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Abstract - The data in industry are corrupted with stochastic noise. In 

the real situations data contain outliers which can create problems to 

linear algorithms. Because, some kind of prevention must be taken into 

account. So are developed robust procedures for parameters estimation. 

In this paper we shall consider output error model and for robust 

parameters estimation the Masreliez-Martin’s robust filter is used. This 

filter is generalization of  Kalman filter. In this paper we 

(i) eliminate the transformation factor 

(ii) nonlinear Masreliez-Martin prediction error transformation 

we replace with Huber function 

(iii) Fisher information is replaced with derivative of Huber’s 

function 

(iv) generation of input signal (experiment design) is based on 

ideas from predictive control 

Also, the intensive simulations are performed. 

 
Key words: Nongaussian noise, output error model, robust Kalman 

filter, experiment design 

I. INTRODUCTION 

One of the problems that appears in the area of identifi-

cation of industrial processes is the identification in the 

presence of stochastic disturbance. Practical studies show 

that disturbance, in general, has non-Gaussian distribution. 

It is an especially important case when appears inconsistent, 

in relation to the main part of population, observations 

(outliers). Probability distributions for this case are approx-

imately normal (  -contaminated) and they are the subject 

of intense research in mathematical statistics. For such a 

case, we consider the robust procedures for parameters 

estimation. 

The reason for which we decided to use output error 

(OE) type recursive algorithm for parametric identification 

is that it can provide good performance when the plant 

output measurement is disturbed by noise. This can be 

explained by the fact that the output of this predictor does 

not directly depend upon the measured variables disturbed 

by noise, as the case with prediction error type predictor. 

The output of this predictor depends indirectly upon the 

measurements through the adaptation algorithm but this 

dependence can decrease in time by using a decreasing 

adaptation gain [1-2]. 

We will apply the robust filter theory for solving prob-

lem of the robust parameter estimation. In 1960, Kalman 

introduced an effective algorithm to realize the optimum 

filter for Gaussian processes, [3]. The Kalman filter works 

well, but it assumes that the system model and noise statis-

tics are known. If any of these assumptions are violated 

then the filter estimates can degrade. This was noted early 

in the history of Kalman filtering [4-5].  

Although the Kalman filter is the optimal linear filter, it 

is not the optimal filter in general for non-Gaussian noise. 

Noise in nature is often approximately Gaussian but with 

heavier tails, and the Kalman filter can be modified to ac-

commodate these types of density functions [6-8].  

Masreliez [6] found that the score function for the resi-

dual process plays an important role in obtaining the mini-

mum variance estimator. However, the procedure to eva-

luate the score function involves convolution operations 

which are difficult to implement. Facing this difficulty, 

Masreliez and Martin [7] applied the influence function of 

min-max robust theory [9-10] to replace the score function. 

They first use the linear transformation to scale and sym-

metrize the density of the residual process and then operate 

on the result with an influence function to cut off the out-

liers in the noise distribution. 

Nevertheless, several basic disadvantages are associated 

with the Masreliez-Martin filter: 

 The estimator requires the unknown contaminating 

distribution to be symmetric. This is a stringent re-

quirement, since in practice one would not expect de-

partures from normality to be symmetric. Without the 

assumption of symmetry, the estimator may not be con-

sistent. 

 In general, there are relatively long periods of time in 

which noise is essentially Gaussian so that it is impor-

tant to maintain full efficiency during these periods. Yet 

their estimator cannot work as well as the standard 

Kalman filter does in Gaussian noise. 

 For various forms of measurement noise, the achievable 

optimum Cramer-Rao bound of point estimation (Kal-

man filtering without plant noise) is different. This es-

timator is optimal not in the efficiency-robust sense (ap-

proaches the Cramer-Rao bound), but in the min-max 

sense (minimizes the maximum variance) within those 

specific models such as the  -contaminated family   

for a fixed mixing parameter   [9] or a p-point family 

model 
p  with a fixed p [10], respectively. 

Because of these disadvantages, authors have decided to 

make some modification of the robust filter proposed by 

Masreliez and Martin [7]. 
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Finally, the theory of experiment design is used in order 

to reduce the time needed for identification. The aim is to 

create the input signal for identification (excited signal) 

through a recursive relation for autocovariance function. 

Synthesis of autocovariance function is based on the ideas 

of predictive control, [11]. 

II. MODIFIED ROBUST KALMAN FILTER 

We will consider a dynamic system whose 1n  dimen-

sional state vector ( ) ( 0)x k k   is estimated from scalar 

observations (1), , ( )y y k , in which ( )x k  and ( )y k  satisfy 

the linear state and observation relations 

( 1) ( ) ( )x k F k x k                              (1) 

( ) ( ) ( ) ( )y k H k x k k                           (2) 

 

with n n  state transition matrix ( )F k , 1 n  observation 

matrix ( )H k , and the scalar measurement noise ( )k . We 

can note that considered system has  

As mentioned above, our attention is turned towards the 

case when observation noise has Non Gaussian distribution. 

