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Abstract
This article addresses the exponential input-to-state stabilization problem for switched reaction–diffusion systems, in which
the systems’mode jumping complies with the persistent dwell-time switchingmechanism. On the basis of point measurement,
a novel pointwise controller is designed to reduce the amount of sensors and actuators. Then, a hysteresis quantizer with
an adjustable parameter is employed to balance the quantitative effect and system’s performance, which can improve the
bandwidth utilization of the network, simultaneously. Finally, the effectiveness of the proposed approach is demonstrated by
an application of the temperature control of power semiconductor chips.

Keywords Exponential input-to-state stabilization · Hysteresis quantizer · Switched reaction–diffusion systems · Persistent
dwell-time · Power semiconductor chips.

Introduction

In reality, one of the most significant tasks in the analy-
sis and synthesis of control systems is the development of
an accurate mathematical model, which can properly rep-
resent the dynamic behavior of systems. In this context,
reaction–diffusion systems (RDSs), as an effective model
for characterizing the performance of space-time related
dynamic systems, appear in recent literature [1–6]. This trend
is driven by RDSs’ numerous practical applications, which
include various fields such as chemical, nuclear, aerospace
[7], etc. To date, fruitful research results have been achieved
in the field of RDSs control, such as event-triggered con-
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trol [1], saturated control [8], boundary control [9, 10], and
output feedback control [11]. It is noteworthy that the above
works predominantly focused on single-mode RDSs (RDSs
with only one mode). Without a doubt there will be a non-
negligible fact that some practical systems are frequently
influenced by external uncertainties that lead such systems to
exhibit multiple modes [12–14], which makes single-mode
RDSs challenging in describing more general physical pro-
cesses. In this regard, how to establish accuratemathematical
models for some more complicated and realistic multi-mode
systems by reaction-diffusionmodels is a topic worth explor-
ing.

As reported in the existing works [12, 15], switched RDSs
with certain switching mechanisms play an important role in
describing systems that exhibit multi-mode characteristics
and spatial features. Consequently, on the basis of switched
RDSs, it is particularly important to explore the switch-
ing mechanisms contained in the subsystems. In accordance
with this research direction, Refs. [16, 17] made the first
attempts to propose dwell-time (DT) and average dwell-time
(ADT) switching mechanisms to describe the switching laws
obeyed by the subsystems. Subsequently, due to the limita-
tions of DT’s dwell time and ADT’s switching frequency,
they are unable to describe the fast switching phenomenon,
which is common in some practical systems, such as com-
plex dynamic networks [18] and mass-spring systems [19].
Based on this fact, an extended persistent dwell-time (PDT)
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switching mechanism is proposed in [20] to make up for the
shortcomings of DT and ADT switching mechanisms. More
specifically, for the PDT switching mechanism (PDTSM),
there exist infinite disjoint intervals (called τ -Portion) in
which only one switching occurs, whose length is not less
than the dwell time τp, and the portion between two con-
secutive τ -Portion is called T -Portion whose length is no
greater than the persistence period Tp, where the subsystems
can arbitrarily switch [21, 22]. Nevertheless, one point to be
noted from the references [21, 22] on the PDTSM is that
the results are feasible only under switched ordinary differ-
ential equation (ODE) systems. It is well-known that since
switchedRDSs can be applied to describemany complex sys-
tems that cannot be captured by switchedODE systems, such
as the temperature control systems of semiconductor power
chips [12]. Therefore, it is meaningful to extend PDTSM to
switched RDSs.

With the remarkable advances in networked control sys-
tems [23–31], the control implementation of RDSs has been
rapidly networked in control areas such as intelligent robot
control [32] and chemical catalytic control [1]. On this trend,
the design of networked control for RDSs has yielded a
wealth of research results. To mention a few, a class of
stochastic sampled-data control was studied in [33]; Seliv-
anov and Fridman in [34], and Song et al. in [1] investigated
novel design methods for point measurement and pointwise
control, respectively, which have outstanding advantages in
terms of reliability, low measurement costs, and ease trans-
mission. However, it should be pointed out that the effect of
bandwidth limitations is ignored in the above results [1, 33,
34]. Given the data to be transmitted, a fairly novel hysteresis
quantizer with the advantages of avoiding controller chatter-
ing and improving bandwidth utilization was developed in
[35, 36]. Still, despite the advantages of hysteresis quantiza-
tion, it is an objective fact that quantization has a negative
impact on system’s performance [37]. Therefore, it makes
sense to make a trade-off between the quantitative effect and
the performance of the system. To the best of our knowledge,
research results on the quantified control for switched RDSs
with PDTSM, especially integrating the above trade-off, are
not currently available, which stimulates the research interest
of this work.

