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Abstract 
  

This paper presents an optimization technique for dynamic balancing of four-bar mechanism in 
order to minimize shaking force and shaking moment. The balancing problem is solved as multi-
objective optimization problem and thus avoids the use of weighting factors. Kinematic and dynamic 
parameters of four-bar mechanism are taken as design variables. The eight objective functions, that 
contain joint reaction forces, input torque, shaking force and shaking moment, are simultaneously 
minimized. A new algorithm, named sub-population firefly algorithm is used for solving the 
optimization problem under the defined constraints. The standard FA algorithm was improved in two 
ways. The first improvement is related to avoidance of local minimum, and the second improvement 
provides satisfaction of constraints in each iteration step. By applying the proposed algorithm, a 
certain decrease at the shaking force and shaking moment is achieved. The effectiveness of the 
improved algorithm is discussed. 
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1. Introduction 
 

Balancing of the mechanism and optimization of shaking force and shaking moment represent an 
important task for researchers and machine designers. By minimizing both shaking force and shaking 
moment improved dynamic is achieved, whereas noise and vibration are reduced.  

Static balancing means balancing of shaking force [1]. For achieving dynamic balancing of 
mechanism, it is need to carry out static balancing [12]. Dynamic balancing means simultaneous 
balancing both shaking force and shaking moment [9]. The problem of balancing can be solved by 
using classical methods or optimization techniques.  

By using counterweight method [3] or mass redistribution method [2] balancing is achieved. The 
method of linearly independent vectors that requires a redistribution of masses of links in such a way 
that the total mass center becomes stationary is proposed in [1]. Minimization of shaking force and 
shaking moment by finding optimum mass distribution of mechanism links using the equimomental 
system of point masses is considered in [4,5]. Force and moment balance of four-bar linkage by using 
two evolutionary algorithms named non-dominated sorting genetic algorithm and multi-objective 
particle swarm optimization are presented in [6]. A practical method, based on genetic algorithm, for 
reducing the shaking force and the shaking moment in four-bar mechanism is described in [7]. 
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A review of various balancing methods based on the generation of different movements of 
counterweights is presented in [8].  

In this paper, dynamic balancing of planar mechanism is considered. In contrary to [6,7], where 
weighting factors are used to define single objective function, the optimization problem in this paper 
is formulated based on multi-objective approach. Sub-population firefly algorithm is used for solving 
the optimization problem. The effectiveness of the proposed algorithm is shown by applying it to 
four-bar mechanism. 

 
2. Kinematic and dynamic analysis of four-bar mechanism 
 

Four-bar mechanism with link parameters is shown in Figure 1. Masses of the links are 2m , 

3m and 4m , while lengths of the links are 2L , 3L and 4L . Four-bar mechanism is placed in vertical 

plane Axy . The angles 2 , 3  and 4  define the angular positions of mechanism links to x direction, 
respectively.  

 
 

Fig. 1. Four-bar mechanism  
 
Kinematic analysis means determination of displacements, velocities and accelerations of moving 

links. The expressions listed below are taken from [7] and the same are presented for better 
understanding of this paper. The positions of mass centers of the moving links relative to the inertial 
frame Axy  can be written as: 

     2 2 2 2 2 2 2 2, cos , sin
TT

C C A Ax y r r         C2r                                             (1) 

     3 3 3 2 2 3 3 3 2 2 3 3 3, cos cos , sin sin
TT

C C B Bx y L r L r            Cr                (2) 

     4 4 1 4 4 4 4 4 4, cos , sin
TT

C C D Dx y L r r          C4r                                         (3) 

The velocities and accelerations of links mass centers are obtained taking the time-derivatives of Eqs. 
(1)-(3). Dynamic analysis means determination of joint reaction forces and driving torque as a 
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function of input link angle 2 . Dynamic analysis is achieved by using differential equations of 

motion in the plane Axy as follows: 

 -1B = AX X = A B                                             (4) 

where:

