IMK-14 — Research & Developement 19(2012)1, EN29-38

UDC 621 ISSN 0354-6829

EN29
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In this paper, four approaches to the dynamic analysis of structures are presented on the example of portal crane.
The accuracy of the approximate approach compared with correct approach was examined. The appropriate conclusions

and guidelines are defined.
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0. INTRODUCTION

The problem regarding oscillation of supporting
construction is of importance in civil and mechanical
engineering. First of all, in civil engineering, the problem
regarding oscillation of construction is related to the
structural analysis of bridges and buildings, while in
mechanical engineering, it is primarily related to the
structural analysis of the cranes.

The procedure of determining eigenfrequencies at
complex systems (systems with large number of the
freedom degrees) is the most expensive phase of dynamic
analysis [1,2]. Previous studies of determining its
eigenfrequencies of complex supporting structures were
based on the use of approximate expressions and methods
[3]. Accurate determination of eigenfrequencies was
limited to the simple supporting structure (simple beam
and console). Finding out solutions of frequent equation
for complex elastic bodies is very difficult, because it
contained the trigonometric and hyperbolic functions.

Nowadays, mathematical software enables
routine solving of frequency equations for complex elastic
bodies oscillation. Methodology of solving frequent
equation is illustrated by example of portal crane
supporting constuction using Mathematica software.

Accurate determination of eigenfrequencies is
important from the aspect of optimizing supporting
structures. But, in the case of too complex supporting
structures, using of method of distributed masses is
limited. In this case, to determine eigenfrequencies of
supporting structure, we opt for the method of consistent
masses or method of directy concentrated masses.
Methodology of solving frequent equation for both
methods is illustrated by identical example. On the other
hand, nowadays, modal analysis on the base FEM software
is widely used for determining eigenfrequencies of
supporting structures.

In this regard, in the third step of this work are
solutions of circular frequencies of portal crane supporting
construction, provided by accurate method (method of the
distributed masses) and approximate methods as well
(method of consistent masses and method of directy
concentrated masses), verified by a specialized software
package SAP2000.

1. SETTING OF THE PROBLEMS

The main parts of the support structure of portal
crane, Figure 1, the top grider and two columns. Material
support structure is steel S235J2G3. Global dimension
crane are: L = 8m - range crane and H = 4m - the height of
the supporting column. The grider is made of and profiles
- IPE240, while the columns are made of double U profile
- 2U140.

1

)

\ Grider

|_|

L —Column

i
L1

Fig. 1. Sketch of portal crane

For getting all eigenvalues and eigenvectors is
necessary to perform a number of numerical operations.
To reduce the size of the account in the dynamic analysis,
by choosing only a certain eigenvectors (oscillation
forms). How oscillation forms with a frequency that is
close to the frequency of the load most affect the dynamic
system response is defined dynamic loads and assumed the
dominant form of oscillation.

Given that the crane supporting structure
considered symmetrical, to determine the frequency of
circular support structure analytical methods sufficient be
formed dynamic model for half of the structure.
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2. MATHEMATICAL-MECHANICAL MODEL WITH
DISTRIBUTED MASSES

Has been adopted elastic-linear dynamic model for
half the supporting structure, Figure 2.
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Fig. 2. Model with distributed masses

Partial differential equations of free undamped
oscillations transverse frame as follows:

o%;(z,t) 5, a*x(z1) .
+Cc°- =0, 1=12 1
ot? ozt @
where:
2 E-Iy
cf=— 0" 2
A ¥

If the solution of partial differential equations (1)
look of the form:

Yi(2t)=2;(2)-T(t) ©)
or individually for each element of the frame:
L
Y, =Y,(z,t)=2Z,12)-T(t), 0<z<—
L=N(0=2,() T, 0<2<] “
Y, =Y,(2,t)=Z,(z)-T(t), 0<z<H
we get the following two functions:
Z(z)=Cych(k;z) + Cysh(k;z) +
+ Cg; cos(k;z) + Cy; sin(k; z) (5)
T(t)= A cos(wt) + B; sin(wt)
Because of the complexity of the elastic body
functions Z(z)will be presented via Krilovljevih function:

Zi(z)=CyS(kz)+CyT(kiz)+

+C4U(kiz)+ CyV (ki2) ©)

Circular frequencies of time function in (5) is equal

w=c-k?=k?- /i @
P A

The frequency of oscillation is calculated by:

(oo 1(2) [EL ®
2r 2z\ L A

to:

Given frame is divided into two parts. First, we
observe symmetric oscillations, and then asymmetric
oscillations.

