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In this paper, four approaches to the dynamic analysis of structures are presented on the example of portal crane. 
The accuracy of the approximate approach compared with correct approach was examined. The appropriate conclusions 
and guidelines are defined.  
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0. INTRODUCTION  
 
The problem regarding oscillation of supporting 

construction is of importance in civil and mechanical 
engineering. First of all, in civil engineering, the problem 
regarding oscillation of construction is related to the 
structural analysis of bridges and buildings, while in 
mechanical engineering, it is primarily related to the 
structural analysis of the cranes.  

The procedure of determining eigenfrequencies at 
complex systems (systems with large number of the 
freedom degrees) is the most expensive phase of dynamic 
analysis [1,2]. Previous studies of determining its 
eigenfrequencies of complex supporting structures were 
based on the use of approximate expressions and methods 
[3]. Accurate determination of eigenfrequencies was 
limited to the simple supporting structure (simple beam 
and console). Finding out solutions of frequent equation 
for complex elastic bodies is very difficult, because it 
contained the trigonometric and hyperbolic functions. 
 Nowadays, mathematical software enables 
routine solving of frequency equations for complex elastic 
bodies oscillation. Methodology of solving frequent 
equation is illustrated by example of portal crane 
supporting constuction using Mathematica software. 
 Accurate determination of eigenfrequencies is 
important from the aspect of optimizing supporting 
structures. But, in the case of too complex supporting 
structures, using of method of distributed masses is 
limited.  In this case, to determine eigenfrequencies of 
supporting structure, we opt for the method of consistent 
masses or method of directy concentrated masses. 
Methodology of solving frequent equation for both 
methods is illustrated by identical example. On the other 
hand, nowadays, modal analysis on the base FEM software 
is widely used for determining eigenfrequencies of 
supporting structures.  

In this regard, in the third step of this work are 
solutions of circular frequencies of portal crane supporting 
construction, provided by accurate method (method of the 
distributed masses) and approximate methods as well 
(method of consistent masses and method of directy 
concentrated masses), verified by a specialized software 
package SAP2000. 

 

1. SETTING OF THE PROBLEMS  
 

The main parts of the support structure of portal 
crane, Figure 1, the top grider and two columns. Material 
support structure is steel S235J2G3. Global dimension 
crane are: L = 8m - range crane and H = 4m - the height of 
the supporting column. The grider is made of and profiles 
- IPE240, while the columns are made of double U profile 
- 2U140.    

 

Fig. 1. Sketch of portal crane  
 
For getting all eigenvalues and eigenvectors is 

necessary to perform a number of numerical operations. 
To reduce the size of the account in the dynamic analysis, 
by choosing only a certain eigenvectors (oscillation 
forms). How oscillation forms with a frequency that is 
close to the frequency of the load most affect the dynamic 
system response is defined dynamic loads and assumed the 
dominant form of oscillation.  

Given that the crane supporting structure 
considered symmetrical, to determine the frequency of 
circular support structure analytical methods sufficient be 
formed dynamic model for half of the structure.  
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2. MATHEMATICAL-MECHANICAL MODEL WITH 
DISTRIBUTED MASSES  

 
Has been adopted elastic-linear dynamic model for 

half the supporting structure, Figure 2.  
 

 

Fig. 2. Model with distributed masses 
 
 Partial differential equations of free undamped 
oscillations transverse frame as follows:   
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 Because of the complexity of the elastic body 
functions zZ will be presented via Krilovljevih function:  
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 Circular frequencies of time function in (5) is equal 
to:  
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 The frequency of oscillation is calculated by:  
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Given frame is divided into two parts. First, we 

observe symmetric oscillations, and then asymmetric 
oscillations.    
 
2.1 Symmetric oscillations  

2.1.1 Boundary conditions  
 

 According to the geometric boundary conditions, 
then the following equality [4] to [8]:  

t,HZt,Z

  t,HZ

0t,Z

 t,LZ

''

'

21

2

2

1

0

0

0

0
2

 (9)

According to the dynamic boundary condition, then 
the following equality [4] to [8]:   
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2.1.2 Frequency equation 
 

From the geometric and dynamic boundary 
conditions, (9) and (10), formed a homogeneous system of 
linear equations, which we conclude frequency equation:  

0)det(F  (11)

By introducing for the element frame (half beam 
girders) shift:  

211
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and introducing following non-dimensional parameters:  
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Expression (11) can be written as follows:  
0),,,()det( 1 pidfF  (14)

In the expression (14) F  is equal to:   
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2.2 Asymmetrical oscillations 

2.2.1 Boundary conditions  
 

According to the geometric boundary conditions, 
then the following equality:  
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According to the dynamic boundary condition, then 
the following equality:  
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2.2.2 Frequency equation 
 

By analogy, as in symmetric oscillations, F  in the 
expression (14) for asymmetric oscillation is equal to:  
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2.3 Solving the frequency equation 
 
 Frequency equations (15) and (18) are by nature 
transcendetalne, so that they can not find their solutions in 
algebraic form. For this particular numerical example will 
show how solving these equations using Mathematica 
software.  
 Frequency solutions of the equation (15) and (18), 
for the given input data, using Mathematica [9], the 
diagrams presented in Figures 3 and 4.     
 