2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4, , , , , , , ,
T

C C C C C C C C Cm x m y m g J m x m y m g J m x m y m g J       B          , 

21 21 32 32 43 43 14 14 21, , , , , , , ,
T

x y x y x y x yF F F F F F F F M   X is the vector of  the joint  reaction forces 

and the driving torque of the four-bar mechanism, and A is a  9×9 matrix  defined as: 

2 2 2 2

3 3 3 3

4 4 4 4

1 0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

0 0 0 0 1

0 0 1 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0

0 0 0 0 0

0 0 0 0 1 0 1 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0

Ay Ax By Bx

By Bx Cy Cx

Cy Cx Dy Dx

r r r r

r r r r

r r r r

 
  
  
 

 
   
  
 

 
  

   

A . 

Position vectors from the mass center of link i (i=2, 3, 4) to the joints A, B, C, D are determined from 
Figure 1 as: 

     x yr r C a b                                 (5) 

where:   

 2 2 3 3 4 4 2 2 3 3 4 4;
TT

Ax Bx Bx Cx Cx Dx Ay By By Cy Cy Dyr r r r r r r r r r r r    x yr r      

 2 2 3 3 4 4, , , , ,diag AC BC BC CC CC DCC ; 

           2 2 2 2 3 3 3 3 4 4 4 4cos ,cos , cos ,cos ,cos , cos T                      a  

           2 2 2 2 3 3 3 3 4 4 4 4sin ,sin , sin ,sin ,sin , sin T                      b  

The angles 3  and 4  define the angular positions of coupler and follower links relative to x 

direction and can be written as function of the input link position angle 2   (see [7, 11, 12]): 

 1/22
3

1
2arctan 4

2 2

B
B AC

A A
  

    
 

    (6) 

 4 2 2 3 3 1 1
4

1
arccos cos cos cosL L L

L
   

 
   

 
    (7) 

where A, B and C are defined as: 

 2 2 2 2
3 1 1 2 3 2 1 2 3 4 2 1 2 12 cos 2 cos 2 cosA L L L L L L L L L L            

 3 2 2 1 14 sin sinB L L L    
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 2 2 2 2
2 3 2 3 1 1 1 2 3 4 2 1 2 12 cos 2 cos 2 cosC L L L L L L L L L L            

In addition, by 2 , 3  and 4  are denoted the angles 2C BA , 3C CB , and 4C CD , respectively, and 
these angles are determined by the following expressions [7]: 

2 2 2
22 2 21

2
22 2

arccos
2

r L r

r L


  
   

 
, 

2 2 2
33 3 32

3
33 3

arccos
2

r L r

r L


  
   

 
, 

2 2 2
43 4 44

4
43 4

arccos
2

r L r

r L


  
   

 
. 

The shaking force is vector sum of all the inertia forces, and the shaking moment is considered as 
vector sum the inertia moment and the moment of the inertia forces [10]. These forces and moment 
can be written as: 

41 21shx x xF F F      (8) 

41 21shy y yF F F      (9) 

1 1 1 1sin cosL L    sh 41x 41yM j F i i F j     (10) 

 
3. Optimization process  
 
3.1 Firefly Algorithm  
 

Firefly algorithm was firstly introduced by X.S. Zang [13]. To create firefly algorithm, some of 
the flashing characteristics of firefly has to be idealized. Three idealized rules are used, [14]: 

1. All fireflies are unisex so that one firefly will be attracted to other fireflies regardless of their 
sex, 

2. Attractiveness is proportional to their brightness, thus for any two flashing fireflies, the less 
bright one will move towards the brighter one. Both attractiveness and brightness decrease as 
distance between fireflies increases. The brightest firefly moves randomly. 

3. The brightness of a firefly is affected or determined by the space of objective function. For a 
maximization problem, the brightness can be proportional to the value of objective function. 

