
VIII International Conference “Heavy Machinery-HM 2014”, Zlatibor, 25-28 June 2014, D.23-28 

*Corresponding author: Dositejeva 19, Kraljevo 36000, Serbia, prsic.d@mfkv.kg.ac.rs 

Harmonic Analysis of a Pneumatic Fixed Orifice 
 

Dragan Pršić *,, Ljubiša Dubonjić, Vladimir Stojanović  
1Faculty of Mechanical and Civil Engineering in Kraljevo, University of Kragujevac, Kraljevo (Serbia) 

Orifices, with constant or variable cross-section areas, are essential components in pneumatic circuits. Dynamic 
and static characteristics of pneumatic systems depend on their flow characteristics. They have a special role in control 
components in which are used for mass flow control. In this paper the focus is on pneumatic system consisted of fixed 
orifices and pneumatic chamber. The characteristics of the fixed orifice are presented in frequency domain. For the 
purpose of analysis, the sinusoidal input describing function is used, obtained by simulation with nonlinear model.  
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1. INTRODUCTION 
Pneumatic servosystems are widely used in 

industrial applications because of the favourable 
performances/price ratio. However, high precision control 
of such systems is difficult due to their complex physical 
nature. The main causes of that complexity are: air 
compressibility, friction between the contact surfaces, 
nonlinear flow-pressure characteristics of the orifice type 
restriction and parameter variations [1-3]. In order to solve 
the problem of design and control of such systems, it is 
necessary to have better understanding of their nonlinear 
characteristics. A mathematical model which should 
clarify the most relevant dynamic and nonlinear behaviour 
in the pneumatic system is used for that purpose. 

Fixed orifices are frequently encountered in 
pneumatic systems. As the nonlinear characteristics of the 
orifices reflect in the operation of the whole pneumatic 
system, they are observed and modelled as a separate 
subsystems. The paper presents and analyzes the nonlinear 
mass flow rate characteristics of fixed orifice in frequency 
domain. 

One of the methods of analysis of nonlinear-
systems the quasi-linearization method [4, 5]. 
Linearization in the ordinary sense is not valuable in the 
case when nonlinearity inputs exceed the limits of 
acceptable linear approximation or when there is 
discontinuity at the nominal operating point. The 
advantages of true linearization are kept in the case of 
quasi-linearization but there is no limit to the range of 
input signal magnitudes or to the selection of the operating 
point. The constraint is that linear description of the 
system depends on some properties of the input signal. 
The system description thus depends not only on the 
system itself, but  also on the signals passing through the 
system (which is a property of nonlinear systems). In other 
words, quasi-linearization is performed for a certain form 
of input signal. The problem with nonlinear systems with 
feedback configurations is in difficult determination of the 
signal form which occurs on entering the nonlinearity. 
This is the main constraint of the method. It is not always 
possible to reduce the nonlinearity input signal to a simple 
form. The practical solution of the problem is to assume 
the form of the input signal in advance. In practice, three 

forms of input signals are used in quasi-linearization [4, 
5]: bias, sinusoid and Gaussian process. 

The quasi-linear function which approximatively 
describes nonlinearity is called the describing function 
(DF). As the design of control systems is frequently 
realized in the frequency domain, the Sinusoidal Input 
Describing Function (SIDF) is used in this paper. 
Assuming that the linear part of the system filters high 
order harmonics (low-pass filter), every periodic signal is 
reduced to a basic periodic function on entering the 
nonlinearity. In the case of memoryless nonlinearity, the 
SIDF represents the gain which is changed depending on 
the amplitude of the input signal. 

The paper determines the SIDF of the nonlinear 
mass flow rate characteristic of pneumatic fixed orifice. 
 

2. MASS FLOW-RATE CHARACTERISTIC OF 
PNEUMATIC FIXED ORIFICE 

Fixed orifice characteristics depend on the 
environment in which a fixed orifice is used. In this paper 
we consider a pneumatic system consisting of a fixed 
orifice (Or) and a chamber (Ch) of constant volume (V) as 
shown in Fig. 1. The system is connected to a variable 
pressure source (Ps). Downstream pressure P depends on 
chamber dynamic. The chamber represents a generic load 
(e.g. actuator chamber) and has a role of low-pass filter. 
Therefore, it should be noted that the following analysis 
applies when the fixed orifice is connected to a storage 
type load. 

 
 

Figure1: Fixed orifice with chamber 
The mass flow rate through the restriction can be in 

sonic or subsonic conditions depending upon the ratio of 
upstream-downstream pressure. According to the standard 
theory flow rate through the fixed orifice can be presented 
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in the form [6]: 
),,( sse PPAM θϕ=   (1a) 

where the function ϕ  is defined as: 
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 (1b) 
while the parameters 1C , 2C and crP  are determined by: 
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If the downstream to upstream ratio is smaller than 
a critical value crP (0.528 for air), the flow is sonic and 
the function of upstream pressure is linear. If the pressure 
ratio is higher than crP , the flow is subsonic and depends 
nonlinearly on both pressures. 