 
Fig. 3.  Dependence of detF od 1 –  

symmetric oscillations  

 

 
Fig. 4.  Dependence of detF od 1 –  

asymmetrical oscillation  
 
 Solution frequency equations are:  

 symmetric oscillations  

      88979,2;75169,11             
 asymmetrical oscillations  

      25296,3;889472,01

 
Table 1 shows the values of the first four frequency 

oscillating support structures portal crane for the 
characteristics.   
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Tabela 1. Frequencies – distributed masses  

No Parameter 1  Frequency  
[Hz] 

Circular  
frequency 

[rad/s] 
1. 0,889472 4,0665 25,413  

2. 1,75169 15,6944 98,5611 

3. 2,88979 42,7133 268,24 

4. 3,25296 54,1239 339,898 
  
3. MATHEMATICAL-MECHANICAL MODEL 

WITH CONSISTENT MASSES  
 

 This approach consists in determining the inertial 
load along the beam element during motion of the beam, 
then replace the inertial load equivalent nodal load.     

Adopted a dynamic model with consistent masses 
for half supporting structure, Figure 5.   

 

 

Fig. 5.  Model with consistent masses  
 
For both sides wedged rod of constant cross-section 

vector interpolation function following [2], [10] i [11]:      
 

l
x

l

l
N T ,

20
20

0
20

210
01

32

32

32

32

 (19)

 The corresponding mass matrix and the stiffness of 
the line element i  is defined based on interpolation 
functions, (19), as follows:        

V

T
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V

T
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Symmetrically and asymmetric oscillations are 
discussed separately.  

Girder support structure is divided into four finite 
elements, while the columns are divided into two finite 
elements. Transformation matrix element as follows: 
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Mass matrix in the global coordinate system is 
equal to:    

TMTM i
T

i
G
i  (23)

  Stiffness matrix in the global coordinate system is 
equal to:  

 (24)

 Mass matrix of the system:  
4

i
iMM  (25)

  Stiffness matrix of the system:  

 (26)

 How the system mass matrix, and stiffness matrix 
of the system is decomposed in submatrices.  
 Eigenfrequencies of the supporting structure are 
obtained by solving algebraic equations:   

det  (27)

3.1 Symmetric oscillations   
 

 Submatrix mass matrix of the systems by unknown 
is obtained by decomposing the matrix (25), while 
submatrix stiffness matrix of the system by unknown 
obtained decomposing the matrix (26). These submatrices 
are represented by (28) and (29):  
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 Solving the equation (27), by inserting matrix (28) 
and (29) circular frequencies are:  

][964,253;7225,97 1s  

3.2 Asymmetrical oscillations                                                              
  
Analogously for symmetric oscillation are obtained 
submatrix mass matrix systems with unknown (30) and 
submatrix stiffness matrix systems with unknown (31): 
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 Solving the equation (27), by inserting matrix (30) 
and (31) circular frequencies are:   

][074,244;697,22 1s  
 

3.3 Frequency  
 
 Table 2 shows the values of the first four frequency 
oscillating support structures portal crane for the 
characteristics.    

Table 2. Frequencies – consistent masses  

No 
Circular  

frequency  
[rad/s] 

Frequency  
[Hz] 

1. 22,697  3,6142 

2. 97,7225 15,5609 

3. 244,074 38,8653 

4. 253,964 40,4401 

4. MATHEMATICAL-MECHANICAL MODEL 
    WITH DIRECT LUMPED MASSES 

   This approach consists in concentrating mass 
members in nodes girder. Equivalent nodal load is equal to 
zero due to the assumption that mass is only the nodal 
points. 
 Adopted a mathematical model with lumped mass 
directly for half the supporting structure, Figure 6.  

 
 
 
 

 
Fig. 6.  Model with direct lumped masses  

  
 Eigenfrequencies of the supporting structure are 
obtained by solving algebraic equations: 

0det 11
2 MK C  (32)
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Reduced masses have the following values:  
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4.1 Symmetric oscillations  
 
 Inertia matrix nnM  is singular. Rearrange matrix is 
obtained 11M :   
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 Analogously, rearranging the system stiffness 
matrix nnK  is obtained matrix 11K , TKK 2112  i 22K :  
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 Condensed stiffness matrix is equal to:   

21
1

221211 KKKKKC  (38)

  
 Solving the equation (32), by inserting matrix (34) 
and (38), circular frequencies are: 

][741,249;4762,92 1s  
 

4.2 Asymmetrical oscillations  
 
 In the same way as in the symmetric oscillations we 
obtain the following matrix:   
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 Condensed stiffness matrix is equal to:  

21
1

221211 KKKKKC  (43)

 Solving the equation (32), by inserting matrix (39) 
and (43), natural frequencies are:      

][49,233;6283,22 1s  
 
4.3 Frequency  
 
 Table 3 shows the values of the first four frequency 
oscillating support structures portal crane for the 
characteristics.   

