in the direction of 
the axial and rotational relative displacements, 
respectively (see Fig 2(d)). Based on [6], the stiffnesses of 
the introduced springs are: 
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Finally, the rigid segment model of the rotating 
flexible cantilever beam with the tip mass is formed as a 
system of n+1 rigid segments which are mutually 
connected by n elastic joint elements JEi  (see Fig 2(b)). 

For the purpose of further analysis, let’s define the 
physical parameters of the introduced rigid segments. The 
length, mass and rotational inertia of the rigid segments 
should be defined as: 
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is the distance of the mass center from the left side of the  
rigid segment (Vi).  
 

 
Figure 2: Discretization of the elastic beam into  rigid 

segments and elastic joint elements 

 

3. DIFFERENTIAL EQUATIONS OF MOTION 
During the rotation, the flexible beam deforms. 

Therefore, the position of the rigid segment (Vi) relative to 
the coordinate system Oξηζ should be defined with axial 
and transversal coordinates of the rigid segment mass 
center, ξi  and ηi, respectively, and with rotation angle ϕi 
of the rigid segment relative to the undeformed state of the 
beam.  

The axial coordinate ξi  can be defined as: 
( )0i i i ,ξ ξ ξ= +                                                                (6) 

where 
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is the value of the axial coordinate in the undeformed state 
of the beam, and iξ  represents the value of the axial 
deformation relative to the undeformed state of the beam. 
In the undeformed state, the values of the transversal 
coordinate ηi and rotation angle ϕi has zero values (see Fig 
3).  

 
Figure 3: The motion of the rigid segment (Vi) during 

rotation 

The kinetic energy of the rigid segment model 
reads: 

( )2 2

0

1
2 i

n
i i C i
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=
= +∑                                         (8) 

where iv  and iω  are the velocity of the mass center and 
the angular velocity of the rigid segment (Vi), respectively. 
By using the above defined coordinates, the velocity iv  
reads: 

2 2 2
i i iv x y ,= +                                                                (9) 

where xi  and yi are the coordinates of the mass center of 
the rigid segments (Vi) relative to the inertial coordinate 
system Oxyz are given as: 

i i ix cos sin ,ξ θ η θ= −                                                 (10) 

i i iy sin cos .ξ θ η θ= +                                                 (11) 
Taking into account the expression (6), the time 
derivatives of the previously defined coordinates read: 

( )( )0i i i i i ix cos sin sin cos ,ξ θ ξ ξ θ θ η θ η θ θ= − + − −

   



                                                (12) 

( )( )0i i i i i iy sin cos cos sin .ξ θ ξ ξ θ θ η θ η θ θ= + + + −

   



                                                (13) 
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Now, by using the expressions (6), (9), (12),  and (13), the  
velocity of the rigid segment (Vi) mass center takes the 
following form: 
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The angular velocity of the rigid segment (Vi) is given as: 

i i .ω θ ϕ= +                                                                    (15)                                                
By inserting the expressions (14) and (15) into the 

expression (8), the kinetic energy of the rigid segment 
model becomes: 
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The potential energy of the rigid segment model 
reads: 
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where pi, qi, and ri represent the relative displacements in 
the elastic joint element JEi (see Fig 2(d)).  
By using the small deformation assumption, the relative 
displacements pi, qi, and ri  should be obtained by using the 
rigid segments coordinates in the reference coordinate 
system Oξηζ as: 

1i i ip ,ξ ξ−= − +                                                              (18) 

1
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1i i ir .ϕ ϕ−= − +                                                             (20) 
Inserting the expressions (18)-(20) into the expression 
(17), the potential energy of the rigid segment model takes 
the following form: 
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Now, the differential equations of motion of the 
considered rigid segment model may be obtained by using 
the Lagrange equations of the second kind [8]: 
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By using the expressions for the kinetic and potential 
energies, (16) and (17), the differential equations of 
motion (22)-(24) become: 
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where i=1,…,n, 0 1 0,nξ ξ += =   0 1 0,nη η += =  and 

0 1 0.nϕ ϕ += =  
After summing, the above defined differential equations of 
motion (25)-(27) should be written in a matrix form as: 
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4. NUMERICAL SIMULATIONS AND RESULTS

The physical parameters of the beam which will be
used here are follows: 

- Length L=8 [m],
- Mass density ρ =2.7667⋅103 [kg/m3],
- Cross-section area A=7.2968⋅10-5 [m2],
- Young’s modulus E=6.8952⋅1010 [N/m2],
- Cross-section moment of inertia Iz =8.2189⋅10-9 [m4],
- Hub moment of inertia Jh =200 [kg⋅m2],
- Hub radius r =0.5 [m],
- Tip mass mT =(0.1-0.5) [kg]. 

It is also assumed that the angular velocity of the 
considered hub beam system is defined as a time function 
of the form: 

2sin , 0 ,
2

, ,

f f
f

f f

f f

w w
t t t t

t t

w t t

π
πθ

  
 − ≤ ≤   =   
 >

   (45) 

where wf represents the stationary angular velocity of the 
hub beam system that will be achieved after time period tf. 