In the FA algorithm, especially important are the variation of light intensity and formulation of 
the attractiveness. It is assumed that the attractiveness of a firefly is determined by its brightness 
which is in turn associated with objective function value [13, 15, 16].  
 
3.2 Subpopulation Firefly Algorithm (SP-FA) 
 

Standard FA algorithm was improved in two ways. The first improvement is related to avoidance 
of local minimum, and the second improvement provides satisfaction of constraints in each iteration 
step.  

Experimentation with different approaches of FA algorithm modification, in order to provide 
better searching of solution space and to obtain that all constraints are fulfilled in each iteration step, 
resulted in following modifications:  

1. dividing of single fireflies population into two,  
2. introduction of crossover operator, 
3. continuously searching for new design variables until constraint functions are fulfilled.  
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Dividing of the population is carried out in each iteration step randomly. The generator of the 
number of fireflies is introduced in one of newly formed population. Values of design variables for 
each firefly are randomly placed in one of two new populations, Figure 1.  

 

1
st

firefly

2 firefly
nd

i firefly
th

n firefly
th

1
st

firefly

2 firefly
nd

ј
th

firefly

n firefly1

th

1
st

firefly

2 firefly
nd

k firefly
th

n firefly2

th

Population of n firefly Population of n firefly1
Population of n firefly2

Dividing of the population

 
 

Fig. 2. Dividing single firefly population into two new populations 
 

       Where n is total number of fireflies, 1n  is randomly generated integer of fireflies in population 

1 and 12 nnn   is number of fireflies in population 2. 
       For each new population, values of objective function are determined according to standard FA 
algorithm. After calculation of objective function for each firefly in both populations, fireflies with 
best values of design variables in current iteration step, in each population are identified. Design 
variables are generated and value of objective function is calculated for each firefly in each iteration 
step. Fireflies are then ranked by value of objective function, and in each population the firefly with 
the best value of objective function is identified. Identification of best firefly implies determination of 
the best value of objective function 1f , and position of firefly with that value of objective function 

 1l population l , for population 1, and best value of objective function 2f  at position  

 2k population k  for population 2. 

       Next modification introduced into standard firefly algorithm had the goal to check if the space of 
possible solutions is well searched for each population. Basically, the idea was to switch fireflies with 
best values of objective function, actually, firefly’s crossover is implemented. Firefly at position l , 
from population 1, replaces firefly at position  k in population 2 and vice versa, firefly at position k 
from population 2 comes at position l in population 1 (Algorithm 2 -  lines 36,37,38). This crossover 
of fireflies allows population with worse solutions to get into space of better solutions, while the 
population with better solutions checks if the global minimum is found, or there is even better 
solution to search for. 
       After crossover of fireflies, positions of each firefly are updated in both populations, which 
means that firefly’s positions are corrected according to “new” best firefly. Then all the fireflies are 
joined in one population which is again divided into two populations randomly. In that way, two new 
populations are created and procedure of space searching is repeated.   
       The third modification of standard FA provides that all solutions for each firefly in each step of 
iteration satisfy given constraints. The cycle of continuous search for project variables is applied in 
cases when all constraints are not satisfied. If the values of design variables deviate from given 
constraints, the firefly keeps moving in space of possible solutions until all constraints are fulfilled. In 
this cycle, firefly is moving according to Lѐvy flight principle.  
       Modifications of standard FA algorithm explained above, gave the Subpopulation FA algorithm– 
SP-FA, which is presented by pseudocod given in Algorithm 1. 
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Algorithm 1. Subpopulation FA algorithm (SP-FA) 
1: begin 

2:       Objective functions )(Xf ,  Tdxxx ,...,, 21X  

3:       Define total number of fireflies in population - n 
4:       Define the number of design variables - d  
5:       Define of light absorption coefficient- γ  
6:       Define the number of passes NR 
7:       Generating the initial firefly’s population ix   ni ,...,1  