From [7], for situation of the linear model (1-2), the Ma-

sreliez-Martin’s robust filter is defined by: 

ˆ( ) ( ) ( ) ( ) ( ) [ ( )]T T

px k x k M k H k T k k              (3) 

ˆ( ) ( 1) ( 1)x k F k x k                           (4) 

         ( ) ( 1) ( 1) ( 1)TM k F k P k F k                    (5) 

 

where the filter covariance, ( )P k satisfies 

 
0

'

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,T T

f p

P k M k

M k H k T k T k H k M k E  

 


     (6) 

 

( )T k is a linear transformation which insure the probability 

density function (pdf) of the transformed residual process 

 ( ) ( ) ( ) ( ) ( )k T k y k H k x k                        (7) 

 

to be symmetric and all marginal pdf be members of the  -

contaminated family  . Also is assumed that a priori state 

prediction error ( ) ( )x k x k  is Gaussian for all k with zero 

mean and covariance ( )M k . 
0f

E  denotes expectation 

with respect to the least favorable pdf 0f , [ ]p   represents 

the vector influence function. Details may be found in [6-

7]. 

Trying to avoid disadvantages specified in Introduction 

we made some modifications of this robust filter. 

For symmetric residual process, the linear transformation 

kT  was asserted to exist. However, its existence strongly 

depends on the pdf of the residual process. Without a priori 

knowledge, it is difficult to implement. Even if this infor-

mation is available, it is still not clear how to find kT except 

for the scalar model. Adopting kT =1, we eliminate the 

transformation factor. 

The replacement of Fisher information  
0

'
( )

f p
E    by 

derivative of Huber’s function enables great efficiency 

during periods of time in which noise is essentially Gaus-

sian. 

Based on extensive simulation results, it was observed 

that the robust filter modified in this way gives something 

better estimates in the event that nonlinear prediction trans-

formation proposed by Masreliez and Martin [7] is replaced 

with Huber’s function. 

The proposed modifications of Masreliez-Martin’s ro-

bust filter have been derived on the basis of approximations 

and somewhat heuristic reasoning. 

Let’s consider now the process model which is described 

by: 

( , ) ( ) ( )Ty k k k                           (8) 

with standard notations: 

1 1

( ) [ ( 1), , ( ), ( 1), , ( )]

[ , , , , , ]

T

T

n m

k y k y k n u k u k m

a a b b





      



 

 
 (9) 

which denote the vector of input-output data and the vector 

of true constant parameter values, respectively. The density 

for observation noise ( )k  is represented by the Gaussian 

mixture:    

2 2

1 2p( (k)) (1 ) ( 0, ) N( 0, ), 0 1                 (10) 

The output error adjustable predictor is described by: 

ˆˆ( ) ( ) ( )Ty k k k                            (11) 

 

where ˆ( )y k denotes the a posteriori output of the predictor, 

in which: 

1 1

ˆ ˆ( ) [ ( 1), , ( ), ( 1), , ( )]

ˆ ˆˆ ˆ( ) [ ( ), , ( ), ( ), , ( )]

T

T

n m

k y k y k n u k u k m

k a k a k b k b k





      



 

 
 (12) 

The problem of robust output error recursive identifica-

tion of a system described by (8) can be considered as the 

task of estimation the unknown the parameter vector   in 

real time, on the basis of current input data and the a post-

eriori predicted output data. Since predicted output 

ˆ( )y k should converge asymptotically to the true output 

value ( )y k , ˆ( )y k is an approximation of the output ( )y k , 

which will improve as the time passes. However, if the 

linear regression model (11) can be cast into the form (1-2) 

by 

( 1) ( ), ( )

ˆ( ) ( ) ( ) ( )T

k k

y k k k k

  

  

  

 
                     (13) 

then applying the robust Kalman filter to (13), with 

( )F t I , ( ) ( )TH t t , robust output error parameter 

estimation of the system (8) can be done.  

Generally, Kalman filter interpretation of linear parame-

ter estimator can be seen in [12]. 
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III. GENERATION OF INPUT SIGNAL 

Optimal test signals are frequently specified in terms of 

their second order properties, e.g. autocovariance or spec-

trum. This leads to the problem of implementing a real 

signal with specified second order properties. In addition, it 

is usual that the input should also be constrained in its am-

plitude, therefore, the amplitude must lie in some interval. 

Within the constraints of its amplitude, it is important to 

implement an input signal which has maximum power. It is 

of great importance in experiment design, where the quality 

of the estimation typically increases with the signal to noise 

ratio. If we choose an input with higher power, it is ob-

viously that the signal to noise ratio is improved. Binary 

signals have precisely this desirable property: their power is 

maximum for given amplitude constraint. 