On the other hand, the existing work on stability anal-
ysis of switched systems mainly focused on two traditional
ones: asymptotic stability [38] and exponential stability [39].
Unfortunately, these traditional stabilities have more rigor-
ous restrictions and may be not always applicable in various
dynamical systems, such as stochastic systems [40] and
switched systems [41], where the systems’ states remaining
bounded within a certain rate of convergence [called expo-
nential input-to-state stability (ISS)] is sufficient but do not
necessarily converge to the equilibrium point. Nonetheless,
up to now, despite the results havebeen achieved in thefield of

switched ODE systems [41, 42], the problem of exponential
ISS of switched RDSs remains a huge room for improvement
due to the complexity and uniqueness of switched RDSs,
which encourages us to make new attempts in the field.

Inspired by the above discussion, in terms of hysteresis
quantization, this paper proposes a pointwise control method
for the switched RDSs with PDTSM. The specific contribu-
tions of this article are emphasized as follows.

• Unlike previous studies biased toward the modeling
approach ofODEsystems [43, 44], RDSs [1, 8], and switched
ODE systems [45–48], this article proposes a more extensive
model of switched RDSs that can characterize more com-
plex dynamical systems. Furthermore, this work makes the
first step to extend the PDTSM to represent the switching
rules possessed by subsystems, which enhances the proposed
method’s applicability compared to the DT and ADT switch-
ing mechanisms.

• This paper proposes a unified framework for switched
RDS’s signalmeasurement, transmission, and control. Specif-
ically, different from [23, 25, 26], this work develops a com-
bined point measurement and pointwise control approach,
which effectively minimizes the quantities of sensors and
actuators. Furthermore, in contrast to [35, 36], we propose
the hysteresis quantization with a small parameter to balance
the quantitative effect and system’s performancewhile avoid-
ing the controller’s chattering and improving the bandwidth
utilization.

• In practice, different from the asymptotic stability [38]
and exponential stability [39], since the states of numerous
systems are not strictly required to converge to the equilib-
rium point, this work attempts to formulate a relatively novel
exponential ISS criteria for the switchedRDSswith PDTSM,
in which the systems’ states only need to remain bounded
with certain convergence rate.

Notations: int[ℵ] denotes the maximal integer less than
ℵ. Moreover, for the convenience of expression, define

φt (x, t) = ∂φ(x,t)
∂t , φx (x, t) = ∂φ(x,t)

∂x , φxt (x, t) = ∂2φ(x,t)
∂x∂t ,

and φxx (x, t) = ∂2φ(x,t)
∂x2

. The other notations are similar to
[1] and are not repeated here.

Preliminaries and problem statements

System formulation

Consider the switched RDSs with PDTSM as follows:

φt (x, t) = ϒθ(t)φxx (x, t) + �θ(t)(x)φ(x, t) + g(x)uθ(t),

(1)

subject to the initial condition

φ(x, 0) = φ0(x), (2)
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and boundary conditions

φx (l1, t) = 0, φx (l2, t) = 0, (3)

where φ(x, t) ∈ Hn denotes the systems’ state at the posi-
tion x ∈ [l1, l2] and time t ∈ [0,∞). θ(t) : [0,∞) →
J � {1, 2, 3, ..., M} is the PDT switching signal, which
is assumed to be a piecewise constant function and right-
continuous, and M is the amount of subsystems. For con-
venience, let θ(t) = j . Therefore, systems (1) is rewritten
as