It can be seen that the mass flow rate, for a given 
effective area of restriction ( eA ), depends on supply 
pressure ( sP ), upstream temperature ( sθ ), and working 
pressure .P  Further, we assume that upstream pressure 
and air temperature in the chamber are constant 
(isothermal chamber) and equal to the ambient 
temperature: 

.constsa === θθθ   (2) 
 
The relation (1) is graphically shown in Fig.2 for 

2710063.2 mxAe
−=  and different values of working 

pressure. The supply pressure, as exogenous quantity, 
changes in the interval ( )PPP sa 5.2≤< . 
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Figure 2: Mass flow rate through fixed orifice 
 

For as PP >  and crs PPP ≥/  (sonic regime) the 
flow rate through an orifice has a constant value. For 

crscr PPPP /1/ ≤≤  (subsonic regime) the flow rate is a 
nonlinear function of square root-type. For crs PPP /1/ >  
(sonic regime) the flow rate is a linear function of PPs / . 
Our objective is to introduce a quasi-linear operator which 
describe approximately the transfer characteristic of 
nonlinearity in frequency domain. It should be noted that 
justification for linearization of the mass flow in a 
subsonic regime depends on the choice of nominal 
operating point and the amplitude of the supply 
pressure sP . In this paper we determine the describing 
function of the operating point: 

1/ =PPs ; 0=M    (3) 
 

3. DESCRIBING FUNCTION OF FIXED ORIFICE 
Since the descriptive function of fixed orifice 

depends on the dynamics of the whole system we will first 
define a mathematical model of the pneumatic system 
from Fig.1. The dynamics of the pneumatic system can be 
shown by pseudo bond graph as shown in Fig 3. 

 
 

 
 

Figure 3: Pseudo bond graph of pneumatic system 
A pressure and mass flow are used as energy 

values. The energy that comes from a constant pressure 
source (E-type source) is partly converted into heat in 
dissipator R and partly goes to the chamber, which 
represents the storage of C-type. The constitutive relation 
of the dissipator R is determined by flow characteristics of 
fixed orifice. For causality shown in Fig 3 the nonlinear 
block diagram of the pneumatic system is shown in Fig.4. 

 
 

 
 

Figure 4: Nonlinear block diagram of pneumatic system 

The nonlinearity )(~N  is determined by equations 
(1). We will now find the parameter hC . Neglecting the 
kinetic and potential energy of the gas, based on the first 
law of thermodynamics, for the chamber we can write: 
 

( ) ( ) θθθθθ MChAMCMC
dt
d

pahspv  =−−=   (4) 

 
Using the state equation for a perfect gas: 
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θMRPV =    (5) 
 

Based on (2), (4) it can be written: 

M
dt
dPCh =    (6) 

where hC : 

θκR
VCh =    (7) 

 
Our goal is that, in frequency domain, we find the 

appropriate Hammerstein model of the system, as shown 
in Fig.5. 

 

 
 

Figure 5: Hammerstein model of pneumatic szstem 
Models from Fig.4 and Fig.5 are equivalent in the 

sense that the second model sufficiently accurate 
approximates the first model in frequency domain. The 
model shown in Fig.5 has separated linear dynamics and 
nonlinearity )(N whose describing function we need to 
determine. The linear part is the first order and the unity-
gain. The time constant has the value: 

 

cL
h

h K
CT

ω
1==    (8) 

where cω  is cutoff frequency of linearized frequency 
characteristics of the pneumatic system. 

The amplitude and phase characteristics of the 
linear part are given by the following equations: 

 

( )21

1)(
hT

A
ω

ω
+

=    (9a) 

)(tan)( 1
hTωωϕ −−=    (9b) 

 
Now, let us suppose that for a change of exogenous 

pressure: 
)sin( tPP sAs ω=    (10) 

 
a change of the operating pressure P  in a stationary 
regime, is a periodic function that can be approximated by 
basic harmonics of the Fourier series: 
 

)sin()cos( 110 tbtaaP ωω ++=  (11a) 
or 

)sin(2
1

2
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11 /)tan( ba=ϕ    (12d) 
 
Similarly, based on (6) the mass flow through the 

orifice, in the frequency domain, can be approximated by: 
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For many mechanical systems, due to the inertial 

nature, previois assumption is valid, i.e. they have 
necessary low-pas characteristics. For the system from 
Fig.4, accuracy of this assumption depends on the values 
of the time constant hC  of linear dynamics. This 
assumption is a fundamental condition for the application 
of SIDF technique, which requires that the input signal to 
the nonlinear element be essentially in sinusoidal form. 
The reason is that a limit of all periodic functions after 
propagation through law-pass linear filter is a sinusoid. 

