
Citation: Mitić, P.; Petrović Savić, S.;

Djordjevic, A.; Erić, M.; Sukić, E.;

Vidojević, D.; Stefanovic, M. The

Problem of Machine Part Operations

Optimal Scheduling in the

Production Industry Based on a

Customer’s Order. Appl. Sci. 2023, 13,

11049. https://doi.org/10.3390/

app131911049

Academic Editor: Alexandre

Carvalho

Received: 11 September 2023

Revised: 28 September 2023

Accepted: 30 September 2023

Published: 7 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

The Problem of Machine Part Operations Optimal Scheduling
in the Production Industry Based on a Customer’s Order
Predrag Mitić 1 , Suzana Petrović Savić 1, Aleksandar Djordjevic 1,* , Milan Erić 1, Enes Sukić 2,
Dejan Vidojević 3 and Miladin Stefanovic 1

1 Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia;
predrag2904@gmail.com (P.M.); petrovic.suzana@gmail.com (S.P.S.); ericm@kg.ac.rs (M.E.);
miladin@kg.ac.rs (M.S.)

2 Faculty of Information Technology and Engineering, University Union-Nikola Tesla, Gagarina 149a,
11070 Belgrade, Serbia; sukic.enes@gmail.com

3 Department of Informatics and Computing, University of Criminal Investigation and Police Studies,
Cara Dušana 196, 11080 Belgrade, Serbia; dejan.vidojevic@kpu.edu.rs

* Correspondence: adjordjevic@kg.ac.rs

Abstract: This research focuses on small- and medium-sized businesses that provide machining or
other process services but do not produce their own products. Their daily manufacturing schedule
varies according to client needs. Small- and medium-sized businesses strive to operate in these circum-
stances by extending their customer base and creating adequate production planning targets. Their
resources are limited, including the technical and technological components of their equipment, tools,
people resources, time, and capacities. As a result, planning operations with the present resources of
small- and medium-sized businesses in the midst of the global economic crisis is a widespread issue
that must be addressed. This study seeks to offer a novel mathematical optimization model based on
a genetic algorithm to address job shop scheduling and capacity planning difficulties in small- and
medium-sized businesses, therefore improving performance management and production planning
procedures. On the basis of the created optimization model, an appropriate software solution, and
quantitative data concerning the job shop scheduling and capacity planning challenges of manu-
facturing operations in small- and medium-sized businesses, the study findings will be obtained.
The practical implications include the establishment and development of a decision support system
based on the genetic algorithm optimization method, which may improve the effectiveness of the
flexible job shop scheduling problem and capacity planning in the production planning process. The
given model and the application of the differential precedence preservative crossover operator within
genetic algorithms are what constitute the novelty of this study.

Keywords: genetic algorithm; optimal scheduling; small and medium enterprises; metalworking industry

1. Introduction

Outsourced production has emerged as a result of globalization and rapid techno-
logical development; it positively impacts several aspects of sustainability by facilitating
cooperation and resource sharing among facilities to improve responsiveness, quality,
efficiency, and waste management [1]. However, the global crisis has not bypassed the
production industry either. Consequently, large manufacturing organizations engaged
in producing goods in various industry branches focused on market research activities,
product design and testing, assembly, delivery to the customer, and after-sales activities are
looking to have as few unnecessary costs as possible. What is more devastating, the crisis
has left its most significant impact on vulnerable small and medium enterprises (SMEs)
with limited resources [2,3], for which every savings in time, money, and other resources
represents a crucial point for survival. In such circumstances, SMEs may increase their

Appl. Sci. 2023, 13, 11049. https://doi.org/10.3390/app131911049 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131911049
https://doi.org/10.3390/app131911049
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4723-4248
https://orcid.org/0000-0003-2856-6578
https://orcid.org/0000-0001-7610-3047
https://orcid.org/0000-0002-2681-0875
https://doi.org/10.3390/app131911049
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131911049?type=check_update&version=1

Appl. Sci. 2023, 13, 11049 2 of 23

chances of survival if they apply optimization methods for allocating their limited technical
and technological, human, time, and capacity resources.

An optimal schedule of operations and optimal resource allocation could be the most
crucial instrument for production capacity planning in SMEs, i.e., deciding if it is possible
to take new orders and deliver the products in the time intervals requested by customers.
The necessity of the optimal scheduling of operations and resource allocation is derived
from the fact that operation orders are completed in a given time and that the company’s
earnings on those operation orders in that period are optimized. A schedule of operations
and optimal resource allocation serve as the nerve center of management decision-making
in manufacturing systems and have the potential to facilitate autonomous manufacturing
within decentralized supply chain systems. This is because shop scheduling helps integrate
the physical and decisional aspects of production planning [4]. The issue presents a
subclass of problems in the literature known as optimal scheduling of operations/jobs,
or the problem of an optimal work schedule or activities. According to Gomes et al. [5],
there are many kinds of research on this problem and methodology for its solution in
engineering sciences, computer sciences, and process management, which result in a wide
range of diverse literature. Methodologies for solving this problem can be classified as
accurate or approximate, depending on whether their application requires an optimal or a
near-optimal solution.

The schedule of operations and optimal resource allocation seeks to maximize produc-
tion profit and efficiency under the premise of ensuring product quality and functionality.
Single machine scheduling, parallel machine scheduling, flow shop scheduling, and the job
shop scheduling problem (JSSP) are the most common types of scheduling [6]. The JSSP
has attracted the attention of a significant number of scholars due to the significance of
real-time scenarios. Due to the fact that the workshop scheduling problem has remained
unresolved for more than two decades, it has continued to be a topic of interest up to the
present day. The goal is to develop a timetable that takes into account many factors, such
as makespan, flow-time, and tardiness, among others. A good schedule is an adequate
operation permutation for all jobs which can lower the total makespan or idle time of
machines, as stated by Dao et al. [7]. Many different factors affect the formation of the
optimal schedule of operations and resource allocation, i.e., jobs. In production, the desire
of decision-makers is to complete all tasks effectively and efficiently. It always boils down
to reducing production time (makespan) and taking into account the limited resources that
SMEs’ have at their disposal. It is a complex analysis for which the SMEs selling the service
do not have the appropriate resources. These SMEs comes to the market with the working
hours of their resources, usually machines, with a price per hour that must be competitive.
The goal that is in front of the decision-maker is to resolve capacity planning issues in SMEs
based on the job shop scheduling in order to minimize the production time in a certain
period and at the same time to have the maximum profits. These objectives are crucial for
surviving on the market in the modern age and very often are the opposite in real systems
and could create many problems during production planning. The decision-maker must
have practical production planning tools that are useable in everyday business.

The main objective of this research is to present a novel optimization model to resolve
capacity planning issues in SMEs based on the job shop scheduling for SMEs which sell a
service to minimize the production time (makespan) in a certain period and at the same
time to have the maximum profits for the SME. This objective is crucial for surviving on
the market in the modern age. These two goals are often in opposition in real systems and
could create many problems during production planning.

Considering that the cost of working hours of machines can be different for different
machines, minimizing the makespan does not necessarily mean that costs are at a minimum
i.e., it does not guarantee maximum profits. In this paper, the authors emphasize the
term relative makespan, which is a solution to the optimization problem of minimum
production time that guarantees maximum earnings. This model of optimal job scheduling
for partial flexible job shop problems, especially suitable for the SME that sells services in

Appl. Sci. 2023, 13, 11049 3 of 23

the metalworking industry, has not been considered in the available literature. With an
innovative approach and a complete software solution applicable without modifications,
the authors make available to SMEs a useful tool that they can use in everyday business
and decision-making. The proposed model does not take into account the existence of
interoperation warehouses, production disruptions, and urgent purchase orders, which in
the case of large companies have a greater impact on the results.

The research results presented in this paper are theoretical and practical. The expected
theoretical results are reflected in the defined model of relative makespan that connects two
opposing goals in real systems, considering several factors that affect production planning
and completely excluding the influence of the decision-maker on the production planning
process. The model is based on data dictated by the SME environment. In addition to the
previous one, the developed algorithm and software solution enable the practical application
of the presented model to almost every SME of the metal processing industry, regardless of
the machine park’s type of production and technical and technological specifics.

The remaining sections are organized as follows. The second section is a survey of
the relevant literature on this topic. In the third section, the modeling and mathematical
formulation of the optimum job shop scheduling problem are stated. Also, in the third
section, a method based on machine operations and optimal scheduling with an enhanced
genetic operator is proposed. The fourth section presents an independent software solution
with experimental findings. Conclusions are presented in the final section.

2. Literature Review

Current computer technologies and artificial intelligence (AI) approaches have become
essential for small- and medium-sized enterprises (SMEs) that wish to thrive in the modern
business market in order to accomplish the lowest costs and maximize resource utilization
and activity scheduling [8,9]. Consequently, the method of resource use and schedule
optimization will be explored.

