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Analysis and Optimization of the Main Girder of the Bridge Crane 
with an Asymmetric Box Cross-Section 

Goran Pavlović 1) 
Mile Savković 2) 

The presented research deals with the optimal design of the main girder with an asymmetric box cross-section of the double-
beam bridge crane. The Moth-Flame Optimization algorithm (MFO) is used for solving this multicriteria optimization 
problem. This algorithm is a relatively new population-based metaheuristic method. The paper takes the following criteria as 
the constraint functions: strength, local stability of the girder plates (webs and top flange), local stability of the longitudinal 
stiffeners, global stability of the main girder, deflections, and period of oscillation. The justification of the proposed procedure 
is shown in one example of a real solution of the double-beam bridge crane. Significant savings in material were achieved in 
this research, within the range of 19.42 to 25.49%. The use of this algorithm enables the application of a very large number of 
variables and constraint functions, whereby the optimal values are obtained in a relatively short period. 
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Introduction 
OUBLE-BEAM bridge cranes are used for lifting and 
transporting heavy loads from one location to another. 

They are most frequently applied in production halls, 
industrial plants, etc., for manipulation, servicing and 
maintenance. 

The lightweight design of the main girder of the double-
beam bridge crane is the most important engineering task. The 
main girder is the most responsible part of the double-beam 
bridge crane. The weight of the main girder has the largest 
share in the total weight of the whole bridge crane structure, 
so it is very important to perform its optimization in order to 
reduce the total weight of the double-beam bridge crane. 
Proper choice of the geometric parameters of the box-girder 
(and its auxiliary constructive elements) leads to a significant 
reduction in the weight of the girder, as evidenced by 
numerous studies. 

The paper [1] shows the position of the longitudinal 
stiffeners on the optimal geometric parameters of the box 
girder of bridge cranes. Generalized Reduced Gradient 
(GRG2) code was used as the optimization method. 
Placement of auxiliary constructive elements (such as 
longitudinal and transverse stiffeners) influences the 
improvement of the structure of the box girder in terms of 
savings in material up to 38.3% [2]. The optimization of the 
bridge crane's box girder performed in the paper [3] showed 
that regular placement of the longitudinal stiffeners may result 
in savings from 18 to 21%. 
 
 
 
 

The use of various metaheuristic optimization algorithms is 
very present in solving engineering problems. The authors [4] 
presented the application of the Cyclical Parthenogenesis 
Algorithm (CPA) in optimizing the welded girder of the crane 
runway beam. The paper [5] presented the application of three 
metaheuristic optimization algorithms to minimize the weight 
of the box-girder of bridge cranes. The paper [6] considered 
the problem of optimizing the dimensions of the box cross-
section of the double-beam bridge crane (using the Adaptive 
Genetic Algorithm). The paper [7] presented the application 
of the Harris Hawks Optimizer (HHO) method on some 
engineering problems, where the results were compared with 
the previous ones. 

In this research, one bio-inspired optimization algorithm 
(MFO) is applied for a multicriteria optimization problem, to 
reduce the weight of the main girder of the double-beam 
bridge crane (with an asymmetric box cross-section). 

The aim of this research is to present the analysis and 
optimization of an asymmetrical box cross-section of the main 
girder of the double-beam bridge crane, whereby the 
longitudinal stiffeners are also subject to optimization, which 
can be easily cold-formed to the obtained dimensions. 

The optimization problem 
The purpose of this paper is to minimize the cross-sectional 

area of the main girder of the double-beam bridge crane with 
an asymmetric box cross-section. It means determining its 
optimal geometric parameters, while all constraint functions 
and recommendations must be satisfied. 

D 
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Figure 1. The structure of the double-beam bridge crane 

Fig.1 presents the general view of a double-beam bridge 
crane structure, [8]. This figure shows the appearance of the 
bridge crane carrying structure, which consists of the two 
main girders, the electrical trolley, as well as of electrical end 
carriages. 