Values of coefficients 1a  and 1b  cannot be found 
in the analytical form due to the complexity of expressions 
(1) and (10). For the determination it is used the 
simulation of A.C. potentiometer method [2] for the 
nonlinear model which is shown in Fig.4. A shematic 
diagram of this method is shown in figure Fig.6. 

 

 
 

Figure 6: A.C. potentimeter method schematic view 
 
At the oscillator output two signals of frequencyω  

are generated. One is sP  which is defined by (10) and the 
other is sP  and has the form:  

 
)cos( tPP sAs ω=   (14) 

 
The signal sP  is used as the exogenous signal for 

the nonlinear system (N.L.S). It is recorded the change of 
variable M  at the output. Variable gains pK and qK are 
set thus, in a steady state, it holds:  

 
)sin()cos( tKtKM pq ωω −≈   (15) 

 
For the determination of optimal values of 

parameters pK  and qK  the particle swarm optimization 
method is used [7]. The objective function has the form: 
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=
π

ωπ
2

0

2 )()2/1( tdeOF (16a) 

where is: 
[ ])sin()cos( tKtKMe pq ωω −−=    (16b) 

After that, we can determine the value of 
coefficients in (11): 

)/(1 ωhsAp CPKa = (17a) 

)/(1 ωhsAq CPKb = (17b) 

In Fig.7 the values of coefficients 1a  and 1b  are 
shown for different frequency and amplitude values of the 
input signal sAP . 

Figure 7:Fourier coefficients 

It can be seen that the coefficient 1a has a negative 
value in the whole interval for ω  and all values of the 
input signal amplitude. The coefficient 1b  has a positive 

value. For small values of frequencies ( 210−<ω ) we 
have: 

01 =a  i sAPb =1  (18a) 
which means that a phase shift of the system is equal to 
zero and a gain is equal to one. For large frequency values 
( 10>ω ) a completely signal attenuation is obtained: 

011 == ba (18b) 

The change of pressure P of nonlinear model 
(Fig.4) and its corresponding approximation ( aprP ) which 

is defined by (11a) for 2.0=sAP and 5.0=ω  are shown 
in Fig.8a. 

The mass flow rate ( M ) and its corresponding 
approximation ( aprM ) for the pressure change from 
previous figure are shown in Fig.8b. 

The most significant changes of 1a  and 1b  occur 
on a mean interval. In Fig.9 it is shown the ratio 11 /ba on 

the interval 110 1 <<− ω for different values of sAP .

Figure 8a: Simulated pressure and approximation 

Figure 8b: Simulated mass flow rate and approximation 

Figure 9: Relationship 11 /ba  

The picture shows the values for ω  in which 
11 ba −= . Based on (12d), at these frequencies a phase 

delay of the system is 4/π− . For 91049.8 −= xCh [ 2ms ]
the values are obtained: 

]21.0;28.0;5.0[* =ω (19) 

Figs. 10a and 10b show the frequency 
characteristics of the whole system. 
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Figure 10a: Amplitude response 

 
Figure 10b: Frequency response 

With amplitude changing of the input signal the 
time constant of the system is also changed. At higher 
input amplitude the system becomes slower. It can be seen 
that the cutoff frequency of the whole system is 
determined by the cutoff frequency of the linear part (9). 
This means that the time constant for given amplitudes of 
the input signal is determined by frequencies (19) 

 
[ ]76.4;57.3;2=hT  [ s ]   (20) 

 
For these time constants and the model which is 

shown in Fig.5 it can be numerically calculated the 
describing function of nonlinearity )(N . Fig. 11a shows 
the module of describing function and the argument 
depending on the frequency of the input signal is shown in 
Fig. 11b. 

It can be seen that the describing function depends 
on a frequency of the input signal and its amplitude. 
Around an inflection frequency the gain decreases and 
move in the interval [0.8 - 1]. It is also decreased the phase 
at the interval from 010  (phase sequencing) to 03−  
(phase delay). 

 
Nomenclature 
 

M  - mass flow rate through orifice kg/s 

eA  - effective area of restriction 2m  
κ  - specific heat ratio [ . ] 
R  - gas constant )/(kgKJ  

P  - absolute pressure Pa 
θ  - temperature K 

 
Subscripts 

a  - atmosphere 
u - upstream 
d - downstream 
N - nominal operating regime 

 

 
Figure 11a: |DF| - ω dependency 

 
Figure 11b: arg(DF) - ω dependency 

 
 

4. CONCLUSION 
The presented system is a frequent configuration in 

pneumatic systems. In order to simplify the analysis the 
initial nonlinear model is transformed into an equivalent 
Hammerstein model. Instead of nonlinearity of two inputs 
it is introduced the nonlinearity with a single input. New 
nonlinearity is described by the describing function. For 
the determination of describing function simulation results 
are used. Describing function is dependent on the 
amplitude and frequencies of the input signal. In addition, 
the time constant of the linear part is changed with 
amplitude changing of the input signal. 
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