8:                      %% 1.  modification –dividing the population into two 
9:        partition_factor=rand 
10:      1n =ceil(partition_factor *n)  %% number of fireflies in population 1 random integer < n 

11:      2 1n n n   
12:      creating random array with an index of initial population: sk 
13: %% Moving fireflies from original population to population 1 
14: for 1i 1 : n  

15:  population1(i)= ))(( iskx  
16: end for i 
17: %% Fireflies movement from original population to population 2 
18: for 1i n 1: n   

19:  population2( 1i n )= ))(( iskx  
20: end for i 
21:  %% End of 1st modification 
22:       while ( t NR ) 
23: %% 3. modification checking constraint functions  
24: %% For population 1 
25:  for 1i 1 : n  
26:   while not satisfied all constraints  
27:   calculate new value of project variables by Lѐvy flight in  population1 
28:   end while 
29:  end for i 
30: %% For population 2 
25:  for 2i 1 : n  
26:   while not satisfied all constraints  
27:   calculate new value of project variables by Lѐvy flight in population2 
28:   end while 
29:  end for i 
30:  %% 2. Modification – crossover of fireflies 
31: Light intensity determination for both populations 
33:    Ranking of fireflies and searching for current best solution in population 1: 1f  at position l 

( 21 l n  ). 

34:    Ranking of fireflies and searching for current best solution in population 2: 2f  at position k 

( 11 k n  ). 
35:  %%  Crossover of fireflies with best solutions: 
36:  temp=population1(l) 
37:  population1(l) = population2(k) 
38:  population2(k)=temp 
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39:  %% Updating the positions of fireflies in both populations  
40:                   for 1i 1 : n %% all 1n  fireflies from population 1 

41:       for 1j 1 : n  %% all 1n  fireflies from population 1 

42:            if ( 11
ij II  )  

43:     Moving firefly i towards firefly j in d-dimensional space 
44:     Varying attractiveness with distance r by exp[-γr] 
45:     Calculating the new solution and light intensity update  
46:           end if 
47:                end for j 
48:        end for i           
49:                  for 2i 1 : n %% all 2n  fireflies from population 2 

50:       for 2j 1 : n %% all 2n  fireflies from population 2 

51:            if ( 22
ij II  )  

52:     Moving firefly i towards firefly j in d-dimensional space 
53:     Varying attractiveness with distance r by exp[-γr] 
54:     Calculating the new solution and light intensity update  
55:           end if 
56:                end for j 
57:                 end for i           
58:              %% extension of 1st modification 
59:   Regrouping fireflies in single population  
60:  partition_factor =rand 
61:        1n =ceil(partition_factor *n) %% number of fireflies in population 1 random integer < n 

62:        2 1n n n    
63:  creating random array with an index of initial population: sk 
64:  %% Moving fireflies from original population to population 1 
65:  for 1i 1 : n  

66:   population1(i)= ))(( iskx  
67:  end for i 
68:  %% Moving fireflies from original population to population 2 
69:  for 1i n 1: n   

70:   population2( 1i n )= ))(( iskx  
71:  end for i 
72:   %% End of 1st modification 
73:     end while 
74:     Post processing and representation of results 

 
3.3 Objective functions 
 

There are two different approaches in multiobjective optimization. The first one, which uses 
specially structured algorithms which goal is obtaining the best set of non-dominated solutions in 
terms of Pareto fronts. The second one is usually defined as multiobjective optimization, which 
consists of one optimization goal when different objective functions are linearly combined in unique 
objective function using weighting factors. The authors of this paper follow the approach which is 
different from two above mentioned, where optimization of several objective functions are performed 
simultaneously. Multi-objective optimization is applied for minimization of ground joint reaction 
forces of four-bar mechanism. Based on above expressions the problem is defined as follows: 
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      1 2 8F( ) minimum F ,F ,....,FX X X X ,                                                               (11) 

subject to: jg ( ) 0, j 1,...,m X  where F( )X  is objective function, jg ( ) 0X  are constraint 

functions and m is number of constraints.  1 Dx ,...,xX  represents design variables vector, and D 

is number of design variables. In this example, eight objective functions are simultaneously 
minimized:  

