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The paper considers the model order selection (Output Error model) of the system with constant parameters. Ad hoc 
selection of model order leads to overparametrization or parsimony problem. To avoid these problems, different selection 
criterions of the model are used: AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion) and FPE 
(Final Prediction Error Criterion). In this paper, Akaike's criterion is used, which is obtained by minimization of the 
Kullback-Leibler information distance. The criterion is basically a generalization of the maximum likelihood method. It is 
assumed that the stochastic disturbance in the model belongs to the class of ε-contaminated distributions. In such 
conditions the originally proposed AIC criterion cannot be applied. By determining the least favourable probability density 
for a given class of probability distribution represents a base for design of the robust version of AIC criterion. Simulations 
illustrate the behavior of the proposed criterion. 
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1. INTRODUCTION
Obtaining system models based on the fundamental 

laws of physics is a difficult problem. In order to facilitate 
the controller design, for the obtained model, different 
simplifications of the model are performed. Most often it 
is a procedure of linearization around the equilibrium 
point. However, there are the systems that cannot be 
linearized around an equilibrium point, because there is no 
equilibrium point. If a linear approximation is found, the 
resulting model will be valid only for a small region 
around the linearization point. As an alternative approach 
the design of controllers is largely based on the use of 
mathematical models that are obtained during the process 
of system identification [1,2]. 

Most identification algorithm assume that the 
model structure is a priori known. As is well known, a 
fundamental difficulty in statistical analysis is the choice 
of an appropriate model and determining the order of a 
model. In recent years, the necessity of introducing the 
concept of model has been recognized and the problem is 
posed how to choose the “best approximating" model 
among a class of competing models with different 
numbers of parameters by a suitable model selection 
criterion given a data set. Also, there is presently a great 
deal of interest in simple criteria represented by 
parsimony of parameters for choosing one of a set of 
competing models to describe a given data set. Therefore, 
the best model is the one with least complexity, or 
equivalently the highest information. For example, 
parameter parsimony requires that the smallest number of 
factors is chosen, such that the corresponding model fits 
the data. The selection of a parsimonious model, in 
general, is a nontrivial problem without the aid of model 
selection criteria. 

Several information theoretic criterion have been 
proposed for structure selection in linear dynamic input 
output models. The model which minimizes the criterion is 
then chosen as the best model from the available set. 

Examples of the classical criterions are the Final 
Prediction Error (FPE), Akaike’s Information Criterion 
(AIC) and Bayesian Information Criterion (BIC). These 
techniques find a tradeoff between goodness of fit and 
model complexity. The performance of an order-selection 
criterion is optimal if the model of the selected order is the 
most accurate model in the considered set of estimated 
models. Note that this is not necessarily the true model 
order. If the true process is, e.g. tenth-order, where the last 
six parameters are insignificant, the estimated fourth-order 
model will be the most accurate.  

Used way for deriving model selection criteria is 
based on the quantification of “how close are” the 
probability density of the generating model and the 
probability density of the fitted approximating model. 
Several coefficients or “measures” have been introduced 
in the literature for this quantification. The Kullback-
Leibler information distance is the most frequently used 
information theoretic coefficient for measuring divergence 
or separation between two probability densities [3]. The 
Akaike’s information criterion (AIC) is a commonly used 
tool for choosing between alternative models [4]. 

Here, those results are extended on the case when 
the measurement noise is a non-Gaussian. Justification of 
this approach was confirmed in practice [5,6]. Namely, in 
measurements there are rare, inconsistent observations 
with the largest part of population of observations 
(outliers). The presence of outliers can considerably 
degrade the performance of linearly recursive algorithms 
based on the assumptions that measurements have a 
Gaussian distribution.  

The synthesis of robust algorithms is of primary 
interest. The synthesis is based on Huber’s theory of 
robust statistics [6]. As a generator of a recursive 
algorithm, according Huber’s theory, it is defined the 
functional based on the least favourable probability 
distribution for a given class of probability distribution. 
Robust recursive algorithms in the identification of 
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dynamical systems are discussed in [7] while in an area of 
adaptive control are discussed in [8].  

This paper considers the model order selection 
using robust Akaike's criterion. The recursive algorithm 
for the OE (output error) model with time invariant 
parameters have been also discussed. Robustness of the 
used robust OE parameter estimation algorithm is 
accomplished by introducing the nonlinear transformation 
of prediction error (Huber’s function).  