φt (x, t) = ϒ jφxx (x, t) + � j (x)φ(x, t) + g(x)u j , (4)

where for any j ∈ J, ϒ j ∈ Rn is a known constant
matrix, and � j (x) is a polynomial function with �̄ j �
maxx∈[l1,l2] � j (x). The interval [l1, l2] is divided into L
subintervals. xp and xp+1 represent the terminal points of the
subinterval, p ∈ P � {0, 1, . . . , L−1}.�p � xp+1−xp rep-
resents the length between the two terminal points and x̄ p =
xp+xp+1

2 denotes the midpoint of the subinterval. The control
input u j is defined as u j � col[u j0 u j1 . . . u j(L−1)], where
u jp = col[u jp1 u jp2 . . . u jpn]. g(x) � [g0(x) g1(x) . . .

gL−1(x)] with gp(x) � δ(x − x̄ p)gp and gp is a known
scalar. Dirac delta function δ(x − x̄ p) satisfies

δ(x − x̄ p) =
{

0, x �= x̄ p,
∞, x = x̄ p.

With the above analysis, it is obtained that the space x
is divided into L subintervals. The measurement of state
information and the implementation of control signals are
performedonly at themidpoint x̄ p , p ∈ Pof each subinterval,
which can largely reduce the number of sensors and actua-
tors compared to the full domain control. Next, the pointwise
controller is provided as follows:

u jp
(
x̄ p, t

) = −K jpφ
(
x̄ p, t

)
, (5)

where K jp > 0 ∈ Rn ( j ∈ J, p ∈ P) is the controller gain
matrix that needs to be determined.

With the above point measurement and pointwise control,
we obtain a control signal in the form of (5). However, dur-
ing the long-distance transmission of the control signal to
the actuators, the bandwidth limitation is a non-negligible
problem. Therefore, we dedicate ourselves on improving the
utilization of network bandwidth in the following.

Hysteresis quantizer

Indeed, the process of signal transmission over long distances
is inevitably restricted by the fact that the bandwidth of the

Fig. 1 Map of Q(u) for u > 0

transmission channel has a limited capacity. Therefore, the
following hysteresis quantizer is utilized [49]:

Q(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uσ sgn(u), uσ

1+δ j
< |u| ≤ uσ , u̇ < 0, or

uσ <|u| ≤ uσ

1−δ j
, u̇ > 0

uσ
(
1 + δ j

)
sgn(u), uσ < |u|≤ uσ

1−δ j
, u̇<0, or

uσ

1−δ j
< |u|≤ uσ (1+δ j)

(1−δ j)
, u̇>0

0, 0 ≤ |u| < ζ j
1+δ j

, u̇<0 or
ζ j

1+δ j
≤u ≤ ζ j , u̇>0,

Q
(
u(t−)

)
, u̇ = 0,

(6)

where uσ = ν j
(1−σ)ζ j with σ ∈ N+. The constants ν j ∈

(0, 1) and ζ j denote the quantizer density and the range
of quantizer’s dead-zone, respectively. The mode-dependent
parameter δ j satisfies δ j = 1−ν j

1+ν j
∈ (0, 1). The value of

quantizer Q(u) is in the set Q = {0,±uσ ,±uσ (1 + δ j )}.
Remark 1 The hysteresis quantizer not only outperforms the
logarithmic quantizer in the number of additional levels of
quantization, but also effectively avoids the phenomenon
of controller chattering caused by the logarithmic quantizer
[35]. As shown in Fig. 1, when the value Q(u) of the hystere-
sis quantizer transitions fromone level to another, there exists
some dwell time before the new transition level appears,
which avoids the controller’s chattering.

To analyze the hysteresis quantizer’s effect more intu-
itively, the hysteresis quantizer Q(u) is reformulated as
follows:

Q
(
φ

(
x̄ p, t

)) = (1 − 
)φ
(
x̄ p, t

) + 
e
(
x̄ p, t

)
, (7)

where 0 < 
 < 1 is a given scalar, e(x̄ p, t) is a newly defined
error variable.
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Fig. 2 Structural diagram of the proposed control scheme

Remark 2 In [35, 36], the hysteresis quantizer needs to sat-
isfy Q(φ(x̄ p, t)) = φ(x̄ p, t) − e(φ(x̄ p, t)). In contrast, the
hysteresis quantizer in this paper is improved to a linear com-
bination ofφ(x̄ p, t) and e(φ(x̄ p, t)) depending the parameter

, and by adjusting which can make a balance between the
quantitative effect and the system’s performance.

