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Buckling of the multistage hydraulic 
cylinders 
 
Buckling of multistage telescopic hydraulic cylinders (THC) is still a 
current research topic. The problem is particularly important for longer 
multistage THCs, where the cylinder dimensions with regard to the 
internal pressure of the hydraulic fluid are not enough to avoid the risk of 
buckling, and where failures occur in daily use. In the paper, the relevant 
scientific publications and discussed solutions are introduced together 
with a corresponding theory. Further, a new method for fast determination 
of critical buckling load of multistage THCs in practice is proposed, which 
is based on calculation of theoretical buckling force and the correction 
factor for encountering the clearance between adjacent cylinder stages. 
For verification of the proposed method, the comparison of the measured 
and calculated critical buckling forces of the real-life multistage THC is 
conducted and good agreement of the results is shown. 
 
Keywords: multistage hydraulic cylinders, buckling, analytical 
approach, measurements, individual telescopic stages, overall radial 
clearance. 
 

 
1. INTRODUCTION 
 

Buckling of multistage telescopic hydraulic cylinders 
(THC), consisting of several stages in form of round 
tubes of different diameters and filled with hydraulic 
fluid under pressure, is still a current research topic, as 
the phenomenon has not yet been fully investigated.  

The problem is particularly important for longer, 
multistage THCs, where the dimensions of the cylinder 
stages, calculated for the stresses caused by the internal 
pressure of the hydraulic fluid, are not large enough to 
avoid the risk of buckling due to the external compressive 
force, and where failures occur in daily use. 

In [1] and [2], examples of multistage THC failure in 
dump trucks are considered. In both cases, the buckling 
failure occurred with the THCs almost fully extended. 
The deformations caused by the elastic buckling resulted 
in local plasticization of the cylinder walls at the points 
of contact between the individual cylinder stages, which 
in turn led to the failure of the hydraulic seal between 
these cylinder stages and to the leakage of the pressurized 
hydraulic fluid. 

Multistage THCs can be supported in various ways, 
but in practice, pin and rigid supports at the ends of the 
cylinder are mainly used. The quality of the supports is 
also of great importance, as shown in the article by 
Ohtomo et al [3], where the discrepancies between 
calculations and measurements were established. 
Although the hydraulic cylinder was supported by pins, 
the friction between the pin and the bore had a significant 
effect on the measurement result, leading to a deviation 
of up to 80 % from the calculated values. The 
investigation also showed that the limiting buckling force 
of the multistage THCs is also significantly influenced by 

the type of mutual guidance of adjacent telescopic 
elements, with the overall radial clearance between these 
elements being the most influential parameter. 

In the literature, the problem of overall radial 
clearance is treated in different ways. The first method 
was presented by Gamez-Montero et al [4], where the 
influence of the backlash is considered by the so-called 
imperfection angle, which is influenced by the 
manufacturing tolerances, the oil compressibility and the 
wall deformations of the telescopic segments of the 
cylinder. The manufacturing tolerances depend on the 
size of THCs and bearing slip rings, and the current oil 
compression and deformation of the cylinder depend on 
the current hydraulic pressure in the system. Such an 
approach is complex. Its application requires a large 
amount of data and is therefore demonstrated only for a 
single-stage hydraulic cylinder.  

The methods [3, 5, 6] are derived from the basic 
buckling differential equation. Their solutions are similar 
to Euler's equation for determining the theoretical critical 
buckling force with an additional factor due to the radial 
clearance. They are adapted for multistage THCs and 
assume that the hydraulic operating pressure has no effect 
on the critical buckling force and that the adjacent 
telescope stages are rigidly connected in a way that there 
is no longitudinal displacement between them.  

Ohtomo et al [3] considered the radial clearance with 
the factor φ, while Ramasamy and Junaid Basha [5] 
considered it with the initial imperfection δ. Sugiyama et 
al [6] described the radial clearances using elastic 
supports (springs) between each stage of the multistage 
THC and considered them with factor λ in the final 
calculation. The equations for all pairs of adjacent THC 
stages form a system of equations, whose solution is 
complex and for which certain data are not directly 
available - e.g., stiffnesses of the added springs, which 
must be calculated additionally. 

In the paper, a new method for fast determination of 
critical buckling load of multistage THCs in practice is 
proposed, which is based on calculation of theoretical 
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buckling force without encountering the clearance 
between adjacent cylinder stages, and corresponding 
correction factor for encountering that clearance, which 
is determined using the experimental data.  
 