The mathematical formulation of the optimization 
problem 

It is a single-objective multicriteria optimization problem, 
and it can be defined in the following way: 

    min 0obj if X subject to g X   (1) 

and 

 j j jl x u   (2) 

where fobj(X) is the objective function, gi(X) are constraint 
functions, i=1,..,m is the number of constraints, j=1,..,n is the 
number of design variables, X  is the design vector made of n 
variables, lj is the lower limit, and uj is the upper limit. 

Variables (xj) are values that should be defined during the 
optimization process. This research treats ten optimization 
variables (Fig.2): 

 
 
 

1 2 3 4 5 6 7 8 9 10

1 2 3 4 1

T

T
p p p

X x x x x x x x x x x

t t t t b h v b h t

 


 (3) 

Input parameters for this optimization problem are: 
Classification class, Q is the carrying capacity of the bridge 
crane, L is the span of the bridge crane, mt is the weight of the 
trolley, bt is the distance between wheels of the trolley, e1 is 
the distance between wheel 1 and resulting force in the 
vertical plane (Fig.3), am is the bridge crane acceleration, E is 
the elastic modulus of the plate, ρ is the density of the girder 
material, Re1 is the minimum yield stress of the plate material, 
and Re2 is the minimum yield stress of the longitudinal 
stiffeners. 

The objective function 
The cross-sectional area of an asymmetric box cross-

section of the main girder of the double-beam bridge crane 
(the objective function) fobj (Fig.2) is noted as: 

 2obj Lf A A    (4) 

 
 
 

where A is the area of an asymmetric box (webs, bottom and 
top flanges), and AL is the area of the longitudinal stiffener: 

  1 2 2 3 4A b t b t h t t        (5) 

  L p p pA t b h    (6) 

Materials S355, S275 and S235 will be analyzed for the 
cross-sectional area A, while only S235 will be considered for 
AL, as it is a constructive element of the main girder. 
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Figure 2. The cross-section of the main girder of the double-beam bridge crane 

For the load capacity of the observed example of a bridge 
crane, a rail with dimensions 6 cm x 4 cm, was adopted (As). 

All dimensions and coordinates from Fig.2 are marked and 
defined. It should be noted that the position coordinates are 
shown in relation to the x-y coordinate system and as such 
were used in this analysis. Due to the asymmetry, as well as 
the shape and dimensions of the plates, the main coordinate 
system is rotated at a very small angle, but such a value is 
almost negligible. In order to achieve this and avoid the 
influence of oblique bending, this rotation (α) should be less 
than 1°: 
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 (7) 

All necessary geometrical dimensions, coordinates, and 
properties (xc, yc, Ix, Iy, Ixy, Wx, Wy, Sx, A*…) in any 
characteristic point of the cross-section can be calculated 
using well-known expressions. 

The calculation model of the main girder of the 
double-beam bridge crane 

The following figure shows a model of a simple beam (a 
model of a bridge crane's main girder) with all loads (Fig.3). 
Determination of all static quantities is done in compliance 
with [9]. The meaning and calculation of all these static 
quantities are defined in the mentioned literature (q, e2, F1, F2, 
ka, F1h, F2h, F1,st, Fv, Ft, Mv, Mh, z1, MtA, and γ). 
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Figure 3. Loads of the main girder of the double-beam bridge crane 

The criterion of strength 
When calculating the maximum stresses in the 

characteristic points of the box cross-section, situations are 
observed when the highest possible loads occur, in place I 
(Fig.2) [9]. This primarily refers to the horizontal plane, since 
due to the movement of the bridge crane in the horizontal 
direction, an inertial force occurs, so that both the left and 
right sides of the cross-section of the main girder can be 
tensile or compressed. As the main girder is asymmetric with 
the rail above one vertical plate, this is of a great importance 
for the analysis. It is present in case of local stability, for 
compressed plates and longitudinal stiffener, too. In addition 
to the main bending stresses in both planes, local stress from 
the trolley wheel pressure was also analyzed. The tangential 
stresses were taken into account, too, [9]. 

Maximum stresses in the characteristic points of the box-
section (Fig.2) must be lower than permissible stresses (σd, τd) 
[9]. For this criterion, the constraint functions are: 
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Stresses at all points of the box cross-section were not 
considered, but only at those where the highest stresses occur. 

