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Abstract

Supervised deep learning requires a huge amount of reference data, which
is often difficult and expensive to obtain. Domain adaptation helps with
this problem — labelled data from one dataset should help in learning
on another unlabelled or scarcely labelled dataset. In remote sensing,
where variety of sensors are producing images of different modalities
and with a different number of channels, it would be very beneficial to
develop heterogeneous domain adaptation methods being able to work
with domains coming from a different input space. However, this chal-
lenging problem is rarely addressed, majority of existing works does not
use image-data, or they rely on translation from one domain to the
other, completely ignoring domain-invariant feature extraction approach.
In this paper, we propose novel approaches for heterogeneous image
domain adaptation for both semi-supervised and unsupervised setting,
based on extracting domain invariant features and deep adversarial
learning. For unsupervised domain adaptation case, impact of pseudo-
labelling is also investigated. We evaluate on two heterogeneous remote
sensing datasets, one being RGB, and the other multispectral, for the
task of land-cover patch classification; but also on a standard com-
puter vision benchmark of RGB-depth map adaptation. The results
show that our domain invariant approach consistently outperforms the
competing method based on image-to-image translation, and that our
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method is not limited to remote sensing only, but is more general and
can also successfully be applied to standard computer vision problems.

Keywords: Domain Adaptation, Remote Sensing, Deep Learning,
Representation Learning

1 Introduction
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Fig. 1: Causes of domain shift in remote sensing — different seasons, location,
resolution, and sensors.

Supervised deep learning (DL) methods rely heavily on the existence
of large-scale labelled datasets. However, reference data is often difficult to
obtain. This is especially true in the field of remote sensing (RS) where:

• Satellites generate a huge amount of data on a daily basis, and since labelling
is a manual process, it is slow and expensive.

• The Earth’s surface is constantly evolving, meaning that reference data may
not be reusable for images taken at a later date.

Since DL models (and machine learning methods in general) often gen-
eralise poorly, we cannot apply existing trained models to other datasets.



Springer Nature 2021 LATEX template

Learning domain invariant representations of heterogeneous image data 3

To overcome this problem, focus has turned to domain adaptation (DA)
techniques.

Some causes of domain shift in RS are shown in Figure 1: images are cap-
tured at different seasons or different places, from different height and/or with
different sensors; what is vegetation in one season can be covered with snow
in the other; urban areas can look very differently on different continents;
depending on the height of the airborne sensor, the same objects can look
bigger or smaller, in RS this is referred to as images having different spatial
resolution; different sensors can capture images of different modalities, with
non-corresponding channels (bands in RS), and possibly with a different num-
ber of bands. All of these cases of shift lead to very different data distributions
between datasets.

Source feature 
extractor

Target feature 
extractor

Shared 
feature 

extractor

Domain 
invariant 
features

Source
domain

Target
domain

Fig. 2: The proposed approach that extracts domain invariant features and can
work with images of different number of channels and/or different resolution

Domain adaptation involves learning a model on one data distribution
(named source - typically labelled), and applying it to another, different but
related data distribution (called target - typically with little or no reference
data) by reducing the shift between domains. Most of the DA methods in com-
puter vision (CV) assume RGB images in both domains (homogeneous DA).
In remote sensing, such methods might be enough to solve temporal or geo-
graphical shifts. However, we can have the domains that do not lay in the same
space and which possibly have a different dimensionality (heterogeneous DA).
We differentiate two such cases (which can also occur simultaneously):

• Domains having different spatial resolution,
• Domains having different channels.

In the case of images having different spatial resolution, theoretically all
the images could be resampled to the same resolution and homogeneous DA



Springer Nature 2021 LATEX template

4 Learning domain invariant representations of heterogeneous image data

used. However, it should be noted that in remote sensing resolution can be
extremely different, e.g. in datasets used in this paper for evaluation, a pixel
can represent the square with 10m side of Earth surface (EuroSAT [1]), or
the square with 20 cm side (RESISC45 [2]), meaning that a car can be blurred
into a road background or easily visible spanning several pixels. Thus even
though homogeneous DA methods could be used here, this is a very challenging
problem.

However, in case of images captured by different sensors, having a different
number of channels, homogeneous DL domain adaptation approaches cannot
be applied at all because their structure (number of input neurons) is fixed,
preventing images of different dimensionality being used within the pipeline.

In this paper we propose a novel semi-supervised heterogeneous domain
adaptation (HDA) approach for image patch classification called SS-HIDA, and
its counterpart for unsupervised HDA, an approach based on pseudo-labelling
called UPL-HIDA. To the best of our knowledge this is the first HDA method
for patch classification capable of working with two image-data domains with
a different number of bands. It is also the first work on extracting domain
invariant features from two heterogeneous image-data domains. The schema
of the approach is shown in Figure 2.

Existing work on different modalities in the RS community have focused
on data fusion [3] where different domains have corresponding paired images.
However, in the proposed work, such a constraint does not exist, and therefore
datasets with completely independent, unpaired images can be used, possibly
taken from different parts of the world therefore dealing with multiple sources
of domain shift simultaneously.

The development of models like ours could be very beneficial for the RS
community where a variety of different sensors are used, some of them being
RGB, multispectral, hyperspectral, SAR, LiDAR, panchromatic etc. But the
field of application is not limited to RS only, we can find different sensors
in robotics (depth images), in medical imaging (e.g. CT and MRI) etc. We
evaluate our method on one very challenging RS case (RGB and multispectral
images of different resolution), and on one common CV benchmark (RGB and
depth images).

This article is organised as follows: in Section 2, a review of related existing
work is given, followed by a description of the proposed SS-HIDA and UPL-
HIDA architectures in Section 3. Section 4 describes the experimental setup
and results. Finally, the conclusions are given and future work is discussed in
Section 5.

2 Literature Review

Domain adaptation methods in computer vision can be split into two big
categories:

• Methods based on extraction of domain invariant features
• Methods based on translation of data
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Fig. 3: Overview of existing methods and where our approach fits in the
categorisation

In homogeneous DA both these approaches are widely used, and the meth-
ods are used on raw image data. On the other hand, heterogeneous DAmethods
for CV focus primarily on adapting between vectorial data of different size,
such as SURF - DeCAF [4, 5] and DeCAF - ImageNet features [6], or on
adapting from image to text data [7, 8]. There are some HDA methods capable
of working with raw image data, but they assume the same number of chan-
nels in the domains [9–11], or they are designed for semantic segmentation
only, and not for patch classification [12]. All of these methods for raw image
data are based on the translation of data from one domain to the other, while
our approach explores the potential of using methods for extracting domain
invariant features in HDA. Table 3 shows the overview of existing methods
and where do the models proposed in this paper, semi-supervied SS-HIDA and
unsupervised UPL-HIDA, fit in the categorisation. As can be seen, our mod-
els are the only HDA domain invariant methods capable of working on raw
image data, and the only method for patch classification capable of working
with images with different number of channels.

The rest of this section describes existing related methods, starting from
the domain-invariant methods for both homogeneous and heterogeneous DA,
then describing translation methods, and finally showing the applications in
remote sensing. The work on semi-supervised DA is also briefly mentioned.