2.1 Symmetric oscillations
2.1.1 Boundary conditions

According to the geometric boundary conditions,
then the following equality [4] to [8]:

z;(% ,tj =0

Z,0,t)=0 9)
Z,(H,t)=0

7,(0,t)=Z,(H,t)

According to the dynamic boundary condition, then
the following equality [4] to [8]:

—E-I1~Z'1"(%,tj:0

—E-1,-Z,(0,t)=0
~E-1,-2,(0,t)=—E-1,-Z,(H,t)

pohy 2, 0.0)=E1,-Z; (H,)

(10)

2.1.2 Frequency equation

From the geometric and dynamic boundary
conditions, (9) and (10), formed a homogeneous system of
linear equations, which we conclude frequency equation:

det(F) =0 (1)

By introducing for the element frame (half beam
girders) shift:

L
A :kl E (12)

and introducing following non-dimensional parameters:

d:i, a:i i:I—l, p=4%i-a (13)
L A, I,

Expression (11) can be written as follows:
det(F)=f(4,d,i,p)=0 (14)

In the expression (14) F is equal to:
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0 -1 0 0  pS(4d-p)  pU(4-d-p)
0o 0 -1 0 Zp¥V(4dp %pzT(ﬂl-d-p)
e_|Vl) sla) T() u(r) 0 0
= (15)
T(4) Uly) Vi) s(a) 0 . 0
4L 0 0 0 V(4 -d-p) Sp°S(4-d-p)
0 0 0 0 T(4) V(1)
L
2.2 Asymmetrical oscillations -E 1,2, (E j=0
2.2.1 Boundary conditions —E-1,-Z,(0,t)=0
According to the geometric boundary conditions, —Ely-2 (O ) ~E1,:2, (H t) @n
then the following equality: —E-1,-2,(0,t)==E-1,-Z,(H 1)
L
Zl(Eltjzo p'Al'E'Zl( ) (H t)
1
z,(0,t)=0 (19) 2.2.2 Frequency equation

2,(0,t)=2,(H, 1)
By analogy, as in symmetric oscillations, F in the
According to the dynamic boundary condition, then expression (14) for asymmetric oscillation is equal to:
the following equality:

0 -1 0 0  pS(4-d-p)  puU(4-d-p)
0 0 -1 0 IpN(4-d-p) Tp?T(k-d-p)
I |
F_|S() T() V@) V() o 0 o)
U(x) V() s(u) T(a) 0 0
A 0 0 0 Zp'U(4-d-p) Zp°S(4-d-p)
0 0 0 0 (4) S(4)
2.3 Solving the frequency equation bl
Frequency equations (15) and (18) are by nature |
transcendetalne, so that they can not find their solutions in L
algebraic form. For this particular numerical example will
show how solving these equations using Mathematica
software. i f .
Frequency solutions of the equation (15) and (18), ‘\ ! : : ' ! f
for the given input data, using Mathematica [9], the \
diagrams presented in Figures 3 and 4. -1F \\
det |I
- -aL 1 I
Fig. 4. Dependence of detF od A —
' asymmetrical oscillation
o , . . . , , Solution frequency equations are:
N 2 3 # 3 ﬁ e symmetric oscillations
\ 2, = (175169; 2,88979)
-lr \ e asymmetrical oscillations
\ 2, =(0,889472; 3,25296)
\
_al ! I

Table 1 shows the values of the first four frequency
Fig. 3. Dependence of detF od /; — oscillating support structures portal crane for the

symmetric oscillations characteristics.
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Tabela 1. Frequencies — distributed masses

No | Parameter A, Freﬁ_tljgfcy fggﬁg:?cry
[rad/s]
1. 0,889472 4,0665 25,413
2. 1,75169 15,6944 98,5611
3. 2,88979 42,7133 268,24
4. 3,25296 54,1239 339,898

3. MATHEMATICAL-MECHANICAL MODEL
WITH CONSISTENT MASSES

This approach consists in determining the inertial
load along the beam element during motion of the beam,
then replace the inertial load equivalent nodal load.