Then, based on [49], the hysteresis quantizer is set as

∣∣Q (
φ(x̄ p, t)

) − φ
(
x̄ p, t

)∣∣ ≤ δ j
∣∣φ (

x̄ p, t
)∣∣ + ζ j , (8)

based on which, the control signal (5) is reformulated as

u jp
(
x̄ p, t

) = −K jpQ
(
φ

(
x̄ p, t

))
. (9)

Combining (4), (7) and (9), the closed-loop switched
RDSs has the following form:

φt (x, t) =ϒ jφxx (x, t) + � j (x)φ(x, t)

− gp(x)K jp
{
(1 − 
)φ(x̄ p, t) + 
e(x̄ p, t)

}
.

(10)

To facilitate the subsequent analysis, the PDTSM should
be described in detail.

PDTSM

Definition 1 (see [21]) The switching signal θ(t) obeys the
PDTSM if there exist two positive numbers τp and Tp such
that the following three conditions hold simultaneously:

• There are infinite and disjoint alternating intervals, i.e.,
the τ -Portion and the T -Portion.

• Each disjoint τ -Portion is not less than τp in length
with the switching signal θ(t) being a constant value in these
intervals.

• The length of each disjoint T -Portion is no longer than
Tp. In the T -Portion, the switching signal θ(t) can switch
arbitrarily, but the dwell time cannot exceed τp.

Figure 2 displays the PDT switching process and the vari-
ation of the energy function, where tsw , tsw+1, tsw+2, . . .,
tsw+1+1 are the switching moments. Additionally, the energy
function of the system in different subsystems ϑ and θ is rep-
resented by Vϑ and Vθ atmoments tsw and tsw+1, respectively.
The whole stage w consists of τ -Portion and T -Portion. it is
evident from Fig. 2 that the PDT switching signal is com-
posed of numerous stages, and each stage comprises two
portions: τ -Portion and τ -Portion. In the τ -Portion, only one
subsystem with a running time no less than dwell time τp is
activated. In the T -Portion, these switchings can be arbitrary.
Furthermore, forw ∈ Z+ and n ∈ Z+, the total running time
TRT−w in a T -Portion of the w-th stage satisfies:

TRT−w =
ϒ

(
tsw+1,tsw+1

)
∑
n=1

T
(
tsw+n, tsw+n+1

) ≤ Tp,

which means that the running time of the T − Portion in
stage w does not exceed Tp.

Remark 3 The superiority of the PDTSM: DT switching sig-
nal demands that the subsystem’s running time is not less than
afixed time constant τDT; the switching times ofADTswitch-
ing signal should satisfy N (t, l) ≤ l−t

τADT
+ N0, where l, τADT

and N0 are positive numbers, which leads to the switching
frequency of ADT switching mechanism is limited. Further-
more, if the T -Portion of the PDTSM is reduced to zero, the
PDT signal can be simplified to a DT signal; if the persis-
tence period of the T -Portion and the switching frequency of
the PDT signal are reasonably limited, the PDT signal can be
decreased to an ADT signal. Therefore, compared with the
DT andADT switching signals, PDTSMmight have stronger
applicabilities, which are demonstrated by the fact that it not
only can describe the switching process that can be depicted
by the DT and ADT switching mechanisms, but also can
characterize the fast-switching phenomenon that the DT and
ADT switching mechanisms can not.
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Control objectives: For the investigated closed-loop
switch-ed RDSs (10) with PDTSM, the focus of this work
is primarily on the design of a hysteresis quantized point-
wise controller to enable the closed-loop system to achieve
exponential ISS. To further elaborate the proposed control
strategy, the system diagram is shown in Fig. 2.

Before deriving the main results, some useful lemmas are
provided in the following.