The first problem recognized is setting up a model that fits service production with a
daily varying volume in the metalworking industry. The second is to determine and apply an
appropriate methodology for solving the problem. The optimization criteria are represented
by an objective function functionally related to a set of control variables. The choice of the
objective function is the most crucial step in solving an optimization problem. According
to Živković [10] and Rao [11], there is no developed efficient or accurate algorithm for the
solution of the NP-complete optimization problem, at least so far, so various authors who
have dealt with this problem in recent years have used modern methods or metaheuristic
algorithms to solve it. Unlike classical methods, all metaheuristic methods give results that
are not accurate but converge to an optimum. Classical methods give results which with
certainty represent a local extreme within the given precision. However, classical methods are
applicable to solve NP-completeness only for smaller-scale problems.

The JSSP has been segmented into different categories according to the number of
machines and jobs. The smaller issues can range from nine to twenty jobs and can use
anywhere from four to ten machines. Medium-sized issues might range anywhere from
25 to 40 jobs and use anywhere from 15 to 20 machines. When dealing with large-scale
issues, the number of jobs can range anywhere from 45 to 60, and the number of machines
can range anywhere from 25 to 30 [12]. Over the course of the years, academics have
suggested both accurate and heuristic approaches for solving the JSSP. These methods have
many aims, such as lowering makespan, completion time variance (CTV), and the number
of tardy jobs [13]. Because of the complexity of the computations involved, it is difficult to
find ideal solutions for large-scale JSSPs. Instead, it is preferable to obtain near-optimal
solutions through the use of heuristic methods [13,14]. Meng et al. [15] offer a unique
proactive-reactive strategy to adapt to dynamic changes in working environments and to
tackle the joint scheduling problem for machine tools and transportation resources. To
adapt to dynamic events and construct the reschedule plan in a timely manner, the same
authors developed a unique particle swarm optimization technique with an integrated ge-

Appl. Sci. 2023, 13, 11049 4 of 23

netic algorithm (GA). A multiagent manufacturing system that takes into account dynamic
events such as stochastic job insertions and unpredictable machine failures was presented
by Zhang et al. [16]. This system was based on deep reinforcement learning and integrated
the self-organization mechanism and self-learning strategy with the multiagent manufac-
turing system testbed. Wang and Wang [17] investigated numerous aspects and suggested
a knowledge-based cooperative memetic algorithm for energy-aware distributed flow
shop scheduling.

Because it has the potential to improve resource utilization and production
efficiency while simultaneously lowering production costs, research on the flexible job shop
scheduling problem (FJSP) has emerged as a topic of interest over the course of the past
decade. To increase the scope of the JSSP, it should take into account the fact that each
operation can be carried out on one of the machines that are a part of a subset of the
machines in the production workshop [3,18]. Therefore, the FJSP is more difficult to solve
than traditional scheduling problems. According to the results of the survey regarding the
FJSP [19], it was found that 88 publications (44.67%) utilized makespan as the only objective
function, while another 78 papers (39.59%) used makespan in conjunction with another
objective function. The same survey shows that hybrid techniques were used to solve
problems in 35% of the case studies, evolutionary algorithms in 23% of the case studies,
heuristic techniques in 9% of the case studies, and other techniques in the remaining 33%
of case studies. Since then, several metaheuristics have been proposed to solve the problem.
By considering the characteristics of the FJSP, Jiang and Zhang [20] proposed a kind of
adaptive discrete cat swarm optimization algorithm with three objectives to be optimized
simultaneously, i.e., makespan, maximal machine workload, and total workload, and they
employed a heuristic-based strategy to generate the initial population. Yang et al. [21] per-
formed an evaluation with a combined improved version of nondominated sorting GA II
and a surrogate measure to address the FJSP objectives, namely, makespan and robustness.
Li et al. [22] proposed an efficient optimization algorithm that is a hybrid of the iterated
greedy and simulated annealing algorithms to solve the FJSP with two objectives, which
are simultaneously considered, namely, the minimization of the maximum completion
time and the energy consumption during machine processing and material transportation.
Türkyılmaz et al. [23] introduced a biobjective hybrid GA-hypervolume contribution mea-
sure that integrates GA with a multisearch algorithm and uses a hypervolume contribution
measure (∆s) in its two-level selection strategy.

A suitable method for solving the FJSP that belongs to evolutionary algorithms is
the GA, since, in most cases, it can find the global optimum with a very high
probability [11]. One of the GA’s main characteristics is to directly operate on the problem
structure without derivation and function continuity limitations. GAs also have inherent
implicit parallelism and global searching ability and can adjust search directions automati-
cally and self-adaptively [24]. In recent years, the usage of GAs to solve optimal scheduling
problems has increased. A GA employs a set or population of individual solutions as its
searching space and is extremely resistant to a hasty approach to the local extreme [11].
Stanković et al. [25] compared meta-heuristic algorithms GA, Tabu search, and Ant colony
optimization (ACO) to solve the FJSP in a flexible manner and to choose dominant solutions.
Based on the literature sources supplied, a job or working order may be characterized
as a sequence of distributed machine actions. Each job or distributed operation in the
searching space represents a viable solution to the optimization problem. The basis of
genetic engineering is the alteration of individual genes. As the gene sequence represents
the individual, it is evident that if an adequate method of representing the job sequence as
the individual is utilized, GAs can be very suitable for solving scheduling issues. Given the
foregoing, a GA was selected as a solution to solve the problem described in this research.
It should be noted that the efficiency of the GA is dependent on the genetic operators of
crossover and mutation, which differ depending on the issue type [11].

In the literature, optimization of a single criterion, namely, optimizing the schedule of
manufacturing processes to minimize the time necessary for their execution, predominates.

Appl. Sci. 2023, 13, 11049 5 of 23

Nonetheless, it is vital to meet the makespan criterion, particularly for service-selling
businesses. Even if makespan is minimized in a given time, the company’s earnings must
be sufficient to ensure its market viability. In this study, this sort of problem is considered.

3. Materials and Methods
3.1. Definition of the Proposed Model for Machine Part Operations Optimal Scheduling in the
Production Industry Processes

The subject of inquiry is an SME in the metal processing industry. Assuming that
the company has M machines, and if each machine or group of machines is a cost center
determined by the price per unit time, and with capacity C, expressed in time units, and
that N work orders with K operations on each work order must be completed, then the
following model can be used to determine the optimal number of machines. One work
order corresponds to one purchase order from a customer. Each work order must be
complete by a certain time.

To that end, the authors made an effort to define the machine parts operation schedule
in the manufacturing sector. Suppose that n jobs Ji (i = 1, . . ., n) should be distributed on m
machine Mj (j = 1, . . ., m). A job’s schedule is the distribution of one or more time intervals
across one or more machines. In general, a machine is any workplace where a certain task
is to be performed. Typically, the job schedule may be shown using Gantt charts that can
be directed towards machine type or job type.

Different models of this problem are given in the literature depending on the goal set
within the organization or process. Vujčić et al. [26] formulate one subclass of this problem
as a problem of the optimal distribution of working labor, i.e., they stated that if M1, . . ., Mn
are machines to which n workers R1, . . ., Rn should be assigned, and if it is known that the
worker Ri on the machine Mj daily brings profits from cij monetary units, workers should
be deployed so that the company has the maximum daily earnings. By further analysis, the
authors show that the problem cannot be solved by examining all the possibilities because
there are n! possibilities. However, it is essential to note that the possibilities of worker
scheduling (in this subclass of problems) or activities or production operations can be
viewed as permutations. It is also important to note that the authors reduce this problem to
linear integer programming.

3.2. Mathematical Formulation of the Proposed Model

The considered case of optimization belongs to the FJSP, for which the formulation of
the variables of the mathematical model can be conducted as follows [27]:

(i) Set of machines M = {M1, M2, M3, . . ., Mm}, where m is the total number of machines,
with index h denoting each specific machine, h ∈{1. . .m};

(ii) Set of machine costs per time unit K = {K1, K2, K3, . . ., Km};
(iii) Set of working orders N = {N1, N2, N3, . . ., Nn}, where n is the total number of work

orders, index i denotes each working order, i ∈{1. . .n};
(iv) Each work order consists of a sequence of operation O = {O1, O2, O3,. . ., Ok}, where

k is the total number of operations within certain work order and index j denotes each
working order operation, j ∈{1. . .k};

(v) Ordered set of operations ∀Ni i ∈ {1. . .n} ∃: Oij = {O11, O12, O13,. . ., Onk∗ }, i.e., set of
operations of the ith work order, where each work order i may have different number
of k∗ operations;

(vi) Ordered set of machines for the execution of the ith work order ∀Oij i ∈{1. . .n},
j ∈{1. . .k∗} ∃: Mij ⊆ {M1, M1, . . ., Mm}. The execution of each operation j of a
work order i (noted Oij) requires one machine out of a set of given machines called
Mij ⊂Mm;

(vii) Sequence lij of operation Oij, ∀Ni i ∈ {1. . .n} is the execution sequence of the jth
operation of ith work order;

(viii) Execution time pij of operations Oij ∀Ni i ∈ {1. . .n} is the execution time of the jth
operation of ith work order on hth machine;

Appl. Sci. 2023, 13, 11049 6 of 23

(ix) B, a large enough positive number.