Adopted a dynamic model with consistent masses
for half supporting structure, Figure 5.
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Fig. 5. Model with consistent masses

For both sides wedged rod of constant cross-section
vector interpolation function following [2], [10] i [11]:

- o
1-£2 4283
I (e-262 4 £2)

X
0 &= (19)

NT =

O O ¥qn O O

The corresponding mass matrix and the stiffness of
the line element i is defined based on interpolation
functions, (19), as follows:

Misz-NT-N-dv (20)
\Y

Ki:jE-NT.N.dv 1)
\%

Symmetrically and asymmetric oscillations are
discussed separately.

Girder support structure is divided into four finite
elements, while the columns are divided into two finite
elements. Transformation matrix element as follows:

Cp S 0 0 0 O
S €, 0 0O 0 O
T 0 0 1 0 0O 22)
0 0 0 ¢cp s, O
0 0 0 -s, ¢y, O
10 0 0 0 0 1]
where:
Cy =C0SH, s, =sind
0=0°i=12
0=270°i=34

Mass matrix in the global coordinate system is
equal to:

ME =TT -M; T (23)
Stiffness matrix in the global coordinate system is

equal to:
Kf=T]-K,-T (24)

Mass matrix of the system:
M= 24: M; (25)
i
Stiffness matrix of the system:
K= 24: K, (26)

How the system mass matrix, and stiffness matrix
of the system is decomposed in submatrices.

Eigenfrequencies of the supporting structure are
obtained by solving algebraic equations:

det(k,, —0*M,,)=0 27)

3.1 Symmetric oscillations

Submatrix mass matrix of the systems by unknown
is obtained by decomposing the matrix (25), while
submatrix stiffness matrix of the system by unknown
obtained decomposing the matrix (26). These submatrices
are represented by (28) and (29):

Vasiljevi¢, R. - Bulatovi¢, R. - Savkovié, M.
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22lad? 70
221 0
4% +4%d® 0
280
ol — 7512
d2
6l 0
4|2+in 0
d
15012

0
54
13l

0
312

0

-12

-6l

0
24

Solving the equation (27), by inserting matrix (28)

and (29) circular frequencies are:
o =(97,7225; 253,964)[s ]

[140+156ad 0

156 +140ad

nn

pAll

420

22lad?
221
81%a®

Symm

70
0
0

280

0
54
13|

0
312

0

~13l

-312
0
0
812

0 0
131 0
-3 0

0 0
0 54
812 13l
156
0 0
6l 0

212 0
0 0
0 -12

812 sl

12

3.2 Asymmetrical oscillations

54ad
0
13lad?

0
70ad
0

0
0
0
0

0
280ad

O O O o o

2.
1501
d

—13lad?
0
-3l%ad?®

8l%ad?®

4

0
0
0
0
0
0

0
—13lad?

0
—3l%d?
41%ad® |

0

0

0 1

0 3
|

12i
d
2

d

EN33

(28)

(29)

Analogously for symmetric oscillation are obtained
submatrix mass matrix systems with unknown (30) and
submatrix stiffness matrix systems with unknown (31)

0 o0
0 0
0 0
70 0
0 -13
0 -32

140 0

412

54ad
13lad?
0

o O O o

0
312ad

0
70ad
0

o O O o o

0
280ad

—13lad?
0
—3l%ad?®

8l%ad®
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— 7512
0

0
15012

0 0
-12 6l
-6l 21
0 0
24 0

812

Solving the equation (27), by inserting matrix (30)
and (31) circular frequencies are:

w=(22,697;244,074)[s ]

3.3 Frequency

Table 2 shows the values of the first four frequency

oscillating support structures portal

characteristics.