The performances of the algorithm are described 
through simulation results that demonstrate the superiority 
of the proposed algorithm in relation to the linear 
algorithm (derived under the assumption that the 
stochastic noise has a Gaussian distribution). 

 
2. ROBUST PARAMETER ESTIMATION 

ALGORITHM FOR OE MODEL 
The general form of the OE model is 

1

1

( )( ) ( ) ( )
( )
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A q

−

−= +                                            (1) 

where ( )u k , ( )y k  and ( )e k  are input, output and 
stochastic noise, respectively. Polynomials 1( )A q−  and 

1( )B q− have the form: 
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Practical and theoretical studies have shown that in 
a stochastic model of the system there are some 
observations that are inconsistent with the largest part of 
the population (outliers) [5], and that is why the 
disturbance (measurement noise) ( )e k in the model (1) is a 
non-Gaussian. Hence, the probability density function of 
the disturbance belongs to approximately normal 
distribution class: 

{ }1 2( ) : ( ) (1 ) ( ) ( )p e p e p e p eε ε ε= = − +P                        (3) 

in which  
2

1 1( ) (0, ),p e σ N 2
2 2( ) (0, )p e σ N , 2 2

2 1σ σ . 

In other words, the probability density function ( )p e  
represents a mixture of normal (Gaussian) distributions 
where 2

1σ  and 2
2σ  denote variances. The parameter 

0 1ε≤ <  is called the degree of contamination.    

Let us introduce an auxiliary model 
1

1
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or in the following form: 
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                     (5) 

Since the parameters ( 1, , )ia i n=   and ( 1, , )ib i m=   are 
unknown, their estimates are used, so the output of the 
auxiliary model is calculated as:  

1
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                     (6) 

Let θ̂  is the estimated vector of OE parameters, and ( )kϕ  
is the observation vector of OE parameters: 

1 1
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ˆ ˆ( ) [ ( 1) ( ), ( 1) ( )]

T
n m

T
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θ
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=
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 (7) 

At the moment k , before the estimate ˆ( )kθ  is known, the 
prediction of the model is [9]: 

ˆˆ ( ) ( 1) ( )T
My k k kθ ϕ= − .                            

The natural definition of the prediction error (residual) is  
ˆ( ) ( ) ( )Mk y k y kε = − .                            (9) 

The identification criterion (a generator of recursive 
parameter estimation procedure) is based, according to OE 
methodology, on the prediction error and has a 
mathematical form, for systems with constant parameters: 

{ }( ) ( (k))Eθ ε=J Φ     (10) 
in which 

*( ) log ( )p⋅ = − ⋅Φ      (11) 
In the last relation, * ( )p ⋅  represents the least favourable 
distribution of probability for a given class of probability 
distribution (3). 
This distribution is obtained by using the mathematical 
machinery of robust statistics [6]. 

An analytical description of the least favorable 
probability density * ( )p ⋅  is given as follows: 

( )
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(k)
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e e k
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(12) 

where kε is the Huber function parameter.  

The empirical functional for systems with time-
invariant parameters has the form (obtained from the 
relation (10) for sufficiently large k): 

 { }J
1

1) ( ( ))(
k

tk
i

k
θ ε

=

=  Φ                  (13) 

Expanding ( )k θJ  in the vicinity of the preceding 

estimate ˆ(k 1)θ −  in Taylor series, one obtains: 

( ) ( )
( )2

ˆ ˆ ˆ( ) (k 1) (k 1) (k 1)

ˆ(k 1)

k k kJ J J

O

θθ θ θ θ θ

θ θ

 = − + ∇ − − − + 

+ − −
  (14) 

where 
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( )
lim 0
x

O x
x→∞

=      (15) 

and ⋅ denotes the Euclidean norm. The desired value 
ˆ(k)θ  can  be obtained by solving the equation: 

( )ˆ(k) 0kJθ θ∇ =      (16) 

from which one can obtain: 
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(17) 
Based on the relation (13) it is obtained: 
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or in the form: 

1( ) ( 1) ( ) ( ( ))k kkJ k J kθ θ ε−= − + Φ  (19) 

By differentiating the last relation twice one can obtain: 
2 2 '

1( ) ( 1) ( ) ( ( )) ( ) ( )T
k kk J k J k k kθ θθ θ ε ϕ ϕ−∇ = − ∇ + Ψ  (20) 

where '( ) ( )Ψ ⋅ = Φ ⋅ . 