Lemma 1 (see [22]) In the PDTSM, the times of switching
in the T − Portion are limited and do not produce Zeno
behavior. Specifically, the switching times C(v, t) in [v, t)
with v > 0 satisfy the following expression:

0 ≤ C(v, t) ≤
([

t − v

Tp + τp

]
+ 1

)
(int[Tp · f ] + 1).

Lemma 2 (see [50]) The average switching frequency fw of
the PDTSM has the following form:

fw = C
(
tsw+1, tsw+1

)
Tw

, r ∈ Z
+,

where 1/ fw, Tw denote the each switching’s average length,
the running time of the subsystem in the w-th stage, respec-
tively. C(tsw+1, tsw+1) represents the switching times in
the T -Portion. f � max{ fw}, 1/ f � min{1/ fw} ≤
max{1/ fw} < τp.

Main results

In this section, we first perform stability analysis for the tar-
get systems (10). Then, the control objectives are completed
based on the obtained results.

Stability analysis

Theorem 3 Preset positive scalars α, �p, gp, λ j , δ j , Tp, f ,
τp, and γ > 1, 0 < 
 < 1, and provided that there exist
positive matrices K jp, Pj , j, i ∈ J( j �= i) and p ∈ P such
that

� j =
⎡
⎣�1 j �2 j �4 j

∗ �3 j 
2λ j

∗ ∗ −
2λ j I

⎤
⎦ < 0,

where

�1 j = 2Pj �̄ j + αPj − 1

�p
2(1 − 
)Pj gpK jp + 2λ j δ

2
j − 
2λ j ,

�2 j = − 1

�p
Pj gpK jp + 2λ j δ

2
j − 
2λ j ,

�3 j = −2
π2

�2
p
Pjϒ j + 2λ j δ

2
j − 
2λ j ,

�4 j = −

1

�p
Pj gpK jp + 
2λ j ,

Pj ≤ γ Pi ,

then the closed-loop switched RDSs (10) can achieve expo-
nential ISS for the PDTSM satisfying

β = (Tp f + 1) ln γ − α

(
1

f
+ τp

)
< 0.

Proof Step 1. Constructing the following Lyapunov function
for stability analysis:

Vj (t) =
∫ l2

l1
φT (x, t)Pjφ(x, t)dx . (11)

Differentiating Vj (t) in (11) with respect to time t and
combining (10), the following expression is obtained

V̇ j (t) = 2
∫ l2

l1
φT (x, t)Pj

{
ϒ jφxx (x, t) + � j (x)φ(x, t)

−gp(x)K jp
{
(1 − 
)φ(x̄ p, t) + 
e(x̄ p, t)

}}
dx .

(12)

According to the boundary conditions (3) and the integra-
tion by parts, we get

2
∫ l2

l1
φT (x, t)Pjϒ jφxx (x, t)dx

= −2
∫ l2

l1
φT
x (x, t)Pjϒ jφx (x, t)dx .

(13)

By defining m(x, t) = φ(x̄ p, t) − φ(x, t) and based on
Wirtinger’s inequalities, it follows that

− 2
∫ l2

l1
φT
x (x, t)Pjϒ jφx (x, t)ddx

≤ −2
L−1∑
p=0

π2

�2
p

∫ xp+1

xp
mT (x, t)Pjϒ jm(x, t)dx .

(14)

Similar to (14), the following expression is generated

−2
L−1∑
p=0

1

�p

∫ xp+1

xp
φT (x, t)Pj gpK jp

× {
(1 − 
)φ

(
x̄ p, t

) + 
e
(
x̄ p, t

)}
dx

= −2
L−1∑
p=0

1

�p

∫ xp+1

xp
φT (x, t)Pj gpK jp {(1 − 
)m(x, t)
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+(1 − 
)φ(x, t) + 
e
(
x̄ p, t

)}
dx . (15)

Then, along with (7) and integrating (11)–(15), one can
derive

V̇ j (t) + αVj (t) ≤
L−1∑
p=0

∫ xp+1

xp
ςT� jςdx + 2λ jζ

2
j , (16)

where ς = col[φ(x, t),m(x, t), e(x̄ p, t)].
Step 2. Designing proper PDT switching signal.
Considering � j < 0, (16) ensures that