The criterion of local stability of top plate 
Checking the local stability of top plate (length 2ꞏh, width 

b1 and thickness t2) is performed according to [10]. The 
constraint functions are: 
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where ν1 is load case 1 factored load coefficient, according to 
9, c1p, c2p, χ1p, and χ2p are coefficients, according to 10. 

The criterion of local stability of the webs 
It is necessary to check local stability of the webs above 

the longitudinal stiffener (length 2ꞏh, height h1 and thickness 
t3 and t4) as well as local stability of the webs plate under the 
longitudinal stiffener (length 2ꞏh, height h2 and thickness t3 
and t4). 

Checking the local stability of the webs (t4) is performed 
according to [11]. Constraint functions have the following 
form: 
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where σkr1, σMkr1 and τkr1 are critical stresses for the web above 
the longitudinal stiffener, σkr2, σMkr2, τkr2 are critical stresses 
for the web under the longitudinal stiffener, according to 11. 

Checking the local stability of the webs (t3) is performed 
according to [10]. Constraint functions have the following 
form: 

 16 1 1 1 1 1 1
6 6

0v h
w wd w w e

x y

M M
g c R

W W
             

 
 (22) 



6 PAVLOVIĆ,G., etc.: ANALYSIS AND OPTIMIZATION OF THE MAIN GIRDER OF THE BRIDGE CRANE WITH AN ASYMMETRIC BOX CROSS-SECTION  

 17 1 1 1 1
6 6

0v h
w e e

x y

M M
g R R

W W
          

 
 (23) 

 
18 2 2

1 2 2 1
6 6

0

w wd

v h
w w e

x y

g
M M

c R
W W

 

 

  
        
 

 (24) 

 19 2 1 1 1
6 6

0v h
w e e

x y

M M
g R R

W W
          

 
 (25) 

 
20 3 3

1 3 3 1
10 10

0

w wd

v h
w w e

x y

g
M M

c R
W W

 

 

  
        
 

 (26) 

 21 3 1 1 1
10 10

0v h
w e e

x y

M M
g R R

W W
          

 
 (27) 

 
22 4 4

1 4 4 1
10 10

0

w wd

v h
w w e

x y

g
M M

c R
W W

 

 

  
        
 

 (28) 

 23 4 1 1 1
10 10

0v h
w e e

x y

M M
g R R

W W
          

 
 (29) 

where c1w, c2w, χ1w and χ2w, are coefficient for the web above 
the longitudinal stiffener, c3w, c4w, χ3w, and χ4w are coefficient 
for the web under the longitudinal stiffener, according to 10. 

The criterion of global stability of the  
main girder 

The verification of global stability, in this case, is 
performed based on standards [12-14]. Constraint functions, 
in this case, have the following form: 
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where χb is a non-dimensional coefficient, according to 12. 

The criterion of local stability of the  
longitudinal stiffeners 

The verification of local stability of the longitudinal 
stiffeners is performed according to standards [10] and [12]. 
Constraint functions have the following form: 
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where χ1, χ2, and Kσ are coefficient, according to 12. 

The criterion of oscillation 
With this criterion, the relaxation time (T) of oscillations of 

the weight (m1), located in the middle of the main girder, must be 
checked. The analysis procedure was performed in compliance 
with [9] The constraint function has the following form: 
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where Bx is the flexural rigidity in x-direction, γd is the 
logarithmic decrement, and Td is the permissible time of 
damping of oscillation, according to [9]. The weight is 
increased by 10 % due to diaphragms, auxiliary constructive 
elements and welded connections, eq. 38. 

The criterion of stiffness 
This criterion analyses deflections in the vertical and 

horizontal plane. The total deflections in both planes (fu,v, fu,h) 
must be lower than the permissible ones (fdop,v, fdop,h), 
according to [9]. 
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The constraint functions, based on Eqs. (39, 40) are: 

 32 , , 0u v dop vg f f    (41) 

 33 , , 0u h dop hg f f    (42) 

where By is the flexural rigidity in y-direction, Kv and Kh are 
the coefficient that depends on Classification class (the 
purpose of the bridge crane and control condition), according 
to [9]. 