2.1 Domain-Invariant Feature Extraction

2.1.1 Homogeneous Domain Adaptation

The emergence of Generative Adversarial Networks (GANs) [13, 14] inspired
numerous domain adaptation techniques for computer vision [15, 16]. The idea
of making real and fake data indistinguishable is naturally extended to DA
where two domains should be brought to the same space.

GANs have two main components trained through an adversarial game —
a generator to generate realistically looking images; and a discriminator to
distinguish between real and generated images. Ganin et al. [15, 17] were one
of the first to use the principle of adversarial learning in domain adaptation.
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Instead of a generator and a discriminator, their method DANN (Domain-
Adversarial Neural Network) uses a feature extractor and a domain classifier.
While the feature extractor has the task of extracting domain invariant
features from two domains, the domain classifier is trained to predict to which
domain the extracted features belong.

The original GAN minimises the Jensen-Shannon (J-S) divergence between
the spaces of real and generated images [13]. However, this formulation suffered
from problems such as unstable training, mode collapse etc. These issues were
addressed with the introduction of Wasserstein GAN [14] by minimising the
Wasserstein distance instead of J-S divergence. Calculating this metric is com-
putationally expensive, so it is approximated with a domain critic, a neural
network that replaces the discriminator in the original GAN. The improve-
ments of Wasserstein GAN found their application in domain adaptation with
the WDGRL (Wasserstein Distance Guided Representation Learning) method
[16]. WDGRL is similar to DANN in that it also extracts domain invariant
features from two domains but instead of a domain classifier, WDGRL uses a
domain critic.

2.1.2 Heterogeneous Domain Adaptation

A large majority of DA methods for CV are concerned with RGB domains
[15, 16, 18]. As for heterogeneous DA methods for CV based on domain-
invariant feature extraction, most of the work has been studied in domains
having different features, e.g. SURF and DeCAF features [4, 5, 8], but not on
the raw image data. Other than image-image DA, the problems of image-text
DA [4, 7, 8], and text-text DA [4, 5] have also been tackled.

To be capable of working with inputs of different sizes, non-DL methods
used matrix projection to project the original inputs to a common space of
the same size [4, 19]. On the other hand, DL methods mostly use two separate
input branches for this purpose.

Deep Transfer Network (DTN) [7] has a number of weakly shared lay-
ers after separate input branches. It is specifically designed for transferring
from textual to image data. DTN assumes that there is a co-occurrence set of
paired text and image data, which simplifies the discovery of relations between
domains. DTN also needs at least a small amount of labelled target data, and
it is therefore not applicable in UDA.

Another DL based approach proposed by Wang et al. [5], uses autoencoders
to project the inputs to a space of the same size. Domain divergence is reduced
by minimising MMD distance. Local structure of the data is preserved using
a manifold alignment term that keeps neighbouring same-class samples close
in the feature space. As such, this method requires a small amount of labelled
data in the target domain. It does not, however, require a co-occurence set of
paired data. Pseudo-labels are also employed to augment the number of target
labels.

Our methods, SS-HIDA and UPL-HIDA, also have separate input branches
which bring the inputs to a space of the same size. These are then followed by
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the shared layers that extract domain invariant features. SS-HIDA and UPL-
HIDA can work on raw input images and do not require paired data between
domains.

2.2 Translation methods

2.2.1 Optimal transport

The idea of optimal transport theory is to ‘transport’ the source distribution
into the target distribution’s space, which reduces the Wasserstein distance
between the distributions to zero. Optimal transport can be used in DA by
training the classifier on the transported labelled source data in target domain
space [20]. The transport of the joint feature/label distribution is also consid-
ered [21]. This approach is very useful in making a neural network robust to
noisy labels [22]. It can also be combined with deep learning [23], in which
optimal transport is performed on the feature representations from the layers
of a convolutional neural network.

Optimal transport also found its application in HDA by using Gromov-
Wasserstein (GW) distance to find the transport plan [24]. GW distance is
convenient for heterogeneous domains, as it is only based on preserving the
distance between samples of the same domain when transporting, thus domains
can have different dimensionality. Redko et al. [6] improve upon GW distance
by introducing co-optimal transport and the COOT measure, which not only
takes into account the correspondence between samples, but also relations
between features. Though very promising for HDA, these methods are shallow
and lack the abstraction that can be provided by DL.

2.2.2 Feature translation

Transfer Neural Trees (TNT) [8] is a DL method for HDA based on feature
translation. It consists of two input branches, which are followed by a Neural
Decision Forest for label prediction. The source input branch and decision
forest are first trained (on source data). They are then fixed, and the target
branch is trained to adjust the extracted target features to the already trained
classifier. TNT is evaluated for image-image adaptation but, as with previous
methods, DeCAF and SURF features were used.

The training algorithm of Adversarial Discriminative Domain Adaptation
(ADDA) [9] is very similar to TNT, except that a softmax layer is used as a
classifier instead of a neural forest, and that the domain difference is reduced
in an adversarial manner by using a domain classifier. ADDA is evaluated
on different modalities of raw image data (RGB and depth images), but is
primarily designed for homogeneous data.

2.2.3 Image-to-Image Translation

Perhaps the most promising of the existing methods for image based HDA
are Image-to-Image translation GANs [25, 26], which can translate images
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from one domain to another. One of the most famous architectures is Cycle-
GAN [25]. Unlike many similar methods, CycleGAN does not require matched
pairs between domains. The network consists of two generators and two dis-
criminators and is trained to translate both from the source domain to the
target, and vice-versa. The success of CycleGAN lies on its cycle consistency
loss — images translated from one domain to the other have to be correctly
translated back, thus the structure and salient information is preserved dur-
ing translation. It is worth noting that technically, CycleGAN can work with
heterogeneous datasets of different dimensionality, but in that case one of the
terms in CycleGAN loss function—identity loss—needs to be removed.

Hoffman et al. successfully applied CycleGAN to DA in RGB images [27].
Their method CyCADA performs both pixel level and feature level adaptation.
However, the semantic loss introduced prevents this method from being used
in HDA.

2.3 Remote sensing

Transfer learning in RS is a much more difficult task when compared to CV.
For many CV object classification datasets, models pre-trained on ImageNet
give transferable features. However, the equivalent large-scale curated datasets
in RS are only beginning to exist [28, 29]. Neumann et al. gave an interest-
ing study [30] on transfer learning across multiple remote sensing datasets.
The authors simply pre-trained a model on a source dataset and fine-tuned it
on target data, this achieved competitive results. Nevertheless, the fact that
heterogeneous data (i.e. data with > 3 and/or non-RGB bands) exists would
prevent them from being applied in the same manner as in CV.

Tasar et al. propose an image-to-image DA architecture named SemI2I
for the task of semantic segmentation [31]. Images translated from the source
space are used to train a semantic segmentation model in target space. SemI2I
uses the notion of cycle consistency as in CycleGAN, but is based on autoen-
coders and cross reconstruction. The whole approach is evaluated on two RGB
domains with images from different cities.