V̇ j (t) + αVj (t) ≤ 2λ jζ
2
j . (17)

Using Lemma 4 in [51] and making use of the fact that
Pj ≤ γ Pi we can get

V
θ
(
tsw+1−1

)(t) ≤ γ e
−α

(
t−tsw+1−1

)
V

θ
(
tsw+1−2

) (
tsw+1−1

)

+
∫ t

tsw+1−1

e−α(t−v)2λ jζ
2
j dv. (18)

Analogous to (18), the following expression is produced

V
θ
(
tsw+1−2

) (
tsw+1−1

) ≤ e
−α

(
tsw+1−1−tsw+1−2

)
V

θ
(
tsw+1−2

) (
tsw+1−2

)

+
∫ tsw+1−1

tsw+1−2

e−α(t−v)2λ j ζ
2
j dv. (19)

Substituting (19) into (18), we derive that

V
θ
(
tsw+1−1

)(t) ≤ γ e
−α

(
t−tsw+1−2

)
V

θ
(
tsw+1−2

) (
tsw+1−2

)

+γ

∫ tsw+1−1

tsw+1−2

e−α(t−v)2λ jζ
2
j dv

+
∫ t

tsw+1−1

e−α(t−v)2λ jζ
2
j dv. (20)

Then, iterating (20) from t to tsw , we can get

V
θ
(
tsw+1−1

)(t) ≤ γ C(tsw ,t)e−α(t−tw)Vθ(tsw)

(
tsw

)

+γ C(tsw ,t)
∫ t

tsw

e−α(t−v)2λ jζ
2
j dv

≤ γ C(tsw ,t)e−α(t−tsw)Vθ(tsw)

(
tsw

)
+2γ C(tsw ,t)α−1λ jζ

2
j , (21)

where C(tsw , t) denotes the switching times in [tsw , t).
Next, define the two variables Tw and τp in the w stage:

{
Tw � t − tsw+1,

τp � tsw+1 − tsw .
(22)

Combining Lemmas 1–2 and (22), the following inequal-
ity is given by

V
θ
(
tsw+1−1

)(t) ≤ γ Tp f +1e
−α

(
1
f +τp

)
Vθ(tsw)

(
tsw

)

+2γ Tp f +1α−1λ jζ
2
j . (23)

To simplify the representation, the following definitions
are provided

γ Tp f+1e
−α

(
1
f +τp

)
� eβ < 1, (24)

then, by a series of iterations and recursions, the following
expressions hold

V
θ
(
tsw+1−1

)(t) ≤ 1 − e(w+1)β

1 − eβ
γ Tp f +1α−12λ jζ

2
j

+ewβVθ
(
ts1

) (
ts1

)
. (25)

Define λ̃(Pj ) � min j∈J{λmin(Pj )}. According to (11),
we can deduce that

Vj (t) ≥ λ̃
(
Pj

) ∫ l2

l1
φT (x, t)φ(x, t)dx

= λ̃
(
Pj

) ||φ(x, t)||2,∀ j ∈ J,

Furthermore, due to θ(tsw+1−1) ∈ J, we can get

V
θ
(
tsw+1−1

)(t) ≥ λ̃(Pj )||φ(x, t)||2. (26)

Now, combining (25) and (26), we obtain the state of the
system satisfies

||φ(x, t)||2 ≤ λ̃−1(Pj )
{
(eβ)wλ̄(Pj )||φ(x, 0)||2

+1 − (eβ)w+1

1 − e2β
γ Tp f +1α−12λ jζ

2
j

}
. (27)

Inspired by [51], it can be concluded that

t − ts1
Tp + τp

+ 1 ≤ w. (28)

Therefore, substituting (28) into (27), we get

||φ(x, t)||2 ≤ λ̃−1(Pj )
{
eβ(0.25Tpt+0.5)λ̄(Pj )||v(x, 0)||2

+ 1

1 − eβ
γ Tp f+1α−12λ jζ

2
j

}
. (29)