The model’s control variables are the following:
In addition to the observed model’s input variables, it is necessary to define a vector

of control variables, that is, variables that describe the optimization objectives stated. In the
observed model, these are:

tijh—start time of operation Oij on machine h (1)

Thl—start time of the lth operation performed on the machine h (2)

psij—processing time of operation Oij on machine h (3)

Xijh =

{
1 if operation Oij is assigned to machine h
0 otherwise

(4)

Yijhl =

{
1 if operation Oij is assigned to machine h on lth place
0 otherwise

(5)

Zijhl =

{
1 if operation Oij can be performed on machine h
0 otherwise

(6)

lh—number of assigned operation on hth machine (7)

eijh—completion time of operation Oij on hth machine (8)

Constraints of the mathematical model:
The process time can be defined only after assigning the operation Oij to the appropri-

ate machine from the subset Mij.

∑m
h=1 Xijh·pijh = psij ∀i, j (9)

Two or more operations of the same work order cannot be executed simultaneously.

tijh + psij ≤ ti(j+1) +
(

1− Xijh

)
·B ∀i, h, j = 1, . . . , ki − 1 (10)

The start time of each operation on the machine must follow after the end of the
execution of the previous operation on that machine.

Thl + psij ≤ Th(l+1) +
(

1− Yijhl

)
·B ∀i, j, h, l = 1, . . . , lh − 1 (11)

The beginning of each operation on the time axis must be simultaneous with the
beginning of the operation on the machine on which the operation is performed.

eijh − tijh = ∑k:Oij∈Mij

(
pijh·Xijh

)
∀i, j (12)

The difference between the end time and the start time of the operation Oij must be
equal to the execution time of the operation Oij (process time) on the machine Mh from the
subset Mij.

Thl ≤ tij +
(

1− Yijhl

)
·B Λ Thl +

(
1− Yijhl

)
·B ≥ tij ∀i, j, h, l (13)

Appl. Sci. 2023, 13, 11049 7 of 23

At maximum, one operation Oij can be performed on the lth place on the machine Mh
from the subset Mij.

∑n
i=1 ∑ki

j=1 Yijhl ≤ 1 ∀h, l (14)

One operation Oij can be assigned for execution-only on one machine Mh from the
subset Mij.

∑
|Mij|
h=1 Xijh = 1 ∀i, j (15)

One operation Oij can be performed only once on an assigned machine Mh from the
subset Mij.

∑lh
l=1 Yijhl = Xijh ∀i, j, h (16)

Determining the subset of machines Mij on which operation Oij can be performed

Yijhl < Zijhl ∀i, j, h (17)

For each variable parameter, the following constraints are applied:

tijh, psijh, Thl, lh, eijh ≥ 0 (18)

The objective function of the mathematical model embodies the optimization crite-
ria. In the instance discussed in this study, the objective is to simultaneously minimize
makespan and maximize revenues. In the current literature, such cases are not discussed
enough. This goal consists of two opposite goals for the observed company model. One
company in the production shop has, as mentioned, m machines. The operational costs of
the machines are not the same. From costing analysis or analytical bookkeeping, the exact
operational costs of every machine can be calculated. For example, if the execution time
of one operation is 30 min, and suppose that on every machine that time is the same, the
cost of execution on a machine M1 will be 30·K1 = 0.5 hour·20 €

hour = 10 €, and on machine
M3 it will be 30·K3 = 0.5 hour·15 €

hour = 7.5 €. In real systems, the execution time for the
same operation on a different machine is not the same, because even if the machine belongs
to the same subset of machines Mij, their technical and technological characteristics are
different. With this in mind, it must be considered that one operation can be performed
on several appropriate machines that belong to a subset of machines Mij and the time for
execution on every machine from the subset must be calculated as the input value of the
model, as mentioned previously. Kh constants (used in the above example), representing
the operational cost of machine/per time unit, are defined.

This problem could be considered as multi-criteria optimization, with two criteria:
first to minimize the makespan and then to maximize earnings. Bagchi [28] and Rao [11]
presented the methods for solving multi-criteria optimization problems; accordingly, in
this case, the method of objective weighting should be adopted. Nevertheless, this creates
new issues. The weight vector controls the optimal solution, posing a decision problem
itself. Mathematically, a solution obtained with equal weights to all objectives may offer
the least objective conflict. However, since the real working conditions often demand a
more satisfactory solution, priority information must be induced from the decision-maker
to form the objective [28].

In this paper, the authors presented a solution for this optimization problem that
introduces the term relative makespan. It is clear that the time of completion of the last
operation of the ith work order is, in fact, the time of the end of the ith work order, so using
the already accepted notation C in the literature for the makespan of the ith work order can
be written:

Ci = ti1h + ∑ki
j=1

(
Vijh + psij

)
(19)

Appl. Sci. 2023, 13, 11049 8 of 23

where except Vijh, which is the waiting time of the jth operation of the ith work order at the
position l, other members of (19) are previously defined. In the observed model, the time of
waiting is not considered, so Equation (19) can be written as

Ci = ti1h + ∑ki
j=1 psij (20)

The objective to minimize makespan can be written as

min
[
max

(
C1p, C2p, ..., Cnp

)]
(21)

where p = 1, . . ., and b and b are the total numbers of acceptable operations schedules.
Earnings are at a maximum when costs are at a minimum. So, to have maximum

earning, costs should be at a minimum or below some value that guarantees survival on
the market, and that value is the average cost production time unit. The average cost of
one hour (or other time units) in the company which sell a service can be calculated as:

Ka =
R1·K1 + R2·K2+...+Rm·Km

R1 + R2 + . . . + Rn

where Rh h = 1,. . ., m is the total number of working hours for the machine Mh in some
period (usually in real systems, that period is from 3 to 6 months), Kh h = 1,. . ., and m is
the machine Mh cost per time unit. Ka means that if every work order has an average cost
per time unit below or equal to the value of Ka, the earnings are at the maximum possible
because the costs are paid, and the selling price is determined by management. Now, for
every work order, the average cost can be calculated as:

Ki = ti1h·Kh + ∑ki
j=1 psij·Kh (22)

and (18) can be written as

CRi = ti1h + ∑ki
j=1 psij Λ Ki ≤ Ka (23)

The objective to minimize relative makespan can be written as

min
[
max

(
CR1p, CR2p, ..., CRnp

)]
(24)

Relative makespan represents makespan when the cost of production is at an average
value. It also means that an acceptable schedule of operations must satisfy the condition
Ki ≤ Ka, which will be implemented by generating the initial population and through
genetic operators.

3.3. Definition of GA-Related Terms in the Context of the Observed Model

A gene in the observed model is the primary carrier of information, i.e., operations.
The operation contains the following information:

(i) Affiliation to work order (index i in Oij);
(ii) Sequence of operation Oij in ith work order (index j in Oij);
(iii) The machine Mh on which operation Oij is performed;
(iv) tijh the start time of operation Oij on machine h;
(v) psij processing time of operation Oij on machine h.

A chromosome is represented by a combination of genes, which constitutes an accept-
able solution. In the model observed, this would be an acceptable schedule of operations.

3.4. Flow Chart of the Proposed GA

A GA is applied to solve the scheduling problem, as shown in Figure 1, and the
pseudo-code is given below (Algorithm 1).

Appl. Sci. 2023, 13, 11049 9 of 23

Algorithm 1 Pseudo-code of GA applied to solve the scheduling problem

Start
Enter the input parameters
Create Initial population

Calculate the fitness of individuals of the first generation
Generation = 1

Repeat
Selection of parents
Children = 0

Repeat
Pick of two parents for a crossover (Parent1, Parent2)
Crossover DPPX (Parent1, Parent2)
Mutation
Children = Children + 1

Until Children = population size-total number of parents
Generation = Generation + 1
Calculate the fitness of individuals for the current generation

Show Gantt chart of the best schedule of the current generation
Until generation = total number of generations

End.

The first step is to load the input data, which is read from the matrix record, and
the rest are entered by the user (population size, the total number of parents, mutation
probability and the total number of generations). After loading, the input execution of the
GA begins.

3.5. Initial Population

The initial population is formed by defining the operations’ schedule as an integer
array over the numbers of work orders. The members of the integer array are the numbers
of work orders from number 1 to number n. The array members are selected randomly,
taking into account the number of operations in each work order. The integer array has as
many members with the same number (the work order number) as that work order has
operations. The machine is also selected randomly for each operation from a subset of
machines where that operation can be performed.

3.6. Fitness Calculation

The arrays MachineTime, OperationTime, and EndTimeOij form the basis of the imple-
mented algorithm for fitness calculation and the Gantt chart’s formation, i.e., introducing
the time axis. Also, within this procedure, chromosome decoding is performed. The
MachineTime array represents the execution time of operations on machines, the Oper-
ationTime array represents the execution time of operations within one work order, and
EndTimeOij the time of completion of the operation Oij on the machine h. The number
of members of these arrays is defined by the number of operations in the schedule. In
the fitness calculation array, Kij is also formed, which represents the average costs of an
acceptable schedule of operations. The algorithm for forming the time axis is as follows:

Appl. Sci. 2023, 13, 11049 10 of 23Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 24

Figure 1. Flow chart of proposed GA. Figure 1. Flow chart of proposed GA.