CycleGAN and Conditional GANs have been used for translating between
optical and SAR images [32–34]. Deep features can then be used from a SAR-
to-optical generator to perform semantic segmentation [33] and in change
detection [34]. Though all of these works agree that the problem of optical-
SAR translation is suboptimal and ill-posed, it turns out to be very useful
as a proxy task, as it helps with the global understanding of the image, and
provides meaningful semantic features for differentiating between land cover
classes.

There have been works on DA for semantic segmentation of land cover
maps using data from different sensors in different domains [10, 12], but in one
case, though the bands may be different, their number still has to be the same
[10], while in the other case, labelled segmentation masks are needed in the
target domain, and these (segmentation masks) are used as an intermediate
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space during the translation from the target domain to the source domain [12].
This approach therefore does not extend to classification.

Voreiter et al. propose the most similar method to that presented herein
[11], the authors use a variant of CycleGAN — they add to it a metric loss, a
classification loss, and a super-resolution capability. The method is applied to
two remote sensing datasets of different resolutions. The method can be used
for both unsupervised and semi-supervised HDA.

2.4 Semi-Supervised Domain Adaptation

In the literature, unsupervised domain adaptation (UDA) is addressed more
often than semi-supervised domain adaptation (SSDA). However it was shown
that existing UDA methods do not scale well to the semi-supervised setting,
and that a method that specifically aims to use the fact that few target labels
exist easily outperforms UDA methods [35]. This shows that there is a need for
methods specifically tailored for SSDA, which motivated us to have separate
variants of our method for SSDA and UDA.

2.5 Our Contribution

Most of the existing HDA methods are based on the idea of translating data
from one domain to the other, either in pixel space using image-to-image
methods [25, 26], or in feature space, e.g. ADDA [9]. When trained in this man-
ner, however, the resulting models are only applicable to the target domain.
They are therefore bound to either simplify or invent the difference between
domains during the translation, since the target data distribution must be
made to match the source’s distribution. Instead, we propose a method that
extracts domain invariant features. The extracted features are neither in the
source, nor target data space, but in a learnt common latent space. The
hypothesis being that this will allow the model to enhance the latent repre-
sentation using information from both domains. Our method is inspired by
homogeneous DA methods such as DANN [15], WDGRL [16], and DSN [18]
which also extract domain invariant features, but are limited to working with
homogeneous domains only.

3 Methodology

In this section we will present two models, one for semi-supervised het-
erogenous domain adaptation (SS-HIDA), and another for unsupervised
heterogeneous domain adaptation (UPL-HIDA).

3.1 Semi-Supervised Heterogeneous Image Domain
Adaptation (SS-HIDA)

We extend the homogeneous, unsupervised domain adaptation approach Wa-
sserstein Distance Guided Representation Learning (WDGRL) [16] to the case
of heterogeneous image data.
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Fig. 4: The proposed heterogeneous semi-supervised domain adaptation
model. The specific architecture presented is used for the case when the source
dataset is RESISC45 and target dataset is EuroSAT. The kernel size of all
convolutional layers is 5× 5.
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domain Ds following the data distribution Pxs . SS-HIDA uses a small amount
of target labels, so let us define two separate sets of target data, one being

labelled Xtl =
{
(xtl

j , y
t
j)
}ntl

j=1
, and the other being unlabelled Xtu =

{
xtu
k

}ntu

k=1
,

ntl << ntu, where target samples xt ∈
{
xtl
j

}ntl

j=1
∪
{
xtu
k

}ntu

k=1
come from the

domain Dt and follow the data distribution Pxt . Unlike WDGRL, SS-HIDA
is able to work with heterogeneous domains, i.e. xs ∈ X s, xt ∈ X t, X s ̸= X t

where the dimensions ds and dt of spaces X s and X t may or may not differ.
SS-HIDA’s architecture is presented in Figure 4, and consists of 5 neural

network components: 3 feature extractors, a domain critic, and a class discrim-
inator. To be able to work with the data coming from two different spaces,
possibly of different input sizes, two different input branches are needed. There-
fore, SS-HIDA has two separate feature extractors — FEs : X s → Rd1 and
FEt : X t → Rd1 — these have the task to bring the data to a feature space of
the same size — gs = FEs(x

s) and gt = FEt(x
t). Furthermore, another invari-

ant feature extractor FEi : Rd1 → Rd2 is employed to model the similarity of
the data domains, and to extract domain invariant features — hs = FEi(g

s)
and ht = FEi(g

t). Note that in Figure 4, the specific architecture presented is
for use on RESISC45 and EuroSAT datasets, which can be adapted to other
datasets.

Wasserstein distance is used to measure the distance between domains.
This metric is calculated by solving the optimal transport problem. Given two
probability distributions µ and ν, it is necessary to find the best possible plan of
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transport to transform µ to ν. The optimal transport plan can be represented
as a joint probability distribution of marginals µ and ν. Let Π(µ, ν) be the
space of all such joint probability distributions. The optimal transport plan
P ∗ ∈ Π(µ, ν) is calculated such that

P ∗ = argmin
P∈Π(µ,ν)

∫∫
c(a, b)P (da,db),

s.t.

∫
P (a, b) da = ν(b),

∫
P (a, b) db = µ(a),

(1)

where c(a, b) is a cost of transport (usually Euclidean), and P (da,db) is the
amount to be transported. The Wasserstein distance between distributions µ
and ν is the total price of the transport using the optimal plan, and it is defined
such that

W [µ, ν] =

∫∫
c(a, b)P ∗(a, b) da,db. (2)

The dual formulation of the Wasserstein distance, equivalent to Eq. (2), is
expressed as

W [µ, ν] = max
f

(∫
f(a)µ(a) da−

∫
f(b)ν(b) db

)
,

s.t. f ∈ LC = {f : R → R | f(a)− f(b) ≤ c(a, b)},
(3)

which is the difference between the mathematical expectations of function f
under µ and under ν, with the Lipschitz contraint LC that bounds the growth
of f by c.

Since finding f is computationally expensive, the domain criticDC : Rd2 →
R is trained to approximate it instead [14, 16], accelerating the training process.
The domain critic uses the whole target dataset xt including the unlabelled
part, i.e. a total of nt = ntl+ntu samples. The loss of this component is defined
such that

Lwd(h
s, ht) =

1

ns

ns∑
i=1

DC(hs
i )−

1

nt

nt∑
j=1

DC(ht
j). (4)

In order to calculate the empirical Wasserstein distance, Eq. (4) needs to
be maximised, therefore the domain critic component is trained by solving

max
θdc

(Lwd − γLgrad), (5)

where θdc are the domain critic’s weights and γLgrad is a regularisation term
enforcing the Lipschitz constraint. In the original version of the Wasserstein
GAN, the critic function f was constrained by simple weight clipping. This
choice had drawbacks such as exploding/vanishing gradients, and capacity
underuse — choosing only simple functions for f . Gulrajani et al. [36] pro-
posed an improved training procedure for Wasserstein GANs. They proved
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Fig. 5: Schema for obtaining pseudo-labels from CycleGAN. The generator
Gt→s is translating target data xt to the space of source domain. These “fake”
source images x̂s are then labelled by the classifier Cs which was previously
trained on source data (xs, ys).

that the optimal choice for f has gradient norm 1 almost everywhere under two
domains, making f 1-Lipschitz. Therefore, a regularisation term Lgrad which
penalises gradient norms different from 1 is added. When training our domain
critic [16], the regularisation term amounts to

Lgrad(ĥ) =

(∥∥∥∇ĥDC(ĥ)
∥∥∥
2
− 1

)2

, (6)

where ĥ is the union of source and target representation points — hs and ht

— and the points sampled from the straight lines between coupled points of
hs and ht. This way, we are sufficiently close to enforcing the norm of 1 on the
entire space of the two domains [36].