The optimization method 
In this research, the Moth-Flame Optimization algorithm 

(MFO) is chosen for solving this multicriteria constrained 
optimization problem. MFO is very effective for solving real 
engineering problems, [15]. 

The Moth-Flame Optimization algorithm is a population-
based bio-inspired algorithm, first introduced by Mirjalili, 
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[15]. This metaheuristic algorithm is based on the computer 
simulation of the navigation of moths. The main inspiration of 
this algorithm is the navigation method of moths in nature 
called transverse orientation. Moths fly by night by 
maintaining a fixed angle with respect to the moon, a very 
effective mechanism for flying in a straight line for long 
distances. They have been evolved to fly by night using the 
moonlight, where a moth flies by maintaining a fixed angle 
concerning the moon. Moths fly spirally around the lights 
because they are tricked by artificial lights. However, these 
insects are trapped in a useless or deadly spiral path around 
artificial lights [15]. 

The pseudocode for this metaheuristic algorithm of 
optimization is shown in [15]. MATLAB code for this 
metaheuristic algorithm of optimization, in original form, 
without any modifications and hypbridization, is taken 
according to [16]. 

Results of optimization 
The optimization process is performed based on the MFO 

method, using MATLAB. 

 

Figure 4. Cross-section of the main girder for the observed crane example 

Fig.4 shows a cross-section of the main girder of the 
existing solution double-beam bridge crane, located at the 
Impol Seval company, Serbia. All measurements in the 
mentioned figure are in millimeters. 

Table 1 shows the project data of the double-beam bridge 
crane that are in exploitation. These data also represent the 
input parameters for the optimization process, where Apr 
represents the cross-sectional area of the box cross-section. 
Other data are taken from [9], depending on the Classification 
class. 

Table 1. Technical parameters of the double-beam crane 

Q  
(t) 

L  
(m) 

mt  
(t) 

bt  
(cm) 

Cl.  
class 

am 
(m/s2)

Re  
(kN/cm2) 

bs  
(cm) 

hs 
(cm)

Apr 
(cm2)

20 22.5 6.4 320 2 0.2 35.5 6 4 286 

The control parameters of the MFO algorithm used for 
each example solved in this paper are: 

- Npop = 200 - population size, and max_it = 500 - maximum 
number of iterations. 

Constraints related to the minimum sheet thickness and 

other dimensions of constructive and technological character 
are taken through the lower and upper values of the variables. 

Bound values of variables for all bridge cranes are: 

1 2 3 4 10.6 , 3, 0.5 , 2, 20 50,t t t t b       

60 150, 1/ 5 1/ 3, 3 10,ph v b       

2.5 8, 0.3 1.p ph t     
By applying the MFO optimization procedure, the optimal 

geometric parameters, the values of the optimal areas, 
material savings, as well as the characteristics of the 
optimization procedure are obtained (Tables 2-10). 

Presented results of this research (Tables 2-10 and 
convergence diagrams) are taken from two of the conducted 
repetitions from the optimization process Variant 1 and 
Variant 2), for all types of materials. 

Table 2 presents the characteristics of the optimization 
process for the two chosen variants, for S355. Table 3 
presents the optimal values of the variables for the two chosen 
variants, for S355. Table 4 presents the rounded values of the 
optimal geometric parameters, optimal areas, and material 
savings for the two chosen variants, for S355. 