Let us assume further that the following 
assumptions are  satisfied: 

a) The estimate ˆ(k)θ is in the vicinity of the estimate 
ˆ(k 1)θ −  

b) The estimate ˆ(k 1)θ − is optimal at the instant k-1. 

Taking ˆ(k 1)θ θ= − in the relation(20), one can obtain: 

2 2
1

'

ˆ ˆ( (k 1)) ( 1) ( (k 1))
( ( )) ( ) ( )

k k
T

k J k J
k k k

θ θθ θ
ε ϕ ϕ

−∇ − = − ∇ − +

+Ψ
 (21) 

From the assumption a) follows 
2 2ˆ ˆ( (k)) ( (k 1))k kJ Jθ θθ θ∇ ≅ ∇ −   (22) 

Based on this, the relation (21) takes the form 
2 2

1
'

ˆ ˆ( (k 1)) ( 1) ( (k 2))
( ( )) ( ) ( )

k k
T

k J k J
k k k

θ θθ θ
ε ϕ ϕ
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Based on the assumption a) it also follows 

( )ˆ ˆ(k) (k 1) 0O θ θ− − =   (24) 

By introducing the notation 2 ˆ(k) ( (k 1))kR k Jθ θ= ∇ −  from 
relations (17) and (23)  one can obtain: 

( )1ˆ ˆ ˆ(k) (k 1) (k) (k 1)kR k Jθθ θ θ
−  = − − ∇ −   (25) 

'(k) (k 1) ( (k)) ( ) ( )TR R k kε ϕ ϕ= − + Ψ  (26) 

From the assumption b) it follows 1
ˆ( (k 1)) 0kJθ θ−∇ − = . 

Based on this condition, and if ˆ(k 1)θ θ= −  is put in the 
relation (25), one obtains: 

ˆ( (k 1)) ( ( )) ( )kk J k kθ θ ε ϕ∇ − = −Ψ  (27) 

Finally, based on relations (25) - (27) a recursive 
algorithm is obtained: 

1ˆ ˆ(k) (k 1) (k) ( ) ( ( ))R k kθ θ ϕ ε
−

= − + Ψ  (28) 

'(k) (k 1) ( (k)) ( ) ( )TR R k kε ϕ ϕ= − + Ψ  (29) 

The algorithm (28) - (29) includes the inverse matrix 
1
(k)R

−
. To avoid this let us introduce the matrix 

1
(k) (k)P R

−
= . Using this notation and applying the 

matrix inversion lemma [1], from (28) and (29), one can 
obtain the definitive form of a recursive algorithm for 
identification of dynamic systems with time-invariant 
parameters: 
ˆ ˆ(k) (k 1) (k) ( ) ( ( ))P k kθ θ ϕ ε= − + Ψ  (30) 
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ˆ(k) (k) (k 1) ( )Ty kε θ ϕ= − −   (32) 

{ }( ) min , sgn( )x x k xεΨ =   (33) 

' 1
( )

0
x k

x
otherwise

ε <
Ψ = 


  (34) 

The function defined by the relation (33) is the Huber 
function [6]. It is derived for a class of distributions(3). It 
is shown on the following figure. 
 

 
Fig. 1 Nonlinear function of residuals 

a) Huber’s function 
b) Derivative of Huber’s function 

 
3. ROBUST AKAIKE’S CRITERION 

In a general case, a model of system can be 
described by an assumed probability density function of 
measurements. This probability density is put in 
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correspondence with the exact probability density 
measurements. The consistency between two probability 
densities describes the Kullback - Leibler information 
distance. By minimization of the information distance it is 
obtained the criterion for determining the model order [1]. 
For the given model order this criterion is identical to the 
maximum likelihood criterion. If it is assumed that the 
model (1) has constant parameters and a stochastic noise 
e(k) has a Gaussian distribution, Akaike's criterion has the 
form: 

 2

1
( ) ( ) ,

k

A
i

W k i p p n mε
=

= + = +                                   (35) 

in which k represents a number of measurements and p is a 
number of parameters. In this paper, it is necessary to 
define Akaike’s criterion for a general case: 

a) The system parameters are time-invariant 
b) The stochastic noise has a non-Gaussian 

distribution described by the relation (3) 
Based on relations (11) and (12) it is obtained: 

( )

2
1

2
1

1
2
1

2(k) ln (k)
12

(k)
2(k) ln (k)

2 1

k

k k
k

ε

ε ε
ε

πσε ε
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ε
πσε ε

εσ


+ ≤ −Φ = 

  − + >  − 

  (36) 