Finally, the class discriminator C : Rd2 → Rc (c being the number of
classes) is trained on the extracted features of all the labelled samples (hl, yl) =
(hs, ys)∪ (htl, ytl). If labels yli are one-hot encoded, cross-entropy classification
loss is defined such that

Lc(h
l, yl) = − 1

ns + ntl

ns+ntl∑
i=1

c∑
k=1

yli,k logC(hl
i). (7)

If we denote the weights of the feature extractor as θfe, and the weights
of the class discriminator as θc, the final min-max adversarial optimisation
problem to be solved is

min
θfe,θc

{
Lc + λmax

θwd

[
Lwd − γLgrad

]}
. (8)



Springer Nature 2021 LATEX template

Learning domain invariant representations of heterogeneous image data 13

3.2 Unsupervised Pseudo-Labelled Heterogeneous Image
Domain Adaptation (UPL-HIDA)

Unsupervised heterogeneous domain adaptation is a very challenging problem.
With very different data modalities, and without any supervision in the target
domain, it is very difficult to find correspondences between domains, limiting
success.

The SS-HIDA model can be adjusted for use in unsupervised DA by simply
excluding labelled target samples from the classification loss in Eq. (7), such
that

Lc(h
s, ys) = − 1

ns

ns∑
i=1

c∑
k=1

ysi,k logC(hs
i ). (9)

However, preliminary experiments showed that such an approach does not
work reliably, as will be explored in Section 4.1.5. The reason for this is that
the classification loss, based only on the source samples, will not update the
weights of the target feature extractor FEt during backpropagation. These
weights will only be updated by the loss of the domain critic Lwd, which will
be shown to be insufficient.

To make up for the absence of labels in the target data, we can rely on
a pseudo-labelling approach instead. For this purpose, we choose the strategy
employed by Voreiter et al. [11]. This specific method is chosen because it
works on raw image data and is evaluated on two heterogeneous remote sensing
datasets. The authors train a variant of CycleGAN and use it to translate
between two image domains of different resolutions. The generator normally
used in CycleGAN is here replaced by the generator from super-resolution
GAN (SRGAN) [37] to handle resizing of the images during the translation.
After their CycleGAN is trained, it is used to translate images from the target
to the source domain. Translated images are assigned pseudo-labels by a pre-
trained source classifier. In the original work, these pseudo-labels are then used
for training the final classifier in the target space. Instead, we can use the
pseudo-labels to replace the now missing target labels and perform training in
the same manner as with SS-HIDA. We will name this approach UPL-HIDA
(Unsupervised Pseudo Labelled HIDA). An overview is presented in Figure 5.

If we denote the generator for translating the target to source domain as
Gt→s, and the pre-trained source classifier as Cs, we can express the formula
for calculating pseudo-labels as

ŷt = Cs

(
Gt→s

(
xt
))

. (10)

In order to eliminate unreliable pseudo-labels we filter them and use only
the most confident predictions. The usual approach would be to set a threshold
for the probability given at the output of the softmax layer of Cs, and use
only those target samples that exceed this threshold. However, in order to
keep the dataset balanced and to not have any under-represented classes, we
set this threshold per class, and ensure a balanced class representation. Let us
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denote the filtered target samples as xtf , their extracted features as htf , their
pseudo-labels as ŷtf , and their number as ntf .

The class discriminator of UPL-HIDA is trained on the union of extracted
features of labelled source samples and filtered pseudo-labelled target samples
(hl, ŷl) = (hs, ys) ∪ (htf , ŷtf ). The classification loss is therefore defined such
that

Lc(h
l, ŷl) = − 1

ns + ntf

ns+ntf∑
i=1

c∑
k=1

ŷli,k logC(hl
i). (11)

4 Experimental results

4.1 Remote sensing

In remote sensing, the data used is very different than in standard computer
vision. In CV, normally the task is to recognise natural object(s) on images,
while in RS images the land covers should be distinguished. Land cover clas-
sification requires understanding the complete image to determine what kind
of area is shown, where in CV we pay attention to the specific objects on
images. Therefore, the CV methods often cannot be applied successfully to
RS. Another problem, as mentioned, is lack of reference data in RS, mak-
ing it difficult to train supervised deep learning models. In CV on the other
hand, the existence of large-scale ImageNet dataset allowed for training huge
models with very high performance. Furthermore, ImageNet models provide
good-quality features for other CV datasets as well, hence they could be used
for a broad spectrum of tasks with transfer learning. But ImageNet features
of RS data are not as good as for common CV benchmarks, making transfer
learning in RS much more difficult task than in CV.

4.1.1 Data

The proposed approach is evaluated on the following eight corresponding
classes from two heterogeneous remote sensing datasets (details given in Table
1 and examples of classes given in Figure 6):

• NWPU-RESISC45 [2] (high resolution aerial RGB images extracted from
Google Earth) — dense residential, forest, freeway, industrial area, lake,
meadow, rectangular farmland, and river.

• EuroSAT [1] (low resolution multi-spectral images from the Sentinel-2A
satellite) — residential, forest, highway, industrial, sealake, pasture, annual
crop and permanent crop (two classes merged into one), river.

The reference data is given as a single label per patch, the problem to be
solved is therefore patch classification.

The RESISC45 dataset is composed of images taken from 100 countries
and regions all over the world, throughout all seasons and all kinds of weather.
The EuroSAT dataset covers 34 European countries, and also consists data
from all over the year. Both datasets therefore have in-domain temporal and
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Name Source Image Size Patches Classes Resolution

RESISC45 Aerial 256× 256× 3 31,500 45 0.2m−30m
EuroSAT Satellite 64× 64× 13 27,000 10 10m

Table 1: Characteristics of NWPU-RESISC45 and EuroSAT datasets

River Forest Rectangular 
Farmland

Dense 
Residential

Industrial 
Area

RESISC45

EuroSAT

Freeway Lake Meadow

River Forest Crop Residential Industrial Highway Sealake Pasture

Fig. 6: Examples of chosen corresponding classes from RESISC45 and
EuroSAT datasets. For EuroSAT, RGB version of the dataset is shown.

geographical variability. This variability, when intra-class, can make even the
in-domain problem of classification very difficult. Consider the Figure 7a with
examples of images from the same class. It can be seen that the variability
can be huge, resolution can vary a lot in RESISC45, ranging from car clearly
visible on the road to the road itself barely visible. The apperance of Crop
class in Eurosat dataset can also vary greatly.