 2
j j i

i 0

1
f F t



 
  ,  , ,...,j 1 2 8 ,     where 200  , and : . : .t 0 0 01 0 2 ; 

1 21x 2 21y 3 41x 4 41y 5 shx 6 shy 7 sh 8 21f F , f F , f F , f F , f F , f F , f M , f M         

For each design variable upper and lower limit is defined. Sixteen design variables are 
considered, thus X  is defined as: 

 1 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4C C C A B DL ,L ,L ,L , , , ,m ,m ,m ,J ,J ,J ,r ,r ,r  X   

and boundaries of design variables are shown in Table 1. 
 

Design variables Original values Optimized values Boundaries 
L1 (mm) 600 669.60 400-700 
L2 (mm) 100 54.76 50-130 

2Ar  (mm) 50 74.30 20-100 
m2 (kg) 0.360 1 0-3 

JC2 (kgm2) 4.13*10-4 53.01*10-4 2*10-4 -60*10-4 

2  (rad) 0 3.09 0-6 
L3 (mm) 400 600 200-600 

3Br  (mm) 200 10.26 10-400 
m3 (kg) 1.296 1.21 0.8-1.6 

JC3 (kgm2) 1.87*10-2 2.42*10-2 2*10-2 - 7*10-2 

3  (rad) 0 2.89 0-3 
L4 (mm) 320 471.72 200-500 

4Dr  (mm) 160 250 50-250 
m4 (kg) 1.046 0.50 0.5-1.5 

JC4 (kgm2) 9.85*10-3 9.94*10-3 8*10-3-18*10-3 

4  (rad) 0 0.036 0.00001-2 
 

Table 1. Original and optimized values of design variables of four-bar mechanism  
 

4. Results  
 

In this paper, the problem of dynamic balancing of the four-bar mechanism was considered as 
multiobjective optimization problem. Thus avoids the use of weighting factors. Sub-population firefly 
algorithm was used for solving the optimization problem. Driving link 2 rotates with a constant speed 
of 300 rpm. Design variables of the proposed mechanism were also defined. The original values 
(taken from [7]) and optimized values of design variables as well as boundaries of variables are given 
in Table 1. Joint reaction forces of original and optimized mechanism are given in Fig.3. After the 
optimization process, the optimized values of these forces are certain smaller than the original. Using 
above mentioned optimization algorithm the reduction of 99.256%, 71.883%, 92.907% and 85.120% 
is achieved in values of 21 21 41, ,x y xF F F and 41yF , respectively. Similarly, as shown in Fig. 4, the 

application of sub-population firefly algorithm results in reduction of 96.777% and 75.848% in 
values of shaking force for x and y directions, and 83.393% and 97.536% in values of shaking 
moment and driving torque, respectively.  
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Fig. 3. Original and optimized values of ground joint reaction forces 
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Fig. 4. Original and optimized values of shaking force components, shaking moment and driving torque    
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5. Conclusions 
 
In this paper, the problem of minimizing shaking force and shaking moment of four-bar 

mechanism is presented. This problem is solved as multi-objective optimization problem. The 
weighting factors are not used, as in the case in [7]. The eight objective functions that optimize the 
mass distribution of each link are simultaneously minimized. Improved FA algorithm, named sub-
population firefly algorithm, was applied for minimizing objective functions which consist of ground 
joint reaction forces, shaking force, shaking moment and input torque. The improvement of standard 
firefly algorithm is reflected in following: avoidance of local minimum and satisfaction of constraints 
in each iteration step. The obtained results show a certain reduction in values of shaking force and 
moment, as well as reduction of ground joint reaction forces and driving torque. The proposed 
algorithm and multi-objective approach can be applied for multi-loop planar mechanisms. 
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