Appl. Sci. 2023, 13, 11049 11 of 23

The remaining variables and the limitations defined by the mathematical model are
introduced in the fitness process. Most importantly, by finding the maximum of the array
EndTimeOij, the observed schedule’s fitness is obtained. It is now necessary to determine
the best schedule of the current generation of individuals, which is determined by finding
the schedule with minimum fitness from the current population, and its ordinal number
is placed in the variable TopSchedule. This variable determines the best individual from
the current population and thus implements the goal function defined by Equation (24) of
the mathematical model. However, it should be noted that Equation (24) of the mathemat-
ical model is not implemented only in the first generation. Instead, the Equation (21) is
implemented because after the application of crossover operator Differential Precedence
Preservative Crossover—(DPPX), the only schedule which satisfies the condition Ki ≤ Ka
will be transferred to the next generation, thus implementing the goal function of relative
makespan defined by Equation (24) for every other generation except the first generation.

3.7. Selection of Parents

By comparing their fitness, this section of the GA decides which individuals or sched-
ules are eligible to become parents. These individuals, i.e., those with lower execution
times, should be parents. The comparison is repeated until the user-specified number of
iterations indicated by the size of the parent set is reached. All individuals are initialized
prior to comparing the fitness of the present population members. They are neither parents
nor children, having acquired these characteristics from the preceding generation.

3.8. Crossover Operator DPPX

The goal of reproduction is to create new, preferably better individuals or create a new
generation of individuals. For this purpose, the GA uses a genetic operator of crossing
individuals or crossover. The first step is to choose two parents from a determined set of
parents during the parents’ selection. In this algorithm, two parents are chosen randomly.
The only condition is that the parents cannot be the same individuals.

Xie and Chen [29] gave an overview of crossover operators used in flexible job shop
problems, particularly the problems necessary to preserve the sequence of operations or
previous relations because the schedule is predefined for each work order.

In this paper, the uniform precedence preservative crossover (PPX) operator was cho-
sen as a crossover operator. Bierwirth [30] defined the PPX operator as a sequencing genetic
crossover operator. Sequencing operators only change the sequence of the operations in
the parent chromosomes, i.e., the assignment of operations to machines is preserved in the
offspring. In this paper, a new modified PPX operator called DPPX usage will be presented,
which introduces a fitness comparison between parents and the newly created individual
in a crossover process as a first modification. As the problem in this paper is set so that
one operation can be performed on multiple machines, another modification of the PPX
operator was introduced in order to check for each operation if the machine is a member of
a machine subset intended to execute the given operation.

The third modification is a condition that schedules can be transferred in the next
generation only if their average production cost satisfies the condition given in Equation (22)
of the mathematical model. An overview of the PPX operator will be given in the following
example (Table 1).

The first step in the PPX operator algorithm is to form an array S (or a vector, as some
authors call it) consisting of the digits 1 (first parent) and 2 (second parent) by random
selection. This sequence defines the order in which genes are drawn from both parents. The
number of members of the sequence is equal to the number of genes in the chromosome. If
the member of the sequence S is number 1, then, going from left to right, the first gene of
parent one is taken into the new individual, and it is deleted from both the first and second
parent (going from left to right). If the member array S is number 2, the same procedure
is repeated for the second parent. The procedure is repeated as long as there are genes in
parents one and two. Table 2 shows the PPX operator’s operation after the fourth iteration

Appl. Sci. 2023, 13, 11049 12 of 23

and Table 3 at the end of the crossover process. The PPX operator is applied only to the
part of the chromosome in the second row or to the operation sequence. As defined, it
cannot be applied to the part of the chromosome that refers to machines, since it can lose
the predetermined machine subset where an operation is performed. PPX is based on the
exchange of genes between two parents while keeping the operations schedule within one
work order, but not the machines on which this operation is performed.

Table 1. Example of two individuals for crossover.

Parent Order of Operations

Parent 1 O11 O12 O21 O32 O22 O13 O14 O23 O24

Operation 1 1 2 3 2 1 1 2 2

Machine 1 3 1 1 5 6 8 7 9

Parent 2 O21 O11 O31 O32 O22 O12 O33 O23 O24

Operation 2 1 3 3 2 1 3 2 2

Machine 1 1 1 4 4 2 7 8 3

Table 2. Overview of PPX crossover operator 4th iteration.

Crossover Process after 4th Iteration

S array 2 1 1 2 2 2 1 1 2 1 2 1 1

Parent 1 O11 O12 O21 O32 O22 O13 O14 O23 O24 O32 O33 O25 O34

Operation 2 1 1 2 2 3 3 2 3

Machine 5 6 8 7 9 4 6 8 4

Parent 2 O21 O11 O31 O32 O22 O12 O33 O23 O24 O34 O13 O14 O25

Operation 3 2 3 2 2 3 1 1 2

Machine 4 4 7 8 3 9 9 6 8

Child O21 O11 O12 O31

Operation 2 1 1 3

Machine 1 1 3 1

Table 3. Overview of PPX crossover operator final phase.

Crossover Process Finished

Child O21 O11 O12 O31 O32 O22 O33 O13 O14 O23 O24 O25 O34

Operation 2 1 1 3 3 2 3 1 1 2 2 2 3

Machine 1 1 3 1 4 4 7 6 8 7 9 8 4

Tables 2 and 3 clearly show that after applying the PPX operator, a new individual
was created in which the final order of operations within the work orders was preserved.
However, as the PPX operator keeps the machine on when the operation is performed, as it
was selected during the formation of the initial population, it may happen that there is a
better individual, that is, a schedule of operations with a better makespan, where certain
operations are performed on other machines. The PPX operator in this form would be
appropriate if any operation can be performed on any machine. However, this is a rare
case in practice and represents only a particular case of this paper’s observed model. The
DPPX operator, after every iteration, checks whether the operation or withdrawn gene can
be performed on the other machines from the defined subset of machines with a lower

Appl. Sci. 2023, 13, 11049 13 of 23

execution time, having in mind its place in the child’s chromosome. In the event of a
positive result, it randomly selects a new machine from the appropriate subset of machines
with a lower execution time and then reads the new execution time, which is entered with
the machine in the chromosome of the new operation schedule.

The reason for the first modification lies in the fact that the number of possible opera-
tion schedules is equal to the number of permutations with repetitions and that all these
schedules are acceptable from the point of view of the order of operations within work
orders. As the machines on which the operations are performed are selected randomly, then
the number of acceptable solutions is much higher, taking into account the arrangement of
machines and that the number of GA iterations leading to the convergence of solutions is
extensive as well the time of execution of the GA.

Instead of passing on every newly born individual to the next generation, a new crossover
is performed regardless of whether it fits better than its parents do. An individual is passed
on to the next generation only under the condition that its fitness is greater than or equal to
one of the parents’ fitness, i.e., only if the newly formed individual is better than one of both
parents in its characteristics. If the probability is less than 50%, individuals’ transfer to the
new generation is carried out without comparison, and there is no rejection. If the probability
is greater than 50%, the individual worse than both parents is rejected. In this way, the next
generation’s diversity is maintained (because not only the best individuals are transferred
to the next generation, and at the same time, the number of iterations and execution time of
the GA is significantly reduced). Also, it may happen that the new individual with the new
machines is worse than the parents, but as previously described, it will only be discarded if it
is worse than both parents. Finally, before transferring the newly formed individual to the
next generation, the average cost is checked. If condition Ki ≤ Ka is not satisfied, a newly
formed individual is rejected. The DPPX crossover operator defined in this way turns the GA
presented in this paper into a semi-elitist one, the effectiveness of which will be presented
in detail in the part of the paper related to the experimental results. The pseudo-code of the
DPPX is shown below (Algorithm 2).