The problem becomes even worse with intra-class similarity on top of inter-
class variability. Industrial and residential area are both images of buildings
which can frequently cause mix-up. In RESISC45, dense forest can resemble
meadows having similar colour and texture on aerial images. In low-resolution
EuroSAT dataset, forest sometimes look just like flat green patch without
texture, which can resemble the patches of green water from lake/sea. Pasture
images can have separate areas of vegetation and soil, much like crops (Figure
7b).

When performing patch classification, one issue is that multiple classes of
land cover can be present on a patch. The experts who annotated images chose
the label that is dominant or central to the patch, however the presence of
other classes is sometimes significant and can be misleading when the model
is learning. This especially holds e. g. when river or road are passing though
the residential or agricultural area, such as in Figure 7c.

As in-domain classification already turns to be a challenging problem in
remote sensing, transfer learning brings another level of difficulty, especially
with the huge domain shift like in our case. As seen in Figure 8, images from
some classes might tend to be aligned with the wrong class in the other domain.
Lake class in RESISC45 shows the entire lake with surrounding area, whereas
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a) Intra-class variability

RESISC45 EuroSAT

Freeway Crop

Industrial

Dense 
Residential

Meadow

Forest

Industrial

Residential Pasture

Crop

b) Inter-class similarity

River Highway

c) Patches with multiple classes present

Forest

Sealake

Fig. 7: Examples of issues when classifying remote sensing datasets: a)
intra-class variability, b)inter-class similarity, c) patches with multiple classes
present

Meadow Forest

SeaLakePasture

LakeRectangular 
Farmland

RESISC45

EuroSAT

Fig. 8: Examples of issues when doing transfer learning between RESISC45
and EuroSAT

in EuroSAT only a patch of water is shown, making it more similar to other
classes with single-color images like meadow and forest.

One advantage of our heterogeneous approach is that we can utilise
information from all the channels. The additional information provided by
non-RGB channels can be very useful in discriminating different classes, how-
ever it is usually neglected in other works. Images from multispectral EuroSAT
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Fig. 9: All bands of a multispectral image. Red, green, and blue channels are
shown together as an RGB image, while other channels are shown as greyscale
images.

dataset, aside from visible RGB band, also have near infrared band (NIR)
band, short-wave infrared (SWIR) and red edge bands etc. The 13 channels of
an EuroSAT image are shown in Figure 9.

The datasets are split into train, validation, and test sets with the propor-
tion of 60:20:20 while keeping the classes balanced in all sets. The test set was
set aside during development and only used for the final experiments presented
herein.

4.1.2 Implementation details

Unlike WDGRL, whose components are fully connected neural networks, SS-
HIDA and UPL-HIDA are convolutional architectures (see Figure 4 for details).
The feature extractor for RESISC45 consists of two convolutional layers with
16 and 32 filters respectively. Each conv. layer is followed by 4×4 max-pooling.
The feature extractor for EuroSAT is the same, except that it has 2× 2 max-
pooling after every conv. layer. The shared invariant feature extractor has
two convolutional layers with 32 and 64 filters respectively, and one fully-
connected (FC) layer of 100 nodes. All of the kernels have size 5×5. The class
discriminator has one FC layer with softmax activation. The domain critic
(DC) is identical to that in WDGRL — it has an FC layer with 100 nodes
followed by an FC layer with 1 node.

In each training step, the DC is trained for 10 iterations with a learning
rate of 10−3, the DC is then frozen and the rest of the model is trained for 1
iteration with a learning rate of 10−4. The DC loss’ weight λ is 0.1. The Adam
optimiser is used.

The input data is standardised per channel so that each channel has mean
0 and standard deviation 1. The following augmentation transformations are
used: flipping with a probability of 0.45, rotation with a probability of 0.75 for
90°, 180°, or 270°, changing contrast with the probability of 0.33 by multiply-
ing the values of the pixels with the coefficient ranging between 0.5 and 1.5,
changing brightness with the probability of 0.33 by adding the coefficient rang-
ing between −0.3 and 0.3 scaled by the mean of pixel values per channel before
standardisation, blurring with the probability of 0.33 with Gaussian filter with
σ parameter values ranging from 1.5 to 1.8, and finally adding Gaussian noise
with mean 0 and standard deviation between 10 and 15 with the probability
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R → E 6.25% 2.5% 1.25%

Target classifier 76.07 (1.75) 64.95 (3.25) 58.70 (4.19)
CycleGAN for HDA 63.29 (3.80) 56.39 (6.70) 41.57 (9.20)
SS-HIDA 81.34 (1.24) 70.91 (2.13) 66.14 (2.92)

E → R 6.25% 2.5% 1.25%

Target classifier 66.25 (2.90) 58.41 (1.73) 47.55 (5.11)
CycleGAN for HDA 58.75 (6.91) 50.79 (5.40) 47.29 (1.53)
SS-HIDA 73.57 (2.64) 68.34 (2.59) 62.68 (3.24)

Table 2: Top — Accuracy of domain adaptation with RESISC45 as source
and multispectral EuroSAT as target (R → E). Bottom — Accuracy of domain
adaptation with multispectral EuroSAT as source and RESISC45 as target (E
→ R). Standard deviation is shown in parentheses. In both RESISC45 and
EuroSAT, 6.25%, 2.5%, and 1.25% labelled data is 25, 10, and 5 images per
class respectively.

of 0.33. The batch size is 32, and in each iteration, half of the training batch
(16) comes from the source, and the other half from the target domain. The
model is trained for 40 epochs.

4.1.3 Compared approaches

To the best of our knowledge, there are no other HDA methods created for
working with the raw images from two domains of unpaired data with different
number of channels. The only method we found possible to compare SS-HIDA
and UPL-HIDA with is CycleGAN for HDA by Voreiter et al. [11]. This method
is specifically tailored for data with different spatial resolution, but technically
could be applied to data with different number of channels as well. CycleGAN
for HDA is representative of an image-to-image translation model (contrary
to our domain invariant SS-HIDA and UPL-HIDA), and can be used in both
SSDA and UDA setting. The results are also compared with the performance of
a simple target baseline, i.e. a classifier trained on the same amount of labelled
target data as our semi-supervised DA model. The same architecture is used:
the same layers as the target FE, invariant FE, and class discriminator. The
same augmentation transformations (described above) are also used.

The semi-supervised DA models are evaluated on different amounts of
labelled target data — 25 (6.25%), 10 (2.5%), and only 5 labelled samples
per class (1.25%). The unsupervised models are evaluated without using any
labelled target data.