Based on (11), the following equation can be generated

λ̃
(
Pj

) ||φ(x, t)||2 ≤ Vj (t) ≤ λ̄(Pj )||φ(x, t)||2. (30)
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where λ̄(Pj ) � max j∈J{λmin(Pj )}.
By defining λ̂(Pj ) � λ̄(Pj )λ̃

−1(Pj ) and combining (30)–
(31), one obtains

Vj (t) ≤ λ̂(Pj )
{
eβ(0.25Tpt+0.5)λ̂(Pj )Vj (0)

+ 1

1 − eβ
γ Tp f +1α−12λ jζ

2
j

}
. (31)

Therefore, based on (31) and the definition of exponential
ISS in [49], it is concluded that the closed-loop switched
RDSs (10) with PDTSM are exponential ISS. The proof is
completed. �

Controller design

Notably, Theorem 3 only offers sufficient conditions for the
exponential ISS of the closed-loop switched RDSs (10). To
derive the controller’s gain parameters, the following Theo-
rem can be drawn by applying the decoupling technique.

To this end, by defining K̃ jp = Pj K jp, we can get the
controller’s gain parameter satisfies

K jp = K̃ jp P
−1
j , j ∈ J, p ∈ P.

Employing (35), the controller gains can be yielded
through solving the inequalities in Theorem 4.

Theorem 4 Given positive constants α, f , �p, gp, λ j , δ j ,
Tp, τp, and γ > 1, 0 < 
 < 1, the system (10) is exponential
ISS, if there exist matrices K̃ jp > 0, Pj > 0, j, i ∈ J( j �= i)
and p ∈ P, the following inequalities hold:

�̃ j =
⎡
⎣ �̃1 j �̃2 j �̃4 j

∗ �3 j 
2λ j

∗ ∗ −
2λ j I

⎤
⎦ < 0,

β = (
Tp f + 1

)
ln γ − α

(
1

f
+ τp

)
< 0,

with

�̃1 j = 2Pj �̄ j + αPj − 1

�p
2(1 − 
)gp K̃ jp

+ 2λ jδ
2
j − 
2λ j ,

�̃2 j = − 1

�p
gp K̃ jp + 2λ jδ

2
j − 
2λ j ,

�̃4 j = − 1

�p
gp K̃ jp + 
2λ j ,

Pj ≤ γ Pi ,

where �3 j is given in Theorem 3 and the controller’s gain
matrix satisfies K jp = K̃ jp P

−1
j .

Fig. 3 Structure diagram of chips

Table 1 Model parameters

Notation Meaning Unit

� Heat conductivity W/(m · K)

ρ Material density Kg/m3

cs Specific heat J/(kg · K)

T Chip thickness µm

a(x) Surface area of the chip (µm)2

Chip temperature control

To validate the effectiveness of the proposed control method,
an application example i.e., temperature control of power
semiconductor chips is given in this section.

The considered power semiconductor chip consists of two
DMOS-arrays as shown in Fig. 3. Generally, the internal
structure of these two DMOS-arrays can be disregarded for
simplicity [12]. The epitaxial layer is assumed to be the only
heating layer within the DMOS-array. The heat generated
from the chips regions T1 and T2 propagates downward in
its solid-state material. Thus, the temperature system of the
power semiconductor chip can be described with the follow-
ing RDS model:

�t (x, t) = ϒ�xx (x, t) + �(x)�(x, t) + g(x)u, (32)

subject to the initial condition

�(x, 0) = �0(x), (33)

and boundary conditions

�x (l1, t) = 0,�x (l2, t) = 0, (34)

where state �(x, t) of the system represents the temperature
of the semiconductor power chip. ϒ and �(x) denote the
diffusion coefficient and thermal resistance of the chip with
ϒ = �/(ρ · cs) and �(x) = T/(� · a(x)), respectively and
their parameters are detailed in Table 1. Further, according
to the thermal resistance formula, we can discover that the
thermal resistance value is inversely proportional to the chip’s
area.