The Runge-Kutta method of the fourth order is 
used for the numerical integration of the differential 
equations of motion (28). Also, the elastic beam is 
discretized into 20 elastic segments, that is n=20. 

Figure 4 shows the response of the beam tip along 
the transverse and the axial direction during the rotation. It 
is assumed that there is no tip mass, eg mT =0, tf =15 [s], 
and that the steady state angular velocity wf  has the values 
1, 2 and 4 [rad/s]. In the case wf  =2 [rad/s] our results for 
the transversal displacements shown in Fig 4(a) are the 
same as those ones from [4] obtained by the using zero 
order model (linear model). 

Is is obvious that by increasing wf from 1 [rad/s] 
to 2[rad/s], the maximum deflection in the both transverse 
and axial beam direction increases, too. For the wf =4 
[rad/s], the results obtained by using the presented 
approach are divergent. The identically divergent result is 
obtained in [4] when the zero order model was used.  

Figure 4: The beam tip response under the rotation: 

(a) transversal direction, (b) axial direction.
The reason for the divergence of the results can be

found by analyzing the differential equations of motion 
(28). Namely, the generalized stiffness matrix is defined 

by the matrix 2
mθ−K M . As the angular velocity of the
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hub-beam system θ  increases, the same elements of the 
generalized stiffness matrix decrease. When the angular 
velocity θ  reached some critical value, the generalized 
stiffness matrix is singular, and the solutions become 
divergent.   So, the critical value of the angular velocity at 
which the presented rigid segment method failed to 
describe the dynamics of the rotating cantilever beam 
should be obtained by solving the following equation: 

2 0.cr mθ− =K M                                                          (33) 

As the matrix mM  depends on the masses of  rigid 
segments (see (37) and (38)), the value of the critical 
angular velocity crθ  decreases with the increasing of the 
tip mass mT. The above statement is proved in Table 1. In 
the case when mT=0, the critical angular velocity is 

2.91[rad/ s]crθ = . But, for mT=1 [kg], the value of the 
critical angular velocity significantly decreases to 

1.55[rad/ s]crθ = . Better insight into this dependance 
should be obtained by analyzing Figure 5. 
 

Table 1: The values of the critical angular velocity 
corresponding to the different tip mass values 

 
mT [kg] 0 0.1 0.3 0.5 0.7 0.9 1 

crθ [rad/s] 2.91 2.61 2.20 1.94 1.75 1.61 1.55 

 

 
    Figure 5: The impact of the tip mass to the critical 

angular velocity 

Now, by analyzing the Table 1, we can determine the 
critical angular velocity at which divergence of the results 
occurs. Figure 6 shows the response of the beam tip in the 
transverse and axial direction during the rotation for   
mT =0.1 [kg] and tf =30 [s]. The value of the critical 
angular velocity for the given parameters is 

2.61[rad/ s]crθ = . When the steady state angular velocity 
is less than critical value wf =2 [rad/s], the obtained results 
are correct. However, when the steady state angular 
velocity exceeds the critical value, eg when wf =2.7 [rad/s], 
the obtained results become divergent. The situation is 
similar when the tip mass increases to mT =0.5 [kg]. In this 
case, the critical angular velocity decreases to 

1.94[rad/ s]crθ =  (see Table 1). 

 
Figure 6: The beam tip response under the rotation at 

mT=0.1 [kg] 

 
Figure 7: The beam tip response under the rotation at 

mT=0.5 [kg] 
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When the steady state angular velocity is less than critical, 
wf =1.8 [rad/s], the obtained results are correct. As in the 
previous case, when the steady state angular velocity 
exceeds the critical value, wf =2 [rad/s], the results become 
divergent. 

It is important to note that in both described cases 
(for mT =0.1 [kg] and for mT =0.5 [kg] ) the obtained 
results for the transversal displacement (t)η  agrees very 
well with the results given in [1] obtained by using the 
traditional linear approximated model (TLAM). The 
values of the axial tip displacement (t)ξ  are not presented 
in [1].  

5. CONCLUSION 
In this paper the dynamic analysis of the flexible 

rotating cantilever beam by using the rigid segment 
method has been performed. The rigid segment model 
considers the bending as well as the axial deformation of 
the beam during rotation. The obtained differential 
equations of motion in a matrix form (28) allow the 
efficient dynamic analysis of the considered rotating beam. 
Because the small deformation assumption has been used 
the considered method is linear. 

As observed in [5], the use of the linear model 
leads to the conditionally stable results. Namely, if the 
angular velocity of the hub reaches the critical value of the 
angular velocity, the generalized stiffness matrix becomes 
singular and the results are divergent. So, before the 
proposed rigid segment method being used, it is necessary 
to determine the value of the critical angular velocity by 
using the expression (33). The precision of the presented 
method is demonstrated by numerical examples in which 
the good agreement with the results from [1] and [4] has 
been achieved. 

In the further research, the presented method can 
be improved by taking into account the large deformation 
of the considered beam during the rotation. As a result of 
this assumption, the generalized stiffness matrix would be 
non-linear. It is expected that by using the above 
assumption the critical angular velocity of the rotating 
beam will be increased.  
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