4.1.4 Semi-supervised DA Results

The accuracy of the proposed and comparison models are presented in Table
2. Two cases are demonstrated, one when the RESISC45 is used as a source
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R → E-RGB 6.25% 2.5% 1.25%

Target classifier 65.10 (2.10) 55.57 (1.29) 44.55 (3.85)
CycleGAN for HDA 54.54 (3.53) 46.00 (7.84) 49.59 (9.33)
SS-HIDA 69.07 (1.01) 62.50 (3.52) 56.52 (2.39)

E-RGB → R 6.25% 2.5% 1.25%

Target classifier 66.25 (2.90) 58.41 (1.73) 47.55 (5.11)
CycleGAN for HDA 51.11 (7.64) 52.70 (5.45) 38.38 (3.91)
SS-HIDA 73.98 (0.99) 65.39 (3.38) 62.34 (4.82)

Table 3: Results when using only RGB bands. Top — Accuracy of domain
adaptation with RESISC45 as source and RGB EuroSAT as target (R → E-
RGB). Bottom — Accuracy of domain adaptation with RGB EuroSAT as
source and RESISC45 as target (E-RGB → R). Standard deviation is shown
in parentheses. In both RESISC45 and EuroSAT, 6.25%, 2.5%, and 1.25%
labelled data is 25, 10, and 5 images per class respectively.

domain, and vica-versa. All 13 bands from the EuroSAT dataset were used
throughout.

The results show that SS-HIDA outperforms the competing method Cycle-
GAN for HDA by a large margin in all cases. With RESISC45 as source and
EuroSAT as target (R → E), SS-HIDA gains around 14–24% in accuracy, the
most for the case with 1.25% labelled data. With EuroSAT as source and
RESISC45 as target (E → R), the difference in favor of SS-HIDA is around
15–18%. It should also be noted that the results of CycleGAN for HDA almost
always have much higher standard deviation than those of SS-HIDA. As with
all GAN architectures, training CycleGAN is unstable, so the result may vary
for different runs. Nevertheless, in our experiments, the maximal result that
CycleGAN achieved was lower than the minimal result of SS-HIDA in all cases.

The baseline classifier performs better than CycleGAN for HDA. For R →
E, SS-HIDA is stronger than the baseline by around 5–7%. For E → R, the
gain of SS-HIDA is 7–15%, the highest gain being for the case of 1.25% labelled
data. The reason for the higher gap in E→ R is the fact that RESISC45 is more
difficult to solve than EuroSAT, hence the baseline classifier for RESISC-45
cannot perform as well as that of EuroSAT, while SS-HIDA is not as affected
and retains strong performance with RESISC45 as the target domain.

It is worth noting that the baseline performs surprisingly well with such
few labelled images, achieving almost 60% for R → E, and almost 50% for
E → R when only five labelled images per class are given. Keeping in mind
that the specific architecture used is not optimised to achieve state-of-the-art
performance, this indicates that the classification problem is relatively easy,
especially for the EuroSAT dataset (which is backed up by other findings in
the literature [30, 38]) and perhaps more pronounced improvements could be
found in more difficult applied problems.
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Fig. 10: Comparing translations of CycleGAN models trained to translate
from Multispectral EuroSAT to RGB RESISC45 (second column) and RGB
EuroSAT to RGB RESISC45 (third column). The first column shows original
EuroSAT images and the fourth column original RESISC45 images of the
corresponding class.

Results with RGB bands only. To assess the impact of using non-RGB bands,
this section presents the DA results of SS-HIDA and the comparison models
using the RESISC45 dataset, and RGB-only bands of the EuroSAT dataset.
CycleGAN is known to have difficulties when translating between domains
of different spectral bands. Figure 10 presents the translations when using
multispectral and RGB-only versions of EuroSAT. It is clear that this could
degrade DA performance. On the other hand, using additional information
from non-RGB bands could improve both CycleGAN for HDA and SS-HIDA
classification performance, especially when EuroSAT is the target domain.

In the following experiments the images do not undergo re-sampling and
therefore, although both domains are now RGB, they have different resolutions
and image sizes. The results are shown in Table 3. As can be seen, SS-HIDA
trained on RGB-only data still outperforms both CycleGAN for HDA and the
baseline classifier, gaining 7–16% over CycleGAN for HDA, and 4–12% over the
baseline in R → E-RGB. The advantage of SS-HIDA is even more pronounced
for the opposite case (E-RGB → R), gaining 13–24% over CycleGAN for HDA
(again with reduced standard deviation), and 7–15% over baseline.
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Fig. 11: Ablation study of SS-HIDA, comparison with the model without
domain critic and without shared layers with varying numbers of labelled train-
ing images. The numbers are expressed in percentages of labelled images.

It should be noted that in all cases when EuroSAT is the target, the result
of SS-HIDA is higher when using all of the bands compared to using RGB-
only bands. Even when EuroSAT is used as a source domain, the results on
the target domain are either comparable or higher when using all of the bands
of EuroSAT. This proves that SS-HIDA is taking advantage of the additional
information in the multispectral bands. As for CycleGAN for HDA, using
non-RGB bands is sometimes more and sometimes less successful than using
RGB-only data. While it can certainly make use of non-RGB information,
the limitation is that CycleGAN translations between RGB and multispectral
spaces are not of very good visual quality (Figure 10). This shows the clear
advantage of a domain invariant method over translation, it can only benefit
from additional bands.

Ablation Study. In order to uncover the impact of each of the model’s com-
ponents, an ablation study is performed. One comparison model is created
in which the domain critic is removed (SS-HIDA-NoDC), thus removing the
domain adaptation component. A second comparison model is obtained by
separating all of the layers of source and target architecture so that only the
classifier is shared between them (SS-HIDA-SepFE), thus reducing the capacity
of learning a general representation. The multispectral version of the EuroSAT
dataset is used.

The results are shown in Figure 11. In both cases we can confirm that
removing the domain critic leads to a significant drop in performance. In this
case, there is no requirement for the model to learn overlapping distribu-
tions, therefore reducing the classifier’s ability to generalise between domains.
On the other hand, separating the source and target layers has less effect
on performance. When RESISC45 is the source and EuroSAT is the target,
SS-HIDA-SepFE is a little worse than SS-HIDA. But when EuroSAT is the
source and RESISC45 is the target, SS-HIDA-SepFE even outperforms SS-
HIDA when there is 6.25% labelled data in target domain. The two models
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Fig. 12: PaCMAP visualisation of SS-HIDA features.

fare about the same for 2.5%. But SS-HIDA remains significantly better when
there is only 1.25% target labelled data. From this we can conclude that, when
there are sufficient labels in the target domain, the domain critic is able to
compensate for the separation of source and target layers, and still forces the
model to extract domain invariant features. It is also worth noting that none
of these variations result in performance worse than the baseline.

Feature visualisation. A PaCMAP [39] visualisation of the features from
the penultimate layer of SS-HIDA is shown in Figure 12. It illustrates that,
although these two datasets have different dimensionalities/modalities and
pass through two separate feature extractors, SS-HIDA successfully learns
a latent space in which their distributions overlap and their classes are
well-matched.

4.1.5 Unsupervised DA results

Our unsupervised pseudo-labelled solution, UPL-HIDA, depends upon a
threshold value to define how many samples should be pseudo-labelled. The
threshold of 12.5% was found to be a good choice in preliminary experiments,
meaning that the most confident 50 images per class are pseudo-labelled.
The following experiments were performed using this threshold value, and the
algorithm’s sensitivity to this parameter will be explored at the end of this
section.