Algorithm 2 Pseudo-code of the DPPX

Start (Parent1-first parent, Parent2-second parent)
Set I = 0
While Parent (Schedules (I)) = true or Child (Schedules (I)) = true then I = I + 1
Parent = Schedules (I)
CParent1 = Schedule (Parent1)
CParent2 = Schedule (Parent2)
SParent = array of integer
Used1 = array of integer
Used2 = array of integer
Repeat

for J = 1 to TNO steps of 1
SParent(J) = Random number (1,2)

Used1(I) = 1
Used2(I) = 1

Next J

for J = 1 to the Total number of operations in steps of 1
If Parent (J) = 1 Then
Counter = 1
While Used1 (Counter) = 0 do increase Counter by 1
IOp1 = 0
Parent (Schedule (J)) = CParent1 (Schedule (Counter))

Appl. Sci. 2023, 13, 11049 14 of 23

Algorithm 2 Cont.

for InOp = 1 to j in steps of 1
If Parent (Schedule (InOp)) = CParent1 (Schedule (Counter))

Then IOP1 = IOP1 + 1
Next InOp

If the Check Machine (CParent1 (Schedule (Counter)), IOP1, CParent1 (Machine (Counter)) true
Then
SpecifyMachine (CParent1 (Schedule (Pos.)), IOP1)
Otherwise Parent (Machine (J)) = CParent1 (Machine (Counter))
Parent (TimeEx (J)) = ReadTimeEx (CParent1 (Schedule (Counter)), IOP1, CParent1 (Machine (J))
Delete withdrawn gene from parent 1 Used1 (Counter)) = 0
Position = 0

Repeat
Position = Position + 1
Until CParent2 (Schedule (Position)) = Parent (Schedule (J)) and Used2 (Position) <> 0
Used2 (Position) = 0

If Parent (J) = 2 Then
Counter = 1
While Used2 (Counter) = 0 do increase Counter by 1
IOp2 = 0
Parent (Schedule (J)) = CParent2 (Schedule (Counter))

for InOp = 1 to j in steps of 1
If Parent (Schedule (InOp)) = CParent2 (Schedule (Counter))

Then IOP2 = IOP2 + 1
Next InOp

If the Check Machine (CParent2(Schedule (Counter)), IOP2, CParent2 (Machine (Counter)) true
Then
SpecifyMachine (CParent2(Schedule (Counter)), IOP1)
Otherwise PARENT (Machine (J)) = CParent2 (Machine (Counter))

Parent (TimeEx (J)) = ReadTimeEx (CParent2 (Schedule (Counter)), IOP2, CParent2 (Machine (J))
Delete withdrawn gene from parent 2 Used2 (Counter)) = 0
Position = 0

Repeat
Position = Position + 1
Until CParent1 (Schedule (Position)) = Parent (Schedule (J)) and Used1 (Position) <> 0
Used1(Position) = 0

Next J

Until ((the fitness of the new individual < from the fitness of the first parent) or (the fitness of the
new individual < from the fitness of the second parent) and the probability is greater than 50%)
and Ki ≤ Ka

End DPPX

3.9. Mutation Operator

A swap mutation operator, slightly modified due to the necessity to check the machine,
is chosen in this model. The position of genes is randomly chosen. If these genes are the
same, then the mutation does not make sense (the same individual was obtained) because
the operation schedule must be preserved—operation O34, which was in the 10th position
when moved to the third position, becomes O31. On the other hand, if the genes are not

Appl. Sci. 2023, 13, 11049 15 of 23

the same or do not belong to the same work order, the mutation makes sense because then
operation O23 becomes O33 and operation O32 becomes O22.

It is necessary to check the machine for each gene in a new individual and assign a
new one from the appropriate subset if necessary. Since the sequence of operations must be
preserved within the work order, the genes to be included in the mutation are colored blue
in Table 4, because although the same gene distribution remains 2-1-3 between the fourth
and eighth positions of the mutated genes, they are not the same operations because the
order in the work order has changed.

Table 4. Swap mutation operator.

Individual before the Mutation

Individual O21 O11 O31 O32 O22 O12 O33 O23 O24 O34 O13 O14 O25
Operation 2 1 3 3 2 1 3 2 2 3 1 1 2
Machine 1 1 1 4 4 2 7 8 3 9 9 6 8

Individual after the Mutation

Individual O21 O11 O31 O22 O23 O12 O32 O33 O24 O34 O13 O14 O25
Operation 2 1 3 2 2 1 3 2 2 3 1 1 2
Machine 1 1 1 4 6 2 4 7 3 9 9 6 8

4. Presentation of the Independent Software Solution and Experimental Results
4.1. Application of the Developed Solution

The application in which the previously presented solution is implemented is written
in the object-oriented programming language Delphi 10.4. A database, i.e., a table with
an example used to execute the application and display experimental results, was created
in Microsoft Access 2016, and it consists of one specific table. The user can change the
table, entering new work orders, operations, and times so that it is possible to test the
displayed solutions for different data. Also, it is possible to increase or decrease the number
of machines in the database. The table is arranged to correspond to the matrix record of
operations shown in part 2 of this paper. Table 5 shows an example of a top relational
database table containing data for application execution.

Table 5. Input data for application execution.

RnIndeks OIndeks M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

1 1 10 0 0 0 0 0 0 0 0 0

1 2 0 11 14 0 0 0 0 0 0 0

1 3 0 5 12 17 0 7 0 0 0 0

1 4 0 0 0 36 27 40 36 12 22 0

2 1 11 0 0 0 0 0 0 0 0 0

2 2 0 0 0 8 8 0 0 0 0 0

2 3 0 8 7 3 0 8 9 10 0 0

2 4 0 3 3 9 0 0 0 11 17 0

2 5 0 8 6 0 0 0 0 0 0 0

3 1 5 0 0 0 0 0 0 0 0 0

3 2 0 3 5 11 0 0 0 0 0 0

3 3 0 9 3 0 5 3 14 0 0 0

3 4 0 5 6 8 10 11 15 0 9 0

3 5 0 3 5 12 7 8 20 0 0 0

Appl. Sci. 2023, 13, 11049 16 of 23

Table 5. Cont.

RnIndeks OIndeks M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

4 1 25 11 45 33 0 0 0 32 11 0

4 2 16 0 0 25 22 33 28 0 0 0

4 3 0 36 25 0 0 36 25 57 10 0

4 4 0 0 25 30 35 40 0 0 0 0

4 5 15 0 26 29 32 35 25 23 24 0

0 0 0

There are four work orders in the table; the first has four operations, and the others have
five operations. The first column represents the work order number (RIndex), i.e., the work
order index, and the second column represents the operation index (OIndex) within the work
order. The following columns represent machines, and the execution time of that operation is
in the intersection of the corresponding column of the machine and operation if it is predicted
that the operation will be performed on that machine if the execution time is not 0. Execution
times are given in minutes in this table. In this stage of the present research, execution times
are intended to be entered in minutes, while the option of entering them in other time units
will be provided in the future upgrade of the application. The table can be easily modified to
expand with new machines and new operations. Each machine’s operation cost per unit time
is known and has been previously read from the appropriate database.

It should be noted that the total number of machines and the total number of operations
that the user can modify must correspond to the number of machines and the number of
operations located in the input data set.

4.2. Experimental Testing of Proposed GA

The purpose of this research was to create a helpful tool for SMEs to use in everyday
business and decision-making focused on the FJSP. The basis of this tool is the proposed GA,
and it was necessary to test it on existing problem instances from the available literature
and compare its effectiveness with existing solutions. A large number of problem instances
can be found in the available literature (http://www.idsia.ch/monaldo/fjsp.html, accessed
on: 15 February 2023). For experimental testing, the data set defined by Brandimarte [31]
was chosen, which consisted of 10 problems with the number of working orders ranging
from 10 to 20, the number of machines between 4 and 15, and the number of operations for
each working order ranging from 5 to 15. RMGA was tested on 2.20 GHz PC with 8 GB
of memory.

For experimental testing, the application used the test data stored in txt files, as shown
in Figure 2. In the upper right corner of the application, there is a list of.txt files, each of
which represents an instance of a problem. The classic PPX crossover operator and the
DPPX crossover operator were both used to test each of the problem situations.

In order to carry out our experiment, authors tested the algorithm with the following
parameters:

• Population size: 400;
• Number of parents 30% of population size: 120;
• Mutation probability: 5%;
• Number of generations: 150.

The effectiveness of the proposed algorithm is compared with the existing algorithms
of older dates from the available literature, like M&G Mastrolilli and Gambardella [32],
GENACE Ho and Tay [33], Pezzela et al. [34], and Zhang et al. [35], and with the existing
algorithms of newer dates such as Hybrid Genetic Tabu Search (HGTS) defined by Palacios
et al. [36] and Driss et al. [37] and Teaching–Learning-Based Optimization (TLBO) proposed
by Buddala et al. [38] and Kong et al. [24]. In order to obtain meaningful results, the authors

http://www.idsia.ch/monaldo/fjsp.html

Appl. Sci. 2023, 13, 11049 17 of 23

performed optimization five times for each instance. Table 6 shows the experimental results
compared to the previously mentioned algorithms.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 24

Figure 2. Initial form of application for experimental testing.

The first column reports the instance name, and the second column reports the num-
ber of machines and number of working orders for each instance, where m is the number
of machines and n is the number of working orders. The third column reports the best-
known lower bound, which was taken from Buddala et al. [38] and Driss et al. [37]. It
should be noted that the best lower bound for the Mk01 problem instance is taken from
Driss et al. [37]. From the fourth to the eleventh columns are the best results of the previ-
ously mentioned algorithms. The twelfth column shows the results of executing our algo-
rithm named Relative Makespan GA (RMGA) with the classic PPX crossover, and the thir-
teenth shows the results of executing with the DPPX crossover.