2. THE METODOLOGY 

 
2.1 Euler buckling theory 

 
Euler buckling theory [7] can be simply presented by 

noting that the internal bending moment in a compression 
loaded and slightly deformed column is −� ∙ � where � 
is the compressive force and � is the column transversal 
deflection along the column length. When −� ∙ � is 
inserted instead of � in the beam bending equation,  
� ∙ �� ∙ ��� = �, the differential equation of column 
buckling (1) is formed:  

 � ∙ �� ∙ ��� + � ∙ � = 0 (1)

Its solution for pinned and roller supports at the 
column ends is given in (2):  

 
��� =

π� ∙ � ∙ ��

��
�  (1)

which is the Euler column formula, which predicts the 
critical buckling load of a long column, where � is the 
modulus of elasticity, �� is the moment of inertia and �� 
is the buckling length of the column which, in this case, 
corresponds to actual column length. 

 
2.2 The selected theoretical model of buckling of 
multistage THC 

 
In the paper, the base critical buckling force of the 

multistage THC is determined according to the procedure 
from the article [5] by Ramasamy and Junaid Basha. 

To determine the critical buckling force, they proceed 
from the differential equation (1), which can be written 
also in the form of (3): 

 
� ∙ �� ∙

d��

d��
+ � ∙

d��

d��
 = 0 (3)

When a new variable �� =
�

�∙��
 is introduced, the (3) 

is rewritten as presented in (4): 

 d��

d��
+ �� ∙

d��

d��
 = 0 (4)

The clearance between adjacent cylinder stages is 
neglected at this time. The solution of the homogeneous 
differential equation (4) is presented by (5). 

 � = � ∙ sin
� ∙ �

�
 (5)

The problem is solved using the energy method, 
where the deformation energy (∆�) and the work of the 
external forces (∆�) are defined in (6) and (7).  

 

∆� = � �
��d�

2 ∙ � ∙ ��

��

����

�

���

 (6)

 

∆� = � �
1

2
�

d�

d�
�

�

d�

��

��

 (7)

In (6), � represents the bending moment due to 
consideration of the 2nd order theory, ��  the moment of 
inertia of the individual THC section, and �� the distance 
from the beginning of the THC to the end of the 
individual THC section. In equation (7), � is the external 
axial pressure load, d� is the differential of transverse 
displacement, and d� is the differential of length of the 
longitudinal axis. 

When the deformation energy and the work of 
external forces are equalized, the critical buckling force 
��� can be expressed as shown in (8):  

 
���  =

�� ∙ �

2 ∙ �� ∙ �∑
��

��

�
��� �

 (8)

Here, �� is the total length of THC, �� are adjusted 
buckling lengths (see (9)) and ��  cross-section moments 
of inertia (see (10)).  

 ��

=  
�� − ����

2

−
�� ∙ �sin
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��
− sin

2 ∙ � ∙ ����

��
�

4 ∙ �
 

(9)

 ��  =
�

64
∙ [��

� − ��
�] (10)

Here, ��  and �� are the outer and the inner diameters 
of the individual THC section. 

 
2.3 Consideration of clearance in determining the 
critical buckling force 

 
Because the clearance between adjacent cylinder 

stages do exists and do have significant influence on the 
critical buckling force, they have to be considered. We 
decided to take it into account by simplified, more 
practical approach. We took the measurement results 
from [5] and defined the reduction formula (12) with 
reduction coefficient ��  for reduction of the theoretical 
critical buckling force without encountering the 
clearances to the value, which takes the clearances into 
account. Doing so we assumed that THCs considered in 
[5] are representative. 

The results of the measurements from [5] are shown 
in Figure 1 and Table 1 for cases with different clearances 
between adjacent cylinder stages. 

 
Figure 1. Critical buckling force for cases with different 
clearances between adjacent cylinder stages (see Table 1) 
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It can be seen that the relationship between critical 
buckling force ��� in [N] and clearance � in [mm] is 
almost linear, therefore the linear regression is 
considered, as shown in (11). 

 ��� = −5741,1 ∙ � + 17709 (21)

From (11) the reduction formula (12) is derived: 

 ���.�� = ��� ∙ �� = ��� ∙ (1 − 0,324 ∙ �) (32)

for calculation of critical buckling force ���.�� with 
taking clearances between adjacent cylinder sections into 
account. In (12) ���.�� is in [N] and the internal clearance 
� is in [mm]. For multi-stage THCs, the average 
clearance of all stages must be calculated. 

 
2.4 Confirmation of the proposed method 

 
In order to validate the proposed method of 

determining the critical buckling force of multistage 
THCs, the comparison of the results of measurements 
summarized according to [3] and calculations according 
to the proposed method (see chapters 2.2 and 2.3) is 
implemented and introduced in 4.3. 