UPL-HIDA is trained and compared with CycleGAN for HDA. The results
can be seen in Table 4 and these show that heterogeneous UDA is indeed
a challenging problem. Nevertheless, UPL-HIDA manages to outperform the
competing method in almost all of the cases. The best results can be obtained
in the R → E case using RGB EuroSAT where UPL-HIDA achieves an aver-
age accuracy of 43.64%, outperforming CycleGAN for HDA for more than 3%.
The standard deviation, however, is very high for both models. The reason
being that CycleGAN occasionally fails to learn meaningful translations, giv-
ing completely wrong pseudo-labels, which directly affects the performance of
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R → E RGB Multispectral

CycleGAN for
HDA

39.98 (16.25) 18.48 (8.00)

UPL-HIDA 43.64 (16.15) 18.84 (7.34)

E → R RGB Multispectral

CycleGAN for
HDA

24.96 (11.94) 16.82 (5.74)

UPL-HIDA 27.39 (15.23) 21.14 (5.33)

Table 4: Results of unsupervised domain adaptation models. Top — Accuracy
of unsupervised domain adaptation with RESISC45 as source and EuroSAT as
target (R → E). Bottom — Accuracy of unsupervised domain adaptation with
EuroSAT as source and RESISC45 as target (E → R). Standard deviations
are shown in parentheses next to the accuracy.
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Fig. 13: Accuracy of the unsupervised pseudo-labelled solution with varying
thresholds for choosing the most confident pseudo labels. Horizontal dashed
line shows the performance of CycleGAN for HDA. The numbers are expressed
in percentages of labelled images.

UPL-HIDA. But in most of the cases, the accuracy of both models is between
40% and 55%, with UPL-HIDA improving over the result of CycleGAN for
HDA in all of the experimental runs.

The difficulty of using RESISC45 as the target domain, limits the per-
formance of UDA methods (including increased standard deviations). Still,
UPL-HIDA is more successful, gaining more than 2% over CycleGAN for HDA.

The UDA models particularly struggle when multispectral data is used.
Without supervision, adding non-RGB channels appears to confuse the mod-
els rather than providing additional information. As shown before, CycleGAN
for HDA does not translate very well between RGB and multispectral data,
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and UPL-HIDA fails to find correspondences between features in such hetero-
geneous domains. For R → E, the performance of two models is very similar.
In the opposite E → R case, UPL-HIDA is stronger by more than 4%.

Ablation study. In order to asses the impact of using different thresholds for
pseudo-labelling, we show the results of UPL-HIDA on different amounts of
pseudo-labelled target data, ranging from 100% (whole dataset) to 1.25% (the
most confident 5 images per class are pseudo-labelled). The results without
using any pseudo-labels (0%) are also included. The performance of CycleGAN
for HDA is given as a horizontal line. The comparison is shown in Figure 13.
These results are obtained using the RGB version of EuroSAT. As CycleGAN
for HDA does not translate very well between RGB and multispectral data,
the potential of UPL-HIDA using pseudo-labels given by CycleGAN is better
seen on RGB-only data. N.B. These results are not comparable to those above
as the ablation study is performed on the validation set of the target domain
(rather than the test set).

When RESISC45 is source and EuroSAT is target domain, starting with
1.25%, the accuracy grows as more pseudo-labelled data is added, outperform-
ing CycleGAN for HDA from 2.5%, and reaching its peak with a threshold
of 12.5%. Afterwards, additional pseudo-labels become less reliable and harm
performance, but the accuracy remains higher than that of CycleGAN for
HDA.

The situation is not as clear when adapting in the opposite direction, when
EuroSAT is source and RESISC45 is target. As stated before, the RESISC45
dataset is more difficult to solve than EuroSAT, so the quality of pseudo-labels
given by CycleGAN is not very high to begin with. Regardless, the model with-
out using any pseudo-labels (0%) already outperforms CycleGAN for HDA,
and remains higher in all the cases. As can be seen, better performances could
have been obtained using threshold values different than 12.5% (notably 2.5%),
however optimising this parameter would require using a certain amount of
additionally labelled target data, so it was not done for these experiments.

It is worth mentioning that the pseudo-labelling strategy used in UPL-
HIDA does not provide any improvement when used with SS-HIDA. SS-HIDA
already makes a good use of available target labels and vastly outperforms
CycleGAN for HDA, therefore the pseudo-labels provided by CycleGAN are
not helpful. Filtering does not help either, as the most confident samples are
usually very similar to the available labelled images, thus not bringing any
new information to the model.

Feature visualisation. A PaCMAP visualisation of the features from the
penultimate layer of UPL-HIDA is shown in Figure 14. UPL-HIDA success-
fully learns a latent space in which the distributions of the datasets overlap.
However, as there is no supervision for the target domain, label flipping can
occur — “river” target points (magenta) are matched with “lake” source points
(brown). Also, target points of certain classes are more dispersed than was
observed with SS-HIDA, notably “crop” (red points) and “highway” (cyan
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Fig. 14: PaCMAP visualisation of UPL-HIDA features.

R → E

Source classifier 86.16 (0.63)
UPL-HIDA 87.71 (1.33)

E → R

Source classifier 93.07 (0.95)
UPL-HIDA 93.05 (0.74)

Table 5: Source domain performance of the baseline source classifier and UPL-
HIDA using multispectral EuroSAT without pseudo-labels. Top — Accuracy
on the source domain with RESISC45 as source and EuroSAT as target (R →
E). Bottom — Accuracy on the source domain with EuroSAT as source and
RESISC45 as target (E → R). Standard deviations are shown in parentheses
next to the accuracy.

points). Sebag et al. [40] point out that in adversarial domain adaptation, unla-
belled samples are only constrained by the domain discriminator, as opposed
to labelled samples, therefore domain alignment can shuffle unlabelled samples
and lead to negative transfer.

Results on the source domain. An advantage of domain invariance over
translation is that the final model can work in both (or more) domains. SS-
HIDA and UPL-HIDA’s performance on the source domain is comparable to
the source baseline classifier in all the cases. UPL-HIDA using multispectral
EuroSAT and not using pseudo-labels even outperforms the baseline classifier
trained on the source domain in R → E and has the same performance as the
baseline in E → R, see Table 5.
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chair chair table chair boxtable

Fig. 15: Visualisation of RGB-D data from NYU depth V2 dataset. Shown
are two whole scenes — one RGB and one depth map — and several patches
extracted from them.

4.2 RGB-Depth adaptation

Apart from application to the remote sensing, we also evaluate our method
on a common computer vision benchmark of adaptation between RGB and
depth images with the goal to show that we have developed a general-purpose
model which could be applied in various fields. Robots are often equipped
with a depth sensor in addition to an RGB camera, to be able to measure
the distance to the objects and have better orientation in space. One possible
benefit of doing RGB-depth adaptation is being able to recognise objects when
the visibility is bad, i. e. during the night. In that case only depth images are
available, but there are much less labelled depth datasets in comparison to
abundance of RGB labelled data, so it is a logical choice to use the knowledge
from related RGB datasets.