Table 7 shows the deviation of RMGA results in relation to the best lower bound (the
third column from Table 6). The deviation was calculated according to the formula (CM-
CMRMGA)/CM in %, where CM is the best-achieved makespan of other GAs and
CMRMGA is the best-achieved makespan with RMGA. The experimental results and de-
viation calculation show that RMGA achieves quite good (and in some cases excellent)
results when the average number of machines per work order is less than or equal to two
(instances Mk01, Mk03, Mk05, and Mk08). Its efficiency is significantly lower when the
average number of machines is greater than two (instances Mk02, Mk06, Mk07, Mk09, and
Mk10) compared to other GAs (the average number of machines is the third number in
first row of every txt file from Brandimarte’s problem instances).

This is a consequence of using the DPPX sequential genetic operator, which, despite
modifications compared to the classic PPX operator (where the deviations compared to
the best lower limit are greater, proving the effectiveness of the DPPX operator), cannot
ensure a sufficient degree of crossing between individuals. There is a need to change in-
dividuals “more” in order to achieve a better makespan, and this can be accomplished by
increasing the mutation rate [39], because a mutation usually corresponds to the genera-
tion of a neighbor in some neighborhood if permutation coding is used. In this case, the
mutation rate denotes the probability of applying a mutation to the current individual,
and in these cases, the mutation rate is typically much larger than the five percent used in
a first series of experiments.

Table 6. Experimental results of GA execution and comparison with other GAs.

Figure 2. Initial form of application for experimental testing.

Table 6. Experimental results of GA execution and comparison with other GAs.

Problem
Instance

n ×m
BS M & G GENACE Pezzella

et al. [34]
Zhang

et al. [35] HGTS Driss
et al. [37] TLBO DIGWO RMGA

(PPX)
RMGA
(DPPX)

Cm Cm Cm Cm Cm Cm Cm Cm Cm Cm CR

Mk01 10 × 6 37 40 40 40 40 40 37 40 40 38 38

Mk02 10 × 6 26 26 32 26 26 26 26 28 26 34 33

Mk03 15 × 8 204 204 N/A 204 204 204 204 204 204 199 191

Mk04 15 × 8 60 60 67 60 60 60 60 63 60 62 61

Mk05 15 × 4 172 173 176 173 173 172 173 172 173 173 172

Mk06 10 × 15 57 58 67 63 58 57 67 65 62 71 60

Mk07 20 × 5 139 144 147 139 144 139 148 144 140 168 158

Mk08 20 × 10 523 523 523 523 523 523 523 523 523 506 494

Mk09 20 × 10 307 320 320 311 307 307 307 311 307 356 344

Mk10 20 ×15 189 229 229 212 198 198 212 214 211 326 316

The first column reports the instance name, and the second column reports the number
of machines and number of working orders for each instance, where m is the number of
machines and n is the number of working orders. The third column reports the best-known
lower bound, which was taken from Buddala et al. [38] and Driss et al. [37]. It should
be noted that the best lower bound for the Mk01 problem instance is taken from Driss
et al. [37]. From the fourth to the eleventh columns are the best results of the previously
mentioned algorithms. The twelfth column shows the results of executing our algorithm
named Relative Makespan GA (RMGA) with the classic PPX crossover, and the thirteenth
shows the results of executing with the DPPX crossover.

Table 7 shows the deviation of RMGA results in relation to the best lower bound
(the third column from Table 6). The deviation was calculated according to the formula
(CM-CMRMGA)/CM in %, where CM is the best-achieved makespan of other GAs and
CMRMGA is the best-achieved makespan with RMGA. The experimental results and
deviation calculation show that RMGA achieves quite good (and in some cases excellent)
results when the average number of machines per work order is less than or equal to two
(instances Mk01, Mk03, Mk05, and Mk08). Its efficiency is significantly lower when the
average number of machines is greater than two (instances Mk02, Mk06, Mk07, Mk09, and

Appl. Sci. 2023, 13, 11049 18 of 23

Mk10) compared to other GAs (the average number of machines is the third number in first
row of every txt file from Brandimarte’s problem instances).

Table 7. Deviation of RMGA experimental results compared to best-known lower bound.

Problem Instance n ×m
BS RMGA (PPX) RMGA (DPPX) RMGA (PPX) RMGA (DPPX)

Cm Cm CR Deviation Deviation

Mk01 10 × 6 37 38 38 −2.70% −2.70%

Mk02 10 × 6 26 34 33 −30.77% −26.92%

Mk03 15 × 8 204 199 191 2.45% 6.37%

Mk04 15 × 8 60 62 61 −3.33% −1.67%

Mk05 15 × 4 172 173 172 −0.58% 0.00%

Mk06 10 × 15 57 71 70 −24.56% −22.81%

Mk07 20 × 5 139 168 158 −20.86% −13.67%

Mk08 20 × 10 523 506 494 3.25% 5.54%

Mk09 20 × 10 307 356 344 −15.96% −12.05%

Mk10 20 ×15 189 326 316 −72.49% −67.20%

This is a consequence of using the DPPX sequential genetic operator, which, despite
modifications compared to the classic PPX operator (where the deviations compared to the
best lower limit are greater, proving the effectiveness of the DPPX operator), cannot ensure
a sufficient degree of crossing between individuals. There is a need to change individuals
“more” in order to achieve a better makespan, and this can be accomplished by increasing
the mutation rate [39], because a mutation usually corresponds to the generation of a
neighbor in some neighborhood if permutation coding is used. In this case, the mutation
rate denotes the probability of applying a mutation to the current individual, and in these
cases, the mutation rate is typically much larger than the five percent used in a first series
of experiments.

The authors performed another test of the presented algorithm five times for every
instance where the negative deviation was greater than three percent and tested different
values of the algorithm parameters. The experimental results show that the following
parameters are the most effective:

Small- and medium-scale problems (up to 100 operations on five machines):

• Population size: 250;
• Number of parents 40% of population size: 100;
• Mutation probability: 50%;
• Number of generations: 150.
• Large-scale problems (up to 240 operations on 15 machines):
• Population size: 500;
• Number of parents 50% of population size: 250;
• Mutation probability: 50%;
• Number of generations: 600.

The results of the second series of experiments are shown in Table 8.
The results of both series of experiments clearly show that RMGA is very effective on

small- and medium-scale problems, and its effectiveness decreases slightly with large-scale
problems. In seven of the ten instance problems considered, RMGA outperforms the best-
known lower bound. For small- and medium-scale problems, the speed of RGMA execution
was 10–20 s, but for large-scale problems, the speed was much higher, also because the
application simultaneously creates Gantt charts and graphically displays the convergence
of GA solutions in real time. In order to accurately determine the execution speed of RMGA,
it is necessary to test only the algorithm itself without graphical representations of solution
convergence or Gantt charts. Speed measurement and speed improvement of the RMGA
will be part of future research.

Appl. Sci. 2023, 13, 11049 19 of 23

Table 8. Results of the second series of experiments.

Problem Instance n ×m
BS RMGA (DPPX) AC RMGA (DPPX)

Cm CR KI Deviation

Mk02 10 × 6 26 23 17.45 11.54%

Mk06 10 × 15 57 62 18.46 −8.77%

Mk07 20 × 5 139 125 17.43 10.07%

Mk09 20 × 10 307 308 18.37 −0.33%

Mk10 20 × 15 189 223 18.52 −17.99%

Figures 3 and 4 show Gantt charts and a graphical representation of the RMGA solution
with the parameters used for problem instances Mk01 and Mk07. Taking into account the
experimental results, it is clear that RMGA achieves very good results compared to other
algorithms, primarily due to the application of the DPPX operator and a higher probability
of mutation.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 24

Mk06 10 × 15 57 62 18.46 −8.77%
Mk07 20 × 5 139 125 17.43 10.07%
Mk09 20 × 10 307 308 18.37 −0.33%
Mk10 20 ×15 189 223 18.52 −17.99%

The results of both series of experiments clearly show that RMGA is very effective on
small- and medium-scale problems, and its effectiveness decreases slightly with large-
scale problems. In seven of the ten instance problems considered, RMGA outperforms the
best-known lower bound. For small- and medium-scale problems, the speed of RGMA
execution was 10–20 s, but for large-scale problems, the speed was much higher, also be-
cause the application simultaneously creates Gantt charts and graphically displays the
convergence of GA solutions in real time. In order to accurately determine the execution
speed of RMGA, it is necessary to test only the algorithm itself without graphical repre-
sentations of solution convergence or Gantt charts. Speed measurement and speed im-
provement of the RMGA will be part of future research.

Figures 3 and 4 show Gantt charts and a graphical representation of the RMGA solu-
tion with the parameters used for problem instances Mk01 and Mk07. Taking into account
the experimental results, it is clear that RMGA achieves very good results compared to
other algorithms, primarily due to the application of the DPPX operator and a higher
probability of mutation.

Figure 3. Gantt chart for problem instance Mk07. Figure 3. Gantt chart for problem instance Mk07.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 24

Figure 4. Gantt chart for problem instance Mk01.

By changing the numbers in Table 9, the lower limit of the average hourly cost of
operations scheduling can be lowered or raised. This informs the decision-maker how
much it will cost the SME to create that operation schedule.

Table 9. Example of average cost per hour for every machine.