Table 2. Frequencies — consistent masses

No | freguensy | Freauency
[rad/s] L3

1. 22,697 36142

2. 97,7225 15,5609

3. 244,074 38,8653

4, 253,964 40,4401

crane for

the

4. MATHEMATICAL-MECHANICAL MODEL
WITH DIRECT LUMPED MASSES

This approach consists in concentrating mass
members in nodes girder. Equivalent nodal load is equal to
zero due to the assumption that mass is only the nodal

points.

Adopted a mathematical model with lumped mass

directly for half the supporting structure, Figure 6.

- 7512

7512

i li 1
0 -12F 0 ed—2 0
1%
0 0 -75— 0 0
d 2
0 —6'—'2 o 20 g
d d
0 0 0 0 0
6l 0 0 0 0
212 0 0 0 0
0 0 0 0 0
42 0 0 0 0 (31)
24— 0 0 0
d
1%
150— 0 0
d 2 2
N
d d
gl
d |

Fig. 6. Model with direct lumped masses

Eigenfrequencies of the supporting structure are

obtained by solving algebraic equations:

det(K ¢ —@?My; )=0 32)
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Reduced masses have the following values:

m, =%p~A1-L(1+2-a-d)

1

m2=ZpA1L
1
m3:§p-A1-L

1

m, ZEIDAILad

4.1 Symmetric oscillations

(33)

Inertia matrix M, is singular. Rearrange matrix is

obtained My, :

751% +
Kll_
Sie 0 —6l 0
d2
0 6 0 0 -6l
Kn=|g ¢ 0 0
dZ
0 00 0 O
2: 2:
UL
d d
81> 0
K., = 2
22 8'—
d
Symm

10%' 0 - 7517
2.
12+ 27
15012
Symm
i ]
—ed—2 0
0 0l
0 0| (36
li
ed—2 0
0
0
i gt @7
2—
d
i
d |

Condensed stiffness matrix is equal to:
Ke =K —Kgp - Kizl Ky

(38)

24
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'm 0O 0 0 0 0 0]
m 0 0 0 0 O
m, 0 0 0 o0
My, = m 0 0 O (34)
m 0 O
Symm m, O
L m, |
Analogously, rearranging the system stiffness

matrix K, is obtained matrix Ky;, Ky, = KJ; i Kypy:

i }
0 —12¥ 0
1%
-12 0 0 —~75—
d
0 0 0
El,
-12 0 0 |—3 (35)
12 0 0
i
24F 0
1%
150—
d |

Solving the equation (32), by inserting matrix (34)
and (38), circular frequencies are:
o =(92,4762; 249,741)[s ']

4.2 Asymmetrical oscillations

In the same way as in the symmetric oscillations we
obtain the following matrix:

m 0 0 0 0 0 O
m 0 0 0o 0 O
m, 0 0 0 ©
My, = m 0 0 O (39)
m 0 O
Symm m, O
L my
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75|2+% 0 - 751
d
2.
12+75I i 0
15012
Kll_
Symm
[ 6li li ]
d—z 6l 0 -61 O —6d—2 0
0 6 0 0 O 0 0
El
K= & 00 60 0 0EL
— 0 0 0 O 0 0
d2
0 00 0 0 6L o
L d? i
_ . . ;
JTEI L AT NP AL R
d d
8> 2> 0 0
K. — 4> o o |EL
# g% 2% | 1° (42)
d d2
414
Symm —
i Y d |
Condensed stiffness matrix is equal to:
Ke =Ky =Ky - Kizl Ky (43)

Solving the equation (32), by inserting matrix (39)
and (43), natural frequencies are:
o =(22,6283; 233,49)[s ']

4.3 Frequency

Table 3 shows the values of the first four frequency
oscillating support structures portal crane for the
characteristics.

Table 3. Frequencies — direct lumped masses

0

-12

0
24

IMK-14 — Research&Developement

i -
0 —12$ 0
I2i
0 0 - 75—
d
-7512 0 0
El,
0 0 0 e (40)
7512 0 0
i
24¥ 0
2.
150'—I
d |
5. FEM MODEL IN SAP2000 SOFTWARE
In order to verify on analytical method of

determining the frequency of software SAP2000 is formed
and solved Finite element model of crane support
structures [10]. Finite element model of crane support
structure is shown in Figure 7.