Next, we consider that T1 or T2 generates heat. Since the
heat conductivity � is related to the physical structure of T1
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Fig. 4 Diagram of modal change of PDTSM

Fig. 5 Evolution trajectory of open-loop state

and T2, the changes of T1 and T2 result in the changes of
� . Furthermore, since the material and shape of the chip are
fixed, the variations of ρ, cs ,T and a(x), which are related to
the material or shape of the chip, can be ignored. Therefore,
ϒ and �(x) with the switching characteristics are rewritten
as ϒθ(t) = �θ(t)/(ρ · cs) and �θ(t)(x) = T/(�θ(t) · a(x)),
respectively. Therefore, system (32) can be re-modeled to the
switched RDS as follows

�t (x, t) = ϒθ(t)�xx (x, t) + �θ(t)(x)�(x, t) + g(x)uθ(t),

(35)

Inspired by [12], the parameters of the system (35) are
chosen as follows: The number of system’s modes is chosen
as 2, where the change of the modes is shown in Fig. 4.
Next, the coefficients of the system corresponding to each
mode are configured. When the mode is 1,ϒ1 = 1,�1(x) =
5exp(−0.1x2)+0.2; when the mode is 2, ϒ2 = 2, �2(x) =
2exp(−x2)+1. Select the initial condition of the system (35)
satisfying�0(x) = 0.1+cos(πx). The corresponding open-
loop system’s state evolution trajectory is shown in Figure.
5, where the state of the system is remarkably divergent.

Fig. 6 Evolution trajectory of close-loop state

Therefore, based on the above analysis, it is necessary and
meaningful to impose control on the investigated switched
RDS (35). Initially, the space length l2−l1 = 1 is divided into
five intervals spaced by 0.2, then themidpoint of each interval
are x̄1 = 0.1, x̄2 = 0.3, x̄3 = 0.5, x̄4 = 0.7, x̄5 = 0.9.
Subsequently, by selecting parameters j = 2, p = 5, α =
0.6, f = 5, γ = 1.01, �p = 0.2, gp = 63.5, λ1 = 0.03,
λ2 = 0.035, Tp = 4, τp = 3, ν1 = 0.002, ν2 = 0.0025, ζ1 =
0.002, ζ2 = 0.0025, 
 = 0.15, we obtain the controller gains
as shown in (36) by solving the linear matrix inequalities in
Theorem 4.

Then, the hysteresis quantified controller (9) is applied to
the system (35). The evolution trajectories of the system’s
state �(x, t) and quantified control input (9) are shown in
Figs. 6 and 7, respectively. According to Figs. 6 and 7, it can
be concluded that the system (35) is rapidly stabilized.

K jp =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.1523, x = 0.1, p = 1, j = 1,
0.1483, x = 0.3, p = 2, j = 1,
0.1270, x = 0.5, p = 3, j = 1,
0.1129, x = 0.7, p = 4, j = 1,
0.0655, x = 0.9, p = 5, j = 1.

K jp =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.2162 x = 0.1, p = 1, j = 2,
0.1734, x = 0.3, p = 2, j = 2,
0.1526, x = 0.5, p = 3, j = 2,
0.1268, x = 0.7, p = 4, j = 2,
0.0611, x = 0.9, p = 5, j = 2.

(36)

Next, a logarithmic quantizer is utilized to highlight the
advantages of the hysteresis quantizer employed in this paper.
Specifically, Fig. 8 shows the trajectory of logarithmic quan-
tified control input. It can be observed from Fig. 8 that the
logarithmic quantizer causes controller chattering, which
results in a longer time to achieve system’s stability.
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Fig. 7 Evolution curve of control input

Fig. 8 Evolution curve of control input

Conclusions

This work has addressed the stabilization problem of switch-
ed RDSs. Specifically, the switchings between operating
modes of the considered systems are consistent with the
PDTSM,which ismore general than theDTandADTswitch-
ing mechanisms. Further, by using the networked control
framework of the point measurement, pointwise control and
hysteresis quantizer with a adjustable parameter, the expo-
nential ISS of the closed-loop switched RDSs is obtained.
Finally, the applicability of the derived theoretical results
is verified by the temperature control simulations of power
semiconductor chips. The future work will expand the pro-
posed methods to design the secure control strategy for the
switched RDSs with network attacks. Meanwhile, to further
improve the communication efficiency, we will extend the
input quantization proposed in this paper to input–output
quantization or input-state quantization.
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