Machine 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Average cost per hour 15 16 18 20 18 19 21 22 21 16 17 18 19 15 20

To show the influence of Ka on makespan, the authors conducted another series of
experiments on instances Mk04, Mk08, and Mk09 that were randomly selected. In these
experiments, the authors removed condition Ki ≤ Ka from DPPX crossover and ran the
algorithm under the following parameters:
• Population size: 400;
• Number of parents 30% of population size: 120;
• Mutation probability: 50%;
• Number of generations: 100.

The results are shown in Table 10.

Table 10. Influence of average hour cost on behavior of RMGA.

Problem In-
stance n × m

BS RMGA with Ki ≤
Ka

RMGA without Ki ≤
Ka AC AC

Cm CR CM with Ki ≤ Ka without Ki ≤ Ka
Mk04 15 × 8 60 61 49 18.50 18.71
Mk08 20 × 10 523 494 412 17.25 18.31
Mk09 20 × 10 307 308 304 18.37 18.52

From the experimental results, it is clearly seen that the makespan decreases com-
pared to the best-known result, but the production costs increase and exceed the average
price of 18 monetary units per hour that was entered as an input parameter. It is clear that
the condition Ki ≤ Ka is necessary in the algorithm since it gives the decision-maker the
opportunity to plan production in accordance with the best possible capacity utilization
in the time frame but also with real production costs. It is clear that if the costs of each

Figure 4. Gantt chart for problem instance Mk01.

Appl. Sci. 2023, 13, 11049 20 of 23

By changing the numbers in Table 9, the lower limit of the average hourly cost of
operations scheduling can be lowered or raised. This informs the decision-maker how
much it will cost the SME to create that operation schedule.

Table 9. Example of average cost per hour for every machine.

Machine 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Average cost
per hour 15 16 18 20 18 19 21 22 21 16 17 18 19 15 20

To show the influence of Ka on makespan, the authors conducted another series of
experiments on instances Mk04, Mk08, and Mk09 that were randomly selected. In these
experiments, the authors removed condition Ki ≤ Ka from DPPX crossover and ran the
algorithm under the following parameters:

• Population size: 400;
• Number of parents 30% of population size: 120;
• Mutation probability: 50%;
• Number of generations: 100.

The results are shown in Table 10.

Table 10. Influence of average hour cost on behavior of RMGA.

Problem Instance n ×m
BS RMGA with

Ki ≤ Ka
RMGA without

Ki ≤ Ka AC AC

Cm CR CM with Ki ≤ Ka without Ki ≤ Ka

Mk04 15 × 8 60 61 49 18.50 18.71

Mk08 20 × 10 523 494 412 17.25 18.31

Mk09 20 × 10 307 308 304 18.37 18.52

From the experimental results, it is clearly seen that the makespan decreases compared
to the best-known result, but the production costs increase and exceed the average price
of 18 monetary units per hour that was entered as an input parameter. It is clear that
the condition Ki ≤ Ka is necessary in the algorithm since it gives the decision-maker the
opportunity to plan production in accordance with the best possible capacity utilization in
the time frame but also with real production costs. It is clear that if the costs of each machine
were identical, the relative makespan would not make sense, but in real production, this is
not the case, and the model and software solution presented in this paper can be a very
useful tool when planning production with cost control.

5. Discussion and Conclusions

In this paper, a novel optimization approach for resolving capacity planning diffi-
culties in SMEs is proposed. The approach is based on job shop scheduling for SMEs to
simultaneously minimize production time and maximize earnings, which is essential for
SMEs’ survival on the current market. The proposed approach, unlike most other models
in the literature, takes into account the average cost price of production per unit of time
and thus gives the possibility of determining the makespan when the production costs are
average, i.e., so that there is always a profit. If the cost price of the working hour of the
machine is not taken into account, it can happen that the makespan is minimal, but the
earnings are minimal or even in extreme cases non-existent, because most of the operations
in such a schedule are performed on machines whose working hour cost is high, and thus
do not provide financial resources for survival on the market.

Through a mathematical model, the offered model defines relative makespan in a
theoretical sense and demonstrates its practical applicability in the proposed software
solution. Through the idea of relative makespan, the model combines two contradictory
aims (minimize makespan and maximize profitability). It solves the P-FJSP issue, but it is

Appl. Sci. 2023, 13, 11049 21 of 23

also conceivable to solve the T-FJSP (Total Flexible Job Shop Problem) when any operation
may be performed on every machine by only modifying the matrix record input data. In
addition, the model is not confined to the production plant, since any machine may be
viewed as a workplace, and the model and software offered can address, without change,
the classic problem of labor scheduling in other vocations. In addition to optimizing
execution time, the proposed technique also optimizes the machine layout. It displays a
machine-oriented Gantt chart that serves as the foundation for production planning. In
contrast to the models in the published literature, the DPPX operator minimizes the number
of iterations and retains the variety of generations, hence limiting the convergence of GA to
the local optimum while simultaneously reducing GA execution time. The program may
also be used as a production planning tool completely independently of other commercial
software, making it an ideal alternative for small- and medium-sized enterprises.

However, the provided model has several drawbacks. The model excludes production
disturbances such as cancellation of manufacturing orders, equipment malfunction, and
urgent work orders. The inclusion of these limits might be one of the primary future
research priorities. In addition, there are no intermediary warehouses between the machines
in the provided model, thus waiting time and storage expenses are not accounted for. The
most common disruptions in production, such as a machine breakdown or an urgent
purchase order, do not greatly affect the practical applicability of the model. The proposed
model is flexible and allows variations on a daily basis. A break point on the timeline in the
operation schedule caused by, for example, a machine failure becomes the starting point of
a new operation schedule in which the defective machine is removed from the schedule
until it is repaired, so that the production process continues according to the newly formed
operation schedule. The lack of inter-operational warehouses, however, limits the practical
applicability of the proposed model in real conditions, since waiting time, transportation
time, and storage costs are not taken into account.

As one of the primary subjects of future study, the establishment of restricted interme-
diate warehouses would enable the implementation of the model and software solution
given to large organizations. The second most important goal of future research is testing
the proposed model in real conditions and testing its efficiency and effectiveness, as well
as further improving the algorithm based on the results obtained from the real-world
case study.

Author Contributions: Conceptualization, P.M. and M.E.; methodology, P.M. and A.D.; software,
P.M.; validation, S.P.S., E.S. and D.V.; formal analysis, M.S.; investigation, P.M.; resources, M.S.;
data curation, S.P.S.; writing—original draft preparation, A.D.; writing—review and editing, P.M.;
visualization, S.P.S.; supervision, M.E.; project administration, E.S.; funding acquisition, P.M., E.S.,
D.V., A.D. and M.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in
the study.

Data Availability Statement: The Delphi software solution data used to support the findings of this
study are available from the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Toptal, A.; Sabuncuoglu, I. Distributed scheduling: A review of concepts and applications. Int. J. Prod. Res. 2010, 48, 5235–5262.

[CrossRef]
2. Caballero-Morales, S.O. Innovation as recovery strategy for SMEs in emerging economies during the COVID-19 pandemic. Res.

Int. Bus. Financ. 2021, 57, 101396. [CrossRef]
3. Dai, M.; Tang, D.; Giret, A.; Salido, M.A. Multi-objective optimization for energy-efficient flexible job shop scheduling problem

with transportation constraints. Robot. Comput.-Integr. Manuf. 2019, 59, 143–157. [CrossRef]

https://doi.org/10.1080/00207540903121065
https://doi.org/10.1016/j.ribaf.2021.101396
https://doi.org/10.1016/j.rcim.2019.04.006

Appl. Sci. 2023, 13, 11049 22 of 23

4. Rauch, E.; Dallasega, P.; Matt, D.T. Sustainable production in emerging markets through Distributed Manufacturing Systems
(DMS). J. Clean. Prod. 2016, 135, 127–138. [CrossRef]

5. Gomes, M.C.; Barbosa-Povoa, A.P.; Novais, A.Q. Optimal scheduling for flexible job shop operation. Int. J. Prod. Res. 2005,
43, 2323–2353. [CrossRef]

6. Alotaibi, A.; Lohse, N.; Vu, T.M. Dynamic agent-based bi-objective robustness for tardiness and energy in a dynamic flexible job
shop. Procedia Cirp 2016, 57, 728–733. [CrossRef]

7. Dao, T.K.; Pan, T.S.; Pan, J.S. Parallel bat algorithm for optimizing makespan in job shop scheduling problems. J. Intell. Manuf.
2018, 29, 451–462. [CrossRef]

8. Mokhtari, H.; Hasani, A. An energy-efficient multi-objective optimization for flexible job-shop scheduling problem. Comput.
Chem. Eng. 2017, 104, 339–352. [CrossRef]

9. Zhang, J.; Ding, G.; Zou, Y.; Qin, S.; Fu, J. Review of job shop scheduling research and its new perspectives under Industry 4.0. J.
Intell. Manuf. 2019, 30, 1809–1830. [CrossRef]