Table 2. Characteristics of the optimization process, S355 

V. Best 
 (cm2) 

Worst 
 (cm2) 

Mean 
 (cm2) 

Std 
 (-) 

time 
 (s) 

1 204.58 413.93 211.42 23.60 16.03 

2 204.00 382.18 209.24 18.47 13.35 

Table 3. The optimal values of the variables, S355 

V.
x1

 (cm)
x2

 (cm)
x3

 (cm)
x4 

 (cm)
x5 

 (cm) 
x6 

 (cm) 
x7 
 (-) 

x8 
 (cm)

x9

 (cm)
x10

 (cm)

1 0.600 1.171 0.500 0.516 34.25 123.23 0.2477 6.175 2.500 0.476

2 0.600 1.506 0.513 0.514 26.94 122.89 0.2522 6.185 2.500 0.477

Table 4. The rounded values of the optimal geometric parameters, optimal 
areas, and material savings, S355 

V.
t1

 (cm)
t2

 (cm)
t3

 (cm)
t4

 (cm)
b1

 (cm)
h 

 (cm) 
bp 

 (cm) 
hp 

 (cm) 
tp

 (cm)
Ao 

 (cm2)
Saving

(%) 

1 0.6 1.2 0.5 0.6 34.3 123.2 6.2 2.5 0.5 217.12 24.08

2 0.6 1.6 0.6 0.6 27.0 122.9 6.2 2.5 0.5 230.46 19.42

The following graphs show the convergence diagrams for 
both variants, for S355 (Figs.5, 6). 

Table 5 presents the characteristics of the optimization 
process for the two chosen variants, for S275. Table 6 
presents the optimal values of the variables for the two chosen 
variants, for S275. Table 7 presents the rounded values of the 
optimal geometric parameters, optimal areas, and material 
savings for the two chosen variants, for S275. 

Table 5. Characteristics of the optimization process, S275 

V. 
Best 

 (cm2) 
Worst 
 (cm2) 

Mean 
 (cm2) 

Std 
 (-) 

time 
 (s) 

1 209.95 304.78 214.61 15.38 15.97 

2 209.34 336.10 213.13 14.34 15.98 

Table 6. The optimal values of the variables, S275 

V.
x1

(cm)
x2

(cm)
x3

 (cm)
x4 

 (cm)
x5 

 (cm) 
x6 

 (cm) 
x7 
 (-) 

x8 
 (cm)

x9

 (cm)
x10

 (cm)

1 0.600 1.577 0.500 0.508 30.90 122.82 0.2554 4.959 2.500 0.382

2 0.600 1.754 0.500 0.522 27.02 122.65 0.2656 4.669 3.657 0.360
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Table 7. The rounded values of the optimal geometric parameters, optimal 
areas, and material savings, S275 

V. 
t1 

(cm) 
t2 

(cm) 
t3 

(cm) 
t4 

(cm) 
b1 

(cm) 
h 

(cm) 
bp 

(cm) 
hp 

(cm) 
tp 

(cm) 
Ao 

(cm2) 
Saving

(%) 

1 0.6 1.6 0.5 0.6 30.9 122.8 5.0 2.5 0.4 223.06 22.01

2 0.6 1.8 0.5 0.6 27.0 122.7 4.7 3.7 0.4 221.91 22.41

The following graphs show the convergence diagrams for 
both variants, for S275 (Figs.7, 8). 

Table 8 presents the characteristics of the optimization 
process for the two chosen variants, for S235. 

Table 8. Characteristics of the optimization process, S235 

V. 
Best 
(cm2) 

Worst 
(cm2) 

Mean 
(cm2) 

Std 
(-) 

time 
(s) 

1 211.59 332.42 221.17 19.16 15.95 

2 212.13 321.81 218.98 17.76 16.99 

Table 9 presents the optimal values of the variables for the 
two chosen variants, for S235. 

Table 9. The optimal values of the variables, S235 

V. 
x1 

(cm) 
x2 

(cm) 
x3 

(cm) 
x4 

(cm) 
x5 

(cm) 
x6 

(cm) 
x7 
(-) 

x8 
(cm) 

x9 
(cm)

x10 
(cm)

1 0.609 0.969 0.575 0.554 35.62 123.42 0.2634 5.220 2.500 0.402

2 0.600 1.075 0.543 0.544 38.18 123.33 0.2631 4.862 2.667 0.374

Table 10 presents the rounded values of the optimal 
geometric parameters, optimal areas, and material savings for 
the two chosen variants, for S235. 