4.2.1 Data

We evaluate our method on NYU depth V2 dataset [41]. This dataset con-
sists of paired RGB and depth images (RGB-D) of indoor scenes captured by
cameras from the Microsoft Kinect. Since our method is a single-label patch
classification model, we cut the patches based on tight bounding boxes around
the objects of interest, as is done in other works on object classification of
NYU dataset [9, 42]. The objects are categorised into 19 classes. The dataset
is highly imbalanced, with some classes having very few examples. Figure 15
shows the original images and extracted patches, both RGB and depth. The
problem is obviously very challenging even for in-domain classification in both
domains, and more so for domain adaptation. The patches are sometimes of
very low resolution and they are often blurry, so it is difficult even for a human
to do the correct classification.

The original NYU depth V2 dataset has corresponding paired RGB and
depth images showing the same scene. As our method does not require paired
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data, we split the training set in two equal halves, of which from one we take
RGB images for source domain, and from the other we use the depth images
as a target domain. In the end, both our source and target domain consists
of 1958 patches each. Validation and test patches are taken from the images
from the validation and data test as given in original dataset, there are 775
RGB-D pairs of patches in validation set, and 3859 in test set.

Raw depth values are encoded as one channel (greyscale) image. Instead of
raw depth images, we use HHA encoding [43] which converts raw depth maps
to a three-channel image, the channels being horizontal disparity, height above
ground, and the angle the pixel’s local surface normal makes with the inferred
gravity direction.

4.2.2 Compared approaches

We compare our approach with Adversarial Discriminative Domain Adapta-
tion — ADDA method [9]. This method is based on translation, contrary to
our domain-invariant method. The translation is done in a feature spaces,
unlike CycleGAN which translates on the level of pixels. Even though ADDA
is a several years old method and not a state-of-the-art in homogeneous DA
anymore, it is the only general-purpose DA method we found that is evaluated
on the cross-modal adaptation between unpaired RGB and depth domains for
object (patch) classification task.

Having two separate feature extractors for source and target data, ADDA
is able to work with heterogeneous domains who have different channels, like
RGB and HHA-depth. But the limitation of the algorithm is that two domains
need to have the same number of channels. HHA encoding has 3 channels as
RGB, so ADDA can be used here, but cannot be used on domains with different
number of channels such as we saw in remote sensing. For this adaptation
task, ADDA is using VGG-16 architecture [44] with pretrained weights from
ImageNet.

CycleGAN for HDA is specifically made for remote sensing application,
and is not evaluated on general CV benchmark, so we do not include it here.

We also compare with the baseline — a classifier trained on source data
only, and then evaluated on target data without performing any adaptation.

We show only unsupervised DA results, because ADDA cannot be used in
semi-supervised setting, but we note that, as shown before, our method can
fully take advantage of available labels in target data.

4.2.3 Implementation details

To have a fair comparison with ADDA method, we also use VGG-16 architec-
ture as a basis for our model. We separate first two convolutional layers into
source and target FE; the rest of the layers stays in the common FE. The con-
volutional layers are initialised with pretrained ImageNet weights, with source
and target FE being initialised identically; the fully-connected layers are ini-
tialised randomly. At the first phase of the training, convolutional part of the
network is frozen, and only FC layers are trained with the learning rate 10−4.
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Fig. 16: Results of unsupervised DA methods on NYU depth V2 dataset, per
class and overall, expressed in accuracy.

Then the whole network is fine-tuned with a smaller learning rate of 10−5. We
present results of two variants of our unsupervised method:

• UPL-HIDA — using CycleGAN to obtain pseudo-labels; train FC layers
for 1 epoch, then finetune for 5 epochs; CycleGAN trained with ResNet
generator for 50 epochs (no super-resolution); CycleGAN translated target
images pseudo-labelled with a source baseline classifer with FC layers trained
for 40 epochs, then finetuned for 40 additional epochs; most confident 10
images per class (where available) are pseudo-labelled;

• U-HIDA — no pseudo-labels; train FC layers for 40 epochs, then finetune
for 30 epochs.

Domain critic has similar architecture as the domain classifier in ADDA,
it is a fully connected neural network consisted of 3 layers with 1024 nodes,
2048 nodes, and 1 node in the output layer. The rest of the training process
is the same as with RS datasets.

The data is preprocessed as is required to use pretrained VGG network —
all the patches are resized to 224 × 224 size, and all the channels are zero-
centered without scaling. Data augmentation is not used here to be fair in
comparison to ADDA which also does not use it. The batch size used is 256
— 128 per domain.

Note that VGG can be easily replaced with some other architecture like
ResNet.

4.2.4 Unsupervised DA results

The results of our and comparing methods are shown in Table ?. Accuracy
per class and overall accuracy are shown. Both our methods give higher over-
all accuracy than ADDA, showing the advantage of domain-invariant over a
translation method, with U-HIDA having the stronger performance than UPL-
HIDA. The pseudo-labels provided by CycleGAN are not of very good quality
in this case, because the dataset used has high number of classes (19), and
is highly imbalanced. The usage of pseudo-labels therefore degrades the per-
formance of our adaptation method, which results in U-HIDA having higher
overall accuracy. U-HIDA also has the best performance on 9 classes, and
UPL-HIDA on 4 classes. The worst performance in general is on the smallest
classes — class bathtub (13 images only) is never predicted by any model, and
classes toilet (16 images) and dresser (31 images) are predicted very rarely.
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The results presented herein prove that our method can outperform transla-
tion method and achieve SOTA performance not only on remote sensing, but
also on CV benchmarks. Having in mind the high number of classes, the low-
resolution patches, difficulty to classify even for humans, and a huge difference
between domains, the improvement in performance that our methods bring on
this challenging problems is significant.

5 Conclusions

This article has proposed a novel approaches to semi-supervised and unsu-
pervised heterogeneous image domain adaptation called SS-HIDA and UPL-
HIDA. To the best of our knowledge, these are the first such approaches
to extract domain-invariant features. The results showed that our domain-
invariant approach significantly outperforms the competing image-to-image
translation method, especially in the semi-supervised case. SS-HIDA showed
that it can make use of non-RGB data to improve performance. UPL-HIDA
showed that there is a potential for combining domain-invariant and transla-
tion methods in UDA. SS-HIDA and UPL-HIDA also give comparable results
on the source data, with UPL-HIDA even outperforming the source baseline
under certain conditions. The models were evaluated on two very challenging
cases — a remote sensing case with an aerial dataset RESISC45 and a satel-
lite dataset EuroSAT, but also on a RGB and depth images proving that our
method not limited to remote sensing applications only, and could be used for
other cases of heterogeneous images.

A possible improvement to SS-HIDA and UPL-HIDA might be brought by
using other pseudo-labelling techniques without CycleGAN instability, which
will be investigated in future work. Using our method for the task of semantic
segmentation in images of heterogeneous domains should also be considered.
Adaptation between optical and SAR images would be a very useful use case e.
g. for the tasks of change detection during natural catastrophes. Another inter-
esting direction is to extend our method to time-series data of different sensors;
using temporal information for land cover classification is one of the most
important trends in RS recently. Future work could also include application
to other fields like medical imaging.
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