10. Živković, M. Algoritmi; Mathematical Faculty: Belgrade, Serbia, 2000.
11. Rao, S.S. Engineering Optimization: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2019.
12. Amjad, M.K.; Butt, S.I.; Kousar, R.; Ahmad, R.; Agha, M.H.; Faping, Z.; Asgher, U. Recent research trends in genetic algorithm

based flexible job shop scheduling problems. Math. Probl. Eng. 2018, 2018, 9270802. [CrossRef]
13. Vital-Soto, A.; Baki, M.F.; Azab, A. A multi-objective mathematical model and evolutionary algorithm for the dual-resource

flexible job-shop scheduling problem with sequencing flexibility. Flex. Serv. Manuf. J. 2022, 35, 626–668. [CrossRef]
14. Güçdemir, H.; Selim, H. Integrating simulation modelling and multi criteria decision making for customer focused scheduling in

job shops. Simul. Model. Pract. Theory 2018, 88, 17–31. [CrossRef]
15. Meng, L.; Zhang, C.; Shao, X.; Ren, Y. MILP models for energy-aware flexible job shop scheduling problem. J. Clean. Prod. 2019,

210, 710–723. [CrossRef]
16. Zhang, Y.; Zhu, H.; Tang, D.; Zhou, T.; Gui, Y. Dynamic job shop scheduling based on deep reinforcement learning for multi-agent

manufacturing systems. Robot. Comput.-Integr. Manuf. 2022, 78, 102412. [CrossRef]
17. Wang, J.J.; Wang, L. A cooperative memetic algorithm with feedback for the energy-aware distributed flow-shops with flexible

assembly scheduling. Comput. Ind. Eng. 2022, 168, 108126. [CrossRef]
18. Shen, L.; Dauzère-Pérès, S.; Neufeld, J.S. Solving the flexible job shop scheduling problem with sequence-dependent setup times.

Eur. J. Oper. Res. 2018, 265, 503–516. [CrossRef]
19. Chaudhry, I.A.; Khan, A.A. A research survey: Review of flexible job shop scheduling techniques. Int. Trans. Oper. Res. 2016,

23, 551–591. [CrossRef]
20. Jiang, T.H.; Zhang, C. Adaptive discrete cat swarm optimisation algorithm for the flexible job shop problem. Int. J. Bio-Inspired

Comput. 2019, 13, 199–208. [CrossRef]
21. Yang, Y.; Huang, M.; Wang, Z.Y.; Zhu, Q.B. Robust scheduling based on extreme learning machine for bi-objective flexible

job-shop problems with machine breakdowns. Expert Syst. Appl. 2020, 158, 113545. [CrossRef]
22. Li, J.Q.; Du, Y.; Gao, K.Z.; Duan, P.Y.; Gong, D.W.; Pan, Q.K.; Suganthan, P.N. A hybrid iterated greedy algorithm for a crane

transportation flexible job shop problem. IEEE Trans. Autom. Sci. Eng. 2021, 19, 2153–2170. [CrossRef]
23. Türkyılmaz, A.; Senvar, O.; Ünal, İ.; Bulkan, S. A hybrid genetic algorithm based on a two-level hypervolume contribution

measure selection strategy for bi-objective flexible job shop problem. Comput. Oper. Res. 2022, 141, 105694. [CrossRef]
24. Kong, X.; Yao, Y.; Yang, W.; Yang, Z.; Su, J. Solving the Flexible Job Shop Scheduling Problem Using a Discrete Improved Grey

Wolf Optimization Algorithm. Machines 2022, 10, 1100. [CrossRef]
25. Stanković, A.; Petrović, G.; Ćojbašić, Ž.; Marković, D. An application of metaheuristic optimization algorithms for solving the

flexible job-shop scheduling problem. Oper. Res. Eng. Sci. Theory Appl. 2020, 3, 13–28. [CrossRef]
26. Vujčić, V.; Ašić, M.; Miličić, N. Matematičko Programiranje; Mathematical Institute: Belgrade, Serbia, 1980.
27. Ortíz-Barrios, M.; Petrillo, A.; De Felice, F.; Jaramillo-Rueda, N.; Jiménez-Delgado, G.; Borrero-López, L. A dispatching-fuzzy

AHP-TOPSIS model for scheduling flexible job-shop systems in industry 4.0 context. Appl. Sci. 2021, 11, 5107. [CrossRef]
28. Bagchi, T.P. Multiobjective Scheduling by Genetic Algorithms; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999.
29. Xie, N.; Chen, N. Flexible job shop scheduling problem with interval grey processing time. Appl. Soft Comput. 2018, 70, 513–524.

[CrossRef]
30. Bierwirth, C.; Mattfeld, D.C.; Kopfer, H. On permutation representations for scheduling problems. In Proceedings of the PPSN IV:

International Conference on Evolutionary Computation—The 4th International Conference on Parallel Problem Solving from
Nature, Berlin, Germany, 22–26 September 1996; pp. 310–318.

31. Brandimarte, P. Routing and scheduling in a flexible job shop by tabu search. Ann. Oper. Res. 1993, 41, 157–183. [CrossRef]
32. Mastrolilli, M.; Gambardella, L.M. Effective neighbourhood functions for the flexible job shop problem. J. Sched. 2000, 3, 3–20.

[CrossRef]
33. Ho, N.B.; Tay, J.C. GENACE: An efficient cultural algorithm for solving the flexible job-shop problem. In Proceedings of the

2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), Portland, OR, USA, 19–23 June 2004; Volume 2,
pp. 1759–1766.

34. Pezzella, F.; Morganti, G.; Ciaschetti, G. A genetic algorithm for the flexible job-shop scheduling problem. Comput. Oper. Res.
2008, 35, 3202–3212. [CrossRef]

https://doi.org/10.1016/j.jclepro.2016.06.106
https://doi.org/10.1080/00207540412331330101
https://doi.org/10.1016/j.procir.2016.11.126
https://doi.org/10.1007/s10845-015-1121-x
https://doi.org/10.1016/j.compchemeng.2017.05.004
https://doi.org/10.1007/s10845-017-1350-2
https://doi.org/10.1155/2018/9270802
https://doi.org/10.1007/s10696-022-09446-x
https://doi.org/10.1016/j.simpat.2018.08.001
https://doi.org/10.1016/j.jclepro.2018.11.021
https://doi.org/10.1016/j.rcim.2022.102412
https://doi.org/10.1016/j.cie.2022.108126
https://doi.org/10.1016/j.ejor.2017.08.021
https://doi.org/10.1111/itor.12199
https://doi.org/10.1504/IJBIC.2019.099186
https://doi.org/10.1016/j.eswa.2020.113545
https://doi.org/10.1109/TASE.2021.3062979
https://doi.org/10.1016/j.cor.2021.105694
https://doi.org/10.3390/machines10111100
https://doi.org/10.31181/oresta20303013s
https://doi.org/10.3390/app11115107
https://doi.org/10.1016/j.asoc.2018.06.004
https://doi.org/10.1007/BF02023073
https://doi.org/10.1002/(SICI)1099-1425(200001/02)3:1%3C3::AID-JOS32%3E3.0.CO;2-Y
https://doi.org/10.1016/j.cor.2007.02.014

Appl. Sci. 2023, 13, 11049 23 of 23

35. Zhang, G.; Gao, L.; Shi, Y. An effective genetic algorithm for the flexible job-shop scheduling problem. Expert Syst. Appl. 2011,
38, 3563–3573. [CrossRef]

36. Palacios, J.J.; González, M.A.; Vela, C.R.; González-Rodríguez, I.; Puente, J. Genetic tabu search for the fuzzy flexible job shop
problem. Comput. Oper. Res. 2015, 54, 74–89. [CrossRef]

37. Driss, I.; Mouss, K.N.; Laggoun, A. A new genetic algorithm for flexible job-shop scheduling problems. J. Mech. Sci. Technol. 2015,
29, 1273–1281. [CrossRef]

38. Buddala, R.; Mahapatra, S.S. An integrated approach for scheduling flexible job-shop using teaching–learning-based optimization
method. J. Ind. Eng. Int. 2019, 15, 181–192. [CrossRef]

39. Werner, F. Genetic Algorithms for Shop Scheduling Problems: A Survey; Fakultät für Mathematik, Otto-von-Guericke-Universität:
Magdeburg, Germany, 2011; Chapter 1; pp. 1–66.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.eswa.2010.08.145
https://doi.org/10.1016/j.cor.2014.08.023
https://doi.org/10.1007/s12206-015-0242-7
https://doi.org/10.1007/s40092-018-0280-8

	Introduction
	Literature Review
	Materials and Methods
	Definition of the Proposed Model for Machine Part Operations Optimal Scheduling in the Production Industry Processes
	Mathematical Formulation of the Proposed Model
	Definition of GA-Related Terms in the Context of the Observed Model
	Flow Chart of the Proposed GA
	Initial Population
	Fitness Calculation
	Selection of Parents
	Crossover Operator DPPX
	Mutation Operator

	Presentation of the Independent Software Solution and Experimental Results
	Application of the Developed Solution
	Experimental Testing of Proposed GA

	Discussion and Conclusions
	References