Table 10. The rounded values of the optimal geometric parameters, 
optimal areas, and material savings, S235 

V. 
t1 

(cm) 
t2 

(cm) 
t3 

(cm) 
t4 

(cm) 
b1 

(cm) 
h 

(cm) 
bp 

(cm) 
hp 

(cm) 
tp 

(cm) 
Ao 

(cm2)
Saving

(%) 

1 0.7 1.0 0.6 0.6 35.6 123.4 5.2 2.5 0.4 225.62 21.11

2 0.6 1.1 0.6 0.6 28.2 123.3 4.9 2.7 0.4 213.11 25.49

The following graphs show the convergence diagrams for 
both variants, for S235 (Figures 9 and 10). 

Based on the obtained results, it is noticed that with the 

decrease of the value for Re1 of the sheet metal material of the 
box cross-section, there is no significant change in the value 
of the optimal cross-sectional area. The recalculated values of 
these surfaces (due to taking round values of sheet thickness) 
give the possibility to choose the most favourable variant, 
depending on the dimensions and type of the material (Re1). 

Conclusion 
This paper presents the analysis and optimal design of the 

main girder of the double-beam bridge crane with an 
asymmetric box cross-section, using the MFO optimization 
method, according to national standards. The criteria of 
permissible stresses, local stability of the girder plates (webs 
and top flange), local stability of the longitudinal stiffeners, 
global stability of the main girder, deflections, and period of 
oscillation were applied as the constraint functions. The target 
(objective) function is the cross-sectional area shown in Fig.2. 

The results obtained in this paper show the justification in 
the application of the proposed form of asymmetric box cross-
section, as well as the model of analysis and optimization, 
which is reflected in the material savings in the range of 
19.42-25.49 % (Tables 4, 7, 10). Also, in this analysis, it was 
adopted that the distance between the diaphragms is 2ꞏh 
(which is more than 245 cm based on the obtained results), 
while in the observed example, this value is 150 cm, so that 
savings were made in this as well.  

The MFO method used in a relatively short time (Tables 2, 
5, 8) came to the optimal solution usually after 200-250 
iterations, bearing in mind that there were 10 variables and 33 
constraint functions (Figs.5-10). 

The presented philosophy of an optimal design to achieve 
light carrying structures, and the application of the presented 
MFO method, as a metaheuristic optimization method, 
enables the implementation of this procedure for similar types 
of carrying structures, where a large number of variables and 
constraint functions can be applied. This helps designers to 
get preliminary results in the first phase of design quickly and 
easily. 

 

 

Figure 5. Convergence diagram for Variant 1, S355 
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Figure 6 Convergence diagram for Variant 2, S355 

 

Figure 7. Convergence diagram for Variant 1, S275 

 

Figure 8. Convergence diagram for Variant 2, S275 
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Figure 9. Convergence diagram for Variant 1, S235 

 

Figue 10. Convergence diagram for Variant 2, S235 

Acknowledgement 
This work has been supported by the Ministry of 

Education, Science and Technological Development of the 
Republic of Serbia, through the Contract for the scientific-
research activity realization and financing in 2021, 451-03-
68/2022-14/200102 and 451-03-68/2022-14/200108. 

References 

[1] PAVLOVIĆ,G., KVRGIĆ,V., SAVKOVIĆ,M., GAŠIĆ,M., 
ZDRAVKOVIĆ,N.: The influence of the position of longitudinal 
stiffeners to the optimum dimensions of the box section of the single-
girder bridge crane, 3rd Conference on Mechanical Engineering 
Technologies and Applications “COMETa 2016”, East Sarajevo – 
Jahorina, B&H, Republic of Srpska, pp. 131-138. 

[2] QIN,D., ZHU,Q.: Structural topology optimization of box girder based 
on method of moving asymptotes (MMA), International conference on 
intelligent computation technology and automation, Changsha, Hunan, 
China, pp.402–405. 

[3] JARMAI,K., FARKAS,J.: Optimum cost design of welded box beams 
with longitudinal stiffeners using advanced backtrack method, Struct 
Multidisc Optim, 2001, 21, pp. 52–59. 