 
3. INPUT DATA 

 
The essential data from [5] is listed in Table 1 and 

used in chapter 2.3 for derivation of (12). 

Table 1. Measured critical buckling force for different 
internal clearances of THCs for examples from [5] 

��� [N] Clearance � [mm] 
16781 0.150 
15815 0.325 
15022 0.500 
13816 0.675 
12757 0.850 

The essential data from [3] is listed in Tables 2 and 3. 

Table 2. Specifications of test three-stage THC from [3] 

 Length of 
individual 
section,  
Li [mm] 

Outer 
diameter,  
Di [mm] 

Inner 
diameter, 
di [mm] 

THC housing 1531 120 105 
First stage 1336 80 70 

Second stage 1307 56 45 
Third stage 1426 40 0 

Overall length 5600 mm 
Young's mod. 206 000 MPa 

Table 3. Test results for the three-stage THC from [3] 

Measurement 
number 

Measured critical 
buckling force ��� [kN] 

1 19.41 

2 19.85 

 
4. RESULTS AND DISCUSSION 

 
4.1 Reduction coefficient for practical use 

 
In Table 4 the reduced buckling forces are calculated 

for different clearances for example from [5], using 
newly developed reduction formula (12). 

Table 4. Reduction of the critical buckling force due to the 
internal clearances. Forces are calculated using (12) for 
THC from [5] 

Critical buckling 
force ���.��  [N] 

Clearance � 
[mm] 

 

Reduction of the 
critical buckling 

force [%] 
17709 0.0 0.00 
17135 0.1 3.24 
16561 0.2 6.48 
15987 0.3 9.73 
15413 0.4 13.0 
14838 0.5 16.2 

 
During manufacturing of THCs, clearances between 

0.15 mm and 0.20 mm are usually realized. According to 
this data and the Table 3, we can estimate that the critical 
buckling force, calculated without considering the 
clearance, needs to be reduced by about 5 % to 6.5 %. 
Therefor in practice, when the exact values of individual 
clearances are not known, the 6 % reduction can be used. 
The corresponding reduction coefficient for practical 
usage is ��� = 0,94. Of course, when clearances are 
known the usage of reduction formula (12) is 
encouraged. 

 
4.2 The critical buckling force 

 
In Table 5 the reduced buckling lengths and cross-

section moments of inertia for individual THC segments 
are calculated for example from [3], using (9) and (10) 
and data from Table 2. 

Table 5. Reduced buckling lengths and cross-section 
moments of inertia of individual segments of THC from [3] 

 Reduced buckling 
length,  
Zi [mm] 

Section moment of 
inertia  

Ii [mm4] 
THC housing 325 4212158 

First stage 1142 832031 
Second stage 1065 281461 
Third stage 268 85903 
 

From data in Table 4 the theoretical buckling force 
without taking clearances into account can be calculated, 
using (8). The result is ���  = 21.74 kN. 

Further, the reduced buckling force with taking 
clearances into account can be calculated, using (12) and 
reduction coefficient for practical usage ��� = 0,94. 

The result is ���.��  = 20.44 kN. 
 

4.3 Verification of the proposed method 

 
The proposed method is verified using experimental 

results from [3], listed in Table 3. The average measured 
critical buckling forces is calculated as ���.��.���� =
19.63 kN. The calculated critical buckling forces from 
4.2 is ���.��.���� = 20.44 kN. Using these data, the 
deviation between calculations and measurements can be 
expressed as: 

 
� =

���.��.���� − ���.��.����

���.�.����
∙ 100 % (13)

 
� =

20.44 − 19.63

19.63
∙ 100 % = 4,1 % (14)
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Since the deviation between calculated and measured 
results is less than 5 %, the proposed procedure for 
calculation of the critical buckling force for multistage 
THCs seem fine. In order to reliably verify the proposed 
method, more comparisons would be necessary. 

 
5. CONCLUSION 

 
In the paper the method for fast calculation of critical 

buckling force of multistage THCs in practice is 
proposed. 

First, the calculation of theoretical buckling force 
without considering the clearances between adjacent 
cylinder stages is performed. Further, for taking the 
clearances into account, the correction factor �� is 
introduced.  

Formula for calculation of the correction factor is 
developed using the experimental data.  

For fast calculation of critical buckling force of 
multistage THCs in practice the correction factor  
��� = 0,94 is suggested. 

The proposed method is validated by comparison of 
analytical and experimental results. A good agreement 
between the results was determined, as the deviations do 
not exceed 5 %.  
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