Since in the paper estimation algorithm is based on 
robust statistics [2], the criterion for the selection of the 
model structure will be called robust Akaike's criterion. 
Taking into account conditions a) and b) this criterion has 
the form: 

1
( ) ( ( )) ,

k

RA
i

W k k p p n mε
=

= Φ + = +                             (37) 

Based on the point of criterion minimum(37), polynomial 
orders ( , )A ⋅ ⋅  and ( , )B ⋅ ⋅  are determined. 
Remark 1: The criterion (37) determine models collection 
because when p is determined from minimum of the 
criterion there are multiple combinations of polynomial 
orders m  and n  which satisfy the condition. Because, it is 
adopted: 

, 2n m p n= =              (38) 

 
4. SIMULATION RESULTS 

The proposed robust Akaike’s criterion has been 
tested on the following OE model: 

1 2

1 2

0.5 0.3( ) ( ) ( )
1 0.7 0.5

q qy k u k e k
q q

− −

− −

+= +
− +

          (39) 

The system identification example, is based on 
measured 1000 input-output data points obtained during 
the experiments.  

During the simulations, it is assumed that measured 
noise has non-Gaussian distribution: 

{ }( ) (1 ) (0;0.1) (0;10)p eε ε ε= = − ⋅ + ⋅P N N .       (40) 

PRBS signal is used for input signal. Figs. 2 to 4 
show noise signal, system input and corresponding system 
output, respectively. 

 
Fig.2 A non-Gaussian noise sequence, 0.1ε =  

 
Fig.3. PRBS excitation signal 

 
Fig.4. Measured output signal of the system with 
contamination 0.1ε =  
 
Based on the point of criterion minimum (37), for nine 
different model orders, it is shown that the observed 
system can be best described by a second order model, see 
Fig 5. 

 
Fig. 5 RAIC criterion for selection of model order  

 
To demonstrate the superiority of the proposed robust OE 
identification algorithm, a comparison with linear OE 
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identification algorithm [9], when input signal is PRBS 
signal, is made. 

The simulation results are compared in terms of 
mean square error (MSE), defined by 

( )2ˆln E ( ) ( )MSE k kθ θ= −                                           (41) 

Figs. 6 to 8 show parameter estimates, and mean 
square errors. 

 

 
Fig.6. Estimates of parameters 1a  and 2a  obtained in 
nongaussian noise environment with contamination 

0.1ε =  (solid line: Parameter estimates Robust OE, dash-
dot: Parameter estimates using linear OE algorithm, dotted 
line: True parameter values) 
 

 
Fig.7. Estimates of parameters 1b  and 2b  obtained in 
nongaussian noise environment with contamination 

0.1ε =  (solid line: Parameter estimates Robust OE, dash-
dot: Parameter estimates using linear OE algorithm, dotted 
line: True parameter values) 
 

 
Fig.8. Mean square error, obtained in nongaussian noise 
environment with contamination 0.1ε =   

Figs. 9 and 10 show noise signal and system output 
respectively, the contamination 0.2ε = . 

 
Fig.9 A non-Gaussian noise sequence, 0.2ε =  

 
Fig.10. Measured output signal of the system with 
contamination 0.2ε =  
 

Figs. 11 to 13 show parameter estimates, and mean 
square errors. 

 

 
Fig.11. Estimates of parameters 1a  and 2a  obtained in 
nongaussian noise environment with contamination 

0.2ε =  (solid line: Parameter estimates Robust OE, dash-
dot: Parameter estimates using linear OE algorithm, dotted 
line: True parameter values) 
 

 
Fig.12. Estimates of parameters 1b  and 2b  obtained in 
nongaussian noise environment with contamination 

0.2ε =  (solid line: Parameter estimates Robust OE, dash-
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dot: Parameter estimates using linear OE algorithm, dotted 
line: True parameter values) 

Fig.13. Mean square error, obtained in nongaussian noise 
environment with contamination 0.2ε =   

Comparing Figs. 8 and 13, it can be clearly seen 
that the superiority of the proposed robust OE algorithm is 
greater in higher degrees of contamination. 

5. CONCLUSION
The basic objective of this paper is to consider how 

the proposed robust Akaike’s criterion copes with the 
problem of the robust parameter estimation of the time 
invariant OE model. It assumed that the output 
measurement of plant is disturbed by Non-Gaussian noise. 

The good behavior of proposed robust Akaike’s 
criterion as well as robust identification procedure for OE 
model is illustrated on the simulation example of the 
second order model. 
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