 
Table 3. Frequencies – direct lumped masses  

No 
Circular  

frequency 
[rad/s] 

Frequency 
[Hz] 

1. 22,6283 3,6032 

2. 92,4762 14,7255 

3. 233,49 37,1799 

4. 249,741 39,7677 

 
 

 
5. FEM MODEL IN SAP2000 SOFTWARE 

 
 In order to verify on analytical method of 
determining the frequency of software SAP2000 is formed 
and solved Finite element model of crane support 
structures [10]. Finite element model of crane support 
structure is shown in Figure 7. 
  

Fig. 7.  Finite element model  
 

 The first four modes oscillating support structures 
are shown in Figure 8.  
 By implementation modal analysis software 
SAP2000, the values obtained frequencies for the first four 
modes of oscillation considered supporting structure,   
table 4.   
 
Table 4. Frequencies – SAP2000  

No Period 
[s] 

Frequency 
[Hz] 

Circular  
frequency 

[rad/s] 
1. 0,27818 3,595 22,58 

2. 0,06433 15,545 97,62 

3. 0,02720 36,7647 230,882 

4. 0,02602 38,4320 241,353 
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Fig. 8.  The first four modes oscillating support structures  
 

6. ANALYSIS OF RESULTS   
  
 Based on the results in subtitles, 2, 3, 4 and 5, 
Table 5 shows the comparative results for the first four 
circular frequencies. The analysis of the results showed 
that solutions for the circular frequency are approximately 
exact but just for the first and second mode, which means 
that for higher accuracy at higher modes it is necessary to 
apply a larger number sticks (finite element).  

  
 Comparing the values of eigenfrequencies obtained 
by approximate methods with exact method is concluded 
that the maximum relative error for the first two modes is 
10,69% and 10,96%.   
 Furthermore, comparative results show that the 
approximation of the consistent masses is better than the 
approximation of the direct concentrated masses.  
 

 
Table 5. Frequencies – comparative results  

Circular  
frequency  

[rad/s] 
Distributed masses Consistent masses  Direct lumped masses  Software SAP2000  

1 25,413  22,697 ( =10,69%) 22,6283( =10,96%) 22,58 ( =11,15%) 

2 98,5611 97,7225 ( =0,85%) 92,4762 ( = 6,17%) 97,62 ( =0,95%) 

3 268,24 244,074 ( =9,01%) 233,49( =12,95%) 230,882( =13,93%) 

4 339,898 253,964( =25,28%)  249,741( =26,52%)  241,353( =28,99%) 
 

7. CONCLUSION  
 

 The problem of oscillation in the plane is present in 
lifting engineering. It is particularly strong in crane high 
performance (high range and high speed trolley).     
 This paper presents three approaches to 
determining the characteristic frequency of bearing 
construction portal crane. At first step, the accurate 
approach to the dynamic analysis or mathematical-
mechanical model with distributed masses is presented. In 
accordance to this, in the second step, two approximate 
approaches or mathematical model with consistent masses 
and the mathematic model with directly concentrated 
masses are presented. All three mentioned approaches are 
described by non-dimensional parameters, so they have 
universal character for symmetrical portal crane 
supporting constructions. This has special important in the 
first phase of crane designing.    

  
By changing the parameters in the algorithm, the 

optimum solution is easy to be achieved, and resonance 
region can be avoided. The third step is formed and solved 
finite element model in the software SAP2000. This was 
roughly verified the results accurate and approximate 
approaches to dynamic analysis. It is shown that a 
consistent approximation to the masses better than direct 
lumped mass approximation.    
 Furthermore, the results of analysis which has been 
done have a direct importance for the problem of moving 
loads. From the aspect of determining the dynamic 
response of supporting construction, excited by moving 
load, approximation by consistently masses is better. In 
this sense, this work provides a good basis for examining 
the impact of the moving load on the dynamic behavior of 
the load-bearing structures. The paper also leaves room for 
optimization of these types of structures, based on the 
limited value intrinsic frequencies. 
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NOMENCLATURE 

E Young’s modulus  
I  moment of inertia of cross-section 
A  cross-sectional are 

mass density of material 
L  lenght of girder 
H  height of colums 
Y  transversal displacement 

zZ mode shape 
tT time function 

z spatial coordinate 
t time 

circular  frequency 
f frequency   
c speed of wave propagation 
l length of finite element  