Fig. 7. Finite element model

The first four modes oscillating support structures
are shown in Figure 8.

By implementation modal analysis software
SAP2000, the values obtained frequencies for the first four
modes of oscillation considered supporting structure,
table 4.

Table 4. Frequencies — SAP2000

No f?elqrﬁg:iry Fre[q|_lljs]n &y No Period Frequency fﬁ‘gﬁgﬁy
] ) (Hz] [rad/s]
1. 22,6283 3,6032 1 0,27818 3595 2,58
2. 92,4762 14,7255 9 0,06433 15,545 o7 62
3. 233,49 37,1799 3. 0,02720 36,7647 230,882
4. 249,741 39,7677 4. 0,02602 38,4320 221353
Vasiljevi¢, R. - Bulatovi¢, R. - Savkovié, M.



IMK-14 — Research&Developement EN37

& F'N

A F'N

Fig. 8. The first four modes oscillating support structures

6. ANALYSIS OF RESULTS

Based on the results in subtitles, 2, 3, 4 and 5,
Table 5 shows the comparative results for the first four
circular frequencies. The analysis of the results showed
that solutions for the circular frequency are approximately
exact but just for the first and second mode, which means
that for higher accuracy at higher modes it is necessary to
apply a larger number sticks (finite element).

Table 5. Frequencies — comparative results

Comparing the values of eigenfrequencies obtained
by approximate methods with exact method is concluded
that the maximum relative error for the first two modes is
10,69% and 10,96%.

Furthermore, comparative results show that the
approximation of the consistent masses is better than the
approximation of the direct concentrated masses.

f::elcgﬁz:liry Distributed masses Consistent masses Direct lumped masses Software SAP2000
[rad/s]
o1 25,413 22,697 (A=10,69%) 22,6283(A=10,96%) 22,58 (A=11,15%)
2 98,5611 97,7225 (A=0,85%) 92,4762 (A= 6,17%) 97,62 (A=0,95%)
3 268,24 244,074 (A=9,01%) 233,49(A=12,95%) 230,882(A=13,93%)
4 339,898 253,964(A=25,28%) 249,741(A=26,52%) 241,353(A=28,99%)

7. CONCLUSION

The problem of oscillation in the plane is present in
lifting engineering. It is particularly strong in crane high
performance (high range and high speed trolley).

This paper presents three approaches to
determining the characteristic frequency of bearing
construction portal crane. At first step, the accurate
approach to the dynamic analysis or mathematical-
mechanical model with distributed masses is presented. In
accordance to this, in the second step, two approximate
approaches or mathematical model with consistent masses
and the mathematic model with directly concentrated
masses are presented. All three mentioned approaches are
described by non-dimensional parameters, so they have
universal character for symmetrical portal crane
supporting constructions. This has special important in the
first phase of crane designing.

By changing the parameters in the algorithm, the
optimum solution is easy to be achieved, and resonance
region can be avoided. The third step is formed and solved
finite element model in the software SAP2000. This was
roughly verified the results accurate and approximate
approaches to dynamic analysis. It is shown that a
consistent approximation to the masses better than direct
lumped mass approximation.

Furthermore, the results of analysis which has been
done have a direct importance for the problem of moving
loads. From the aspect of determining the dynamic
response of supporting construction, excited by moving
load, approximation by consistently masses is better. In
this sense, this work provides a good basis for examining
the impact of the moving load on the dynamic behavior of
the load-bearing structures. The paper also leaves room for
optimization of these types of structures, based on the
limited value intrinsic frequencies.

The Approaches to the Mathematical-mechanical Modeling Supporting Construction
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NOMENCLATURE

— 9
N

TN AN<TIrCrX™>—m

- o -2

Young’s modulus

moment of inertia of cross-section
cross-sectional are

mass density of material
lenght of girder

height of colums
transversal displacement
mode shape

time function

spatial coordinate

time

circular frequency
frequency

speed of wave propagation
length of finite element
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