 

[4] PAVLOVIĆ,G., SAVKOVIĆ,M., ZDRAVKOVIĆ,N., MARKOVIĆ,G.: 
Optimal design for the welded girder of the crane runway beam, Proc. 
Fifth International Conference Mechanical Engineering in the XXI Century 
MASING 2020, Niš, pp. 151-156. 

[5] SAVKOVIĆ,M., BULATOVIĆ,R., GAŠIĆ,M., PAVLOVIĆ,G., 
STEPANOVIĆ,A.: Optimization of the box section of the main girder 
of the single-girder bridge crane by applying biologically inspired 
algorithms, Engineering Structures, 2017, 148, pp.452-465. 

[6] WANG,P.F., DIAO,X.H.: Optimization design of the crane girder based on 
adaptive genetic algorithm, Advanced Materials Research, 2012, 591-593, 
pp.123-126. 

[7] MILENKOVIĆ,B., JOVANOVIĆ,Đ.: The Use of The Biological 
Algorithm in Solving Applied Mechanics Design Problems, Scientific 
Technical Review, 2021, 71(1), pp.38-43. 

[8] https://www.contrx.com/contrx-cranes/double-girder-bridge-cranes/ 

[9] OSTRIĆ,D., TOŠIĆ,D.: Dizalice, Faculty of Mechanical Engineering, 
Belgrade, 2005. 

[10] SRPS U.E7.121/1986, 1986, Stability of steel constructions – Buckling 
of plates, Institute for standardization of Serbia, Belgrade. 

[11] Petković, Z., Ostrić, D., 1996, Metalne konstrukcije u masinogradnji 1, 
Faculty of Mechanical Engineering, Belgrade. 

[12] SRPS U.E7.081/1986, 1986, Stability of steel constructions - Axially 
compressioned steel members of constant cross section, Institute for 
standardization of Serbia, Belgrade. 



 PAVLOVIĆ,G., etc.: ANALYSIS AND OPTIMIZATION OF THE MAIN GIRDER OF THE BRIDGE CRANE WITH AN ASYMMETRIC BOX CROSS-SECTION 11 

[13] SRPS U.E7.086/1986, 1986, Stability of steel constructions – Effective 
lengths of compression members, Institute for standardization of 
Serbia, Belgrade. 

[14] SRPS U.E7.101/1991, 1991, Stability of steel constructions – Lateral 
buckling of girders, Institute for standardization of Serbia, Belgrade. 

[15] MIRJALILI,S.: Moth-flame optimization algorithm: A novel nature-
inspired heuristic paradigm, Knowledge-Based Systems, 2015, 89, pp. 
228-249. 

[16] https://www.mathworks.com/matlabcentral/fileexchange/52269-moth-
flame-optimization-mfo-algorithm 

Received: 02.04.2022. 
Accepted: 25.05.2022.

Analiza i optimizacija glavnog nosača mosne dizalice sa asimetričnim 
kutijastim poprečnim presekom 

Predstavljeno istraživanje se bavi optimalnim projektovanjem glavnog nosača dvogredne mosne dizalice asimetričnog 
kutijastog poprečnog preseka. Algoritam moljca (MFO) se koristi za rešavanje ovog višekriterijumskog problema 
optimizacije. Ovaj algoritam je relativno nova metaheuristička metoda zasnovana na populaciji. U radu su kao funkcije 
ograničenja uzeti sledeći kriterijumi: čvrstoća, lokalna stabilnost limova (vertikalnih limova i gornje lamele), lokalna 
stabilnost uzdužnih ukrućenja, globalna stabilnost glavnog nosača, ugibi i period oscilovanja. Opravdanost predloženog 
postupka prikazana je na jednom primeru realnog rešenja dvogredne mosne dizalice. U ovom istraživanju ostvarene su 
značajne uštede u materijalu, u rasponu od 19,42 do 25,49 %. Upotreba ovog algoritma omogućava primenu veoma velikog 
broja varijabli i funkcija ograničenja, pri čemu se optimalne vrednosti dobijaju u relativno kratkom periodu. 

Ključne reči: Dvogredna mosna dizalica, Asimetrični kutijasti poprečni presek, Optimalno projektovanje, Metaheuristika. 
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