As mentioned in introduction section, we utilize ideas 

from model predictive control to generate a binary wave-

form whose sampled autocovariance is as close as possible 

to some prescribed autocovariance, [11]. Heuristically 

speaking, the idea is to solve, for each time instant, a finite 

horizon optimisation problem to find the optimal set of the 

next, say, T values of the sequence such that the sampled 

autocovariance sequence so obtained is as close as possible 

(in a prescribed sense) to the desired autocovariance. One 

then takes the first term of this optimal set for the sequence, 

advances time by one step and repeats the procedure. The 

idea behind this procedure is thus closely related to finite 

alphabet receding horizon control, where receding horizon 

concepts are employed to control a linear plant whose input 

is restricted to belong to a finite set. 

Before the algorithm begins, the user of the algorithm 

has to convert the desired autocovariance sequence 

 
0

d

k k
r




into the non-central autocovariance of a {0, 1} se-

quence  
0

ˆd

k k
r




. Also, the user must choose three variables: 

N-the length of the signal to be generated, n-the number of 

lags  
0

d

k k
r




to be compared to the corresponding lags of the 

sampled autocovariance sequence of the designed signal, 

and m represent the length of the receding horizon over 

which is applied the optimisation algorithm. For details see 

[11]. We now present an outline of the algorithm as a series 

of steps: 

1. Set 1t   

2. Set 
1 1,

ˆ ˆ( , , )t t m my y O    where
1,mO denotes a zero 

matrix of order 1 m  

3. Compute the first n lags of the sampled non-central 

autocovariance of
1 1 1 1

ˆ ˆ ˆ( , , , , , , )t t t t my y y y y   
   via 

1

1

1
ˆ ˆ ˆ: , 0, ,

1

t m

k i i k

i k

r y y k n
t m

 



 

 
 

             (14)

 
where we are considering ˆ

i iy y  for 1, , 1i t   

4. Generate a new m-tuple  1
ˆ ˆ( , , ) 0,1

m

t t my y     and 

repeat step 3 until all m-tuples have been tested. 

5. Let ˆ
t ty y for the m-tuple  1

ˆ ˆ( , , ) 0,1
m

t t my y     

for which     
0 0

2

ˆ
nn d

i ii i
r r

 
  is minimum. 

6. If t < N, let t = t + 1 and go to step 2. 

7. Convert the {0,1} N-tuple 1 2( , , , )Ny y y   into a {a,b} 

N-tuple 1 2( , , , )Ny y y via 

: ( ) , 1, ,t ty b a y a t N                    (15) 

For our choice of input signal, we were motivated by the 

fact that a typical input signal used in system identification 

is bandlimited white noise, see [12]. For m = 1, N = 1000 

and n = 50, we obtain the results presented in Fig. 1. From 

this figure, we can see that both the autocovariance and 

spectrum of the generated signal are very similar to those of 

white noise. 

 
Fig. 1. Characteristics of the generated pseudo white noise signal for m = 

1, N = 106 and n = 50 

 

IV. SIMULATION RESULTS 

To demonstrate the performance of proposed robust pro-

cedure for parameters estimation, we consider a single-

input/single-output process, described by: 

1

1

( )
( ) ( ) ( )

( )

B q
y k u k k

A q





                        (16) 

(where the delay operator is defined by 1q ). 1( )A q and 

1( )B q are polynomials of the second degree, depicted as: 

1 1 2

1 1 2

( ) 1 1.5 0.7

( ) 1 0.5

A q q q

B q q q

  

  

  

 
                       (17) 

From (16), can be seen the dynamics of the process is in-

volved in the noise process. We consider the case when the 

density for observation noise ( )k is Non-Gaussian, with 

contamination  =0.1and variances 2

1 =1and 2

2 =100, see 

(10). For excited signal we utilize the generated pseudo 

white noise, which the amplitude lie in interval [ 1,1] . 
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Fig. 2. Estimates of parameters 1a  and 2a  

 
Fig. 3. Estimates of parameters 1b  and 2b  

 

Fig. 4. Mean Square Error 

 

 

 

 

 

 

 

 

 

V. CONCLUSION 

In this paper we have applied the robust filter theory for 

solving problem of the robust parameter estimation, in 

which some modifications of the Masreliez-Martin’s filter 

are used. Because of its advantages when the plant output 

measurement is disturbed by noise, output error model is 

used. As input signal, bandlimited white noise is generated 

by proposed algorithm based on ideas from predictive con-

trol. 

The proposed modificated Masreliez-Martin’s filter has 

satisfactory performances as parameter estimator. However, 

all the available practically applicable recursive robust 

estimators, which are obtained as a result of approximations 

and assumptions, require further practical and/or theoretical